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error during a sweeping window is calculated. By comparing 
proposed method results in different simulation (simulated 
and real signals), proposed method gives acceptable results 
with least mean square error in noisy or real conditions.

Keywords Dual Kalman filter · Effective brain 
connectivity · Source localization methods · Multivariate 
autoregressive model

Introduction

Most biological systems have several interacting subsystems 
and an important task in the analysis and study of these sys-
tems is to understand how these subsystems are dynamically 
related to each other and to study the effects of interactions 
inside the system [1, 2]. Brain is one part of the biologi-
cal systems with interacting subsystems and its function is 
associated with interactions between different subsystems 
and their effects on each other, which has been a challenge 
in the field of Neuroscience [1–3]. The interaction between 
brain subsystems is called brain connectivity and its estima-
tion is a subject for calculation and analysis of the direction 
and amplitude of the data flow among brain areas [1–4]. 
Three kinds of brain connectivities are proposed for describ-
ing such interactions: anatomical or structural connectiv-
ity, functional connectivity, and effective connectivity [3]. 
Anatomical or structural connectivity describes anatomical 
contact between neural units at a given time and the physical 
structure of brain is analyzed. It can be calculated using dif-
fusion tensor imaging (DTI) or magnetic resonance imaging 
(MRI) measuring [5, 6]. Functional connectivity is defined 
by statistical dependence among neurons of the brain. It can 
be measured by correlations between neurons in time or 
frequency domain [7, 8]. Effective connectivity discusses 
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about how one neural system affects another one. In other 
words, in effective connectivity, the relations between brain 
regions or the effects of one region on other regions are ana-
lyzed [5, 8–10]. The common difference between functional 
and effective connectivity is that effective connectivity is 
described as a driver–receiver relationship [11] or the effect 
of one region on another region, while functional connec-
tivity is defined as correlation between neurons of the brain 
[11]. Because of the relations between brain regions and 
their activities. Hence, understanding the causal relation-
ships between brain activations and effective connectivities 
between brain neurons are important [12].

Several measures are proposed for evaluating and calcu-
lating the brain effective connectivity. These measures can 
be divided to two large classes; one of which is based on the 
concept of random variables named data based methods, 
while the other class is based on fitting specific models on 
generated data which are called model based methods. The 
methods for studying effective connectivity are mostly from 
the second class, such as Granger causality and dynamic 
causal modeling which are most applicable. In model based 
method, physiological information is fitted to data [12].

Grange casualty (GC) is one of the models which is based 
on effective connectivity estimation methods and is based 
on the supposition that each cause precedes its effects [13]. 
This method is mostly applied to a linear prediction model 
such as the multivariate autoregressive (MVAR) model. 
Directed transfer functions (DTF), partial directed coher-
ence (PDC), and so on are some connectivity measures 
which are obtainable from this model [3, 13–15]. Dynamic 
causal model (DCM) can quantify neural connectivity by 
a bilinear state space model assumption. This framework 
considers parametric causal and physiological models of the 
neuronal dynamics. In this method, the model parameters 
are calculated with certain prior assumptions considerations 
and model fitting on data. In DCM, the desired variable esti-
mation for effective connectivity is usually not limited to a 
predetermined network structure [16–18].

The first part in effective connectivity estimation is active 
source determination and their localization to estimate the 
connectivity between them. These sources (which are called 
dipoles) can be positioned by anatomical or physiological 
information (like DCM) or can be localized by source locali-
zation methods. However the, location and strength estima-
tion of brain electrical current source from EEG recording is 
an ill-posed problem [19]. Hence, several methods are pro-
posed to solve this non-uniqueness. The localization meth-
ods use several methodologies to estimate the active dipole 
location [19]. Some of the methods which are called dipole 
fitting methods, such as the standard low resolution analysis 
(sLORETA), minimum norm (MN) or other conventional 
methods make use of matrix inversion for direct calcula-
tion of the active dipoles. Compared with a similar method 

(i.e. LORETA), sLORETA gives the good and acceptable 
localization error [19, 20]. Another group of methods such 
as beamforming, spatial filters are used to estimate brain 
active sources [21]. Some other methods like independent 
component analysis (ICA) use model reduction algorithms 
to remove noise from the EEG signal and dimension reduc-
tion by lower order part truncation from decomposition. By 
independent sources localization, a separate source localiza-
tion problem is solved. That is, the downhill simplex search 
method is used for each independent component localization 
to determine the dipole’s components which contribute more 
in EEG signal forming [21–23].

After sources and their locations extraction, the inter-
action between sources should be modeled for connectiv-
ity estimation. By source interaction modeling and model 
parameters estimation, the connectivity is calculated from 
the estimated parameters. The multivariate autoregressive 
(MVAR) process can provide a model for the temporal 
effects across different variables (active brain regions and 
other time series). This model characterizes the relation 
between regions within the data, specifically in terms of the 
effect of one variable on another. Several methods have been 
proposed for multivariate autoregressive (MVAR) param-
eter estimation [24, 25]. The most traditional methods in 
this field are Yule–Walker (YW) and modified Yule–Walker 
(MYW) methods, which are used for estimating correlation 
AR model delays. From computational point of view, the 
Yule–Walker method is structurally simple, but it has low 
estimation, which is a consequence of the use of large-lag 
autocovariance estimates [25, 26]. Levinson recursion, 
the Burg-type Nuttall–Strand method, or the Vieira–Morf 
methods are the other methods in this field that have been 
known for more than 25 years [27]. Newton–Raphson gradi-
ent search method is used for MVAR parameters estimation 
[28]. Some other methods use maximum likelihood estima-
tion for multivariate AR model identification. Penny and 
Roberts solved that problem by Bayesian estimation method 
[29].

By using multivariate autoregressive (MVAR) process, 
the relations between brain sources can be modeled in the 
form of linear difference equations [29]. A.H. Omidvarnia 
used dual Kalman filter for cortical connectivity analysis of 
newborn EEG in sensor or electrode space [30]. Eduardo 
Giraldo proposed a new method for a dynamic estimation of 
neuronal activity and brain dynamics from EEG signals by 
using dual Kalman filter [31]. In this method, MVAR pro-
cess is used to model the active source (after source localiza-
tion and extracting active sources), and dual Kalman Filter is 
used to calculate the effective connectivity among sources. 
In the proposed method, source space is used instead of 
electrode space (which is used by A.H. Omidvarnia [30]). 
In sensor or electrode space the volume conductor effect 
or skull and the electrical conductance of other tissues can 
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influence the EEG recording and disturb electrode readings 
[19]. In electrode space solution and algorithms the volume 
conductor effect is ignored [19]. So connectivity estimation 
from electrode space is not more accurate and valuable than 
source space. Source space solves this problem by entering 
volume conductor and tissue conductance effect on lead-
field matrix and by solving EEG forward problem [19–23]. 
The problem of source space is its ill-posedness which is 
improved by source localization methods [19–23]. In our 
method the source space is used and dual Kalman filter is 
applied to estimated active source which is extracted from 
source localization methods. The main aim of this paper is to 
propose a method for calculating effective connectivity that 
is commonly based on dual Kalman filter and source locali-
zation combination. Working on source spaces and studying 
the relation between brain sources helps us to discover valu-
able information from source interaction between each other 
in some disorders [19]. By estimating connectivity between 
active sources, the relation between active regions of brain 
is calculated. In our method which is based on dual Kalman 
filter, each state or strength of active source is updated in 
each run and relations between them are calculated simul-
taneously. In this study, for comparing new method perfor-
mance, the proposed method is applied to simulated EEG 
signals with simulated connectivity and real EEG signals. 
Then the results are compared with simulated connectivity 
or other methods for comparison.

The structure of this paper is as follows. The proposed 
method is introduced and formulated in “Methods” section. 
It consists of introducing sLORETA as source localization 
method (which is used in this study), the MVAR model for 
brain active sources modeling and dual Kalman filter formula-
tions (a method for estimating unknown model parameters). 
“Data synthesis and validation methods” section discusses 
the study simulations, the signal generations with known and 
predefined connectivity and real EEG signals for connectivity 
estimation by proposed method. The results of simulations 
and applying proposed method to simulated or real signals is 
discussed in “Model implementation and result” section. Some 
other methods are used for comparing method performance 
with other methods in “Model implementation and result” sec-
tion. In the last section, the conclusions of applying proposed 
method to EEG signals and their results are discussed.

Methods

The method proposed by this study is based on dual Kalman 
filter and source localization method and is used for estimating 
effective connectivity of brain active regions. An illustration 
and diagram of proposed method is presented in Fig. 1.

Before connectivity estimation, it is necessary to apply a 
source localization method to EEG signals which is recorded 
by electrodes and brain source temporal signals are estimated 
by leadfield matrix and EEG signals. This method is made of 
three steps. In the first step, static or dynamic source locali-
zation of the active brain sources is done. This stage is only 
used for determining active dipoles because of complexity 
reduction.

The output of this level is the limited number of active 
dipoles (it must be less than channel numbers because of dual 
Kalman filter limitation) with their positions. In this step the 
goal is to minimize the following function:

where Vk(m × 1) is EEG signal at instant k, G(m × n) is 
leadfield matrix which is calculated from forward problem 
solution [19, 32–34], Jk(n × 1) is dipole or source vector at 
instant k, m is the number of EEG channels, n is the number 
of brain dipoles and � is regularization parameter and con-
trols the source activity contribution to estimation error and 
cost function (Eq. 1). The regularization parameter is used 
for decreasing the sensitivity of localization method to noise 
and is determined by regularization methods like Tikhonov 
or l-curve [19]. This function is to be minimized with respect 
to Jk, for given G, Vk, and �. The explicit solution to this 
minimization problem in sLORETA is [19, 20]:

where Ĵk is the estimated dipole activation matrix

where [·]+ is pseudoinverse of matrix, and in our method � 
is calculated by Tikhonov regularization method and is set 
to 0.1.

(1)F = ‖‖Vk − GJk
‖‖2 + �‖‖Jk‖‖2

(2)Ĵk = T ⋅ Vk

(3)T = G
T
H
[
HGG

T
H + �H

]+

(4)H = I − 11T∕1T1

Fig. 1  Illustration of proposed method



678 Australas Phys Eng Sci Med (2017) 40:675–686

1 3

After estimation of dipole vector (Ĵk) during the signal 
recording time, the dipoles which are active during the time 
are extracted as active dipoles. Clearly the dipoles which 
have more chance to be selected during the recoding time 
are selected as final active dipoles.

After active dipole extraction in the second step, a linear 
dynamic model is assumed as follows for active dipoles:

where Jk is a vector with (n × 1) and �k is state noise. Hence, 
EEG signal can be written by leadfield matrix which is sim-
plified with extracted active dipoles as follows:

Therefore, the linear and discrete form of this model is a 
discrete state space system:

where εk, �k are additive measurement and state noise respec-
tively. The state or process noise (�k) is the noise in state 
equation or first expression of Eq. 7. The measurement noise 
εk which is shown in second expression of Eq. 7 is the noise 
of measurement equipment and so on. These noise covari-
ance matrixes are defined as follows:

If Fk and G are known in Eq. 7, Jk can be estimated from 
observation Vk by ordinary Kalman filter (KF). But in this 
model Fk is unknown hence Jk and Fk should be estimated 
simultaneously by dual Kalman filter (DKF).

In general, the dual Kalman filter process is classified 
to the modeling, estimation, and prediction parts. In this 
study, the modeling task is used for approximating the pro-
cess of dynamics which can be generated from the states in 
noisy observations. Dual estimation methods use the model 
for signal estimation and the signal for model parameters 
estimation.

(5)Jk = FkJk−1 + �k

(6)Vk = GJk + �k

(7)
Jk+1 = FkJk + �k
Vk = GJk + �k

(8)
{

R� = E
{
𝜂k�̂�k

}
Re = E

{
𝜀k�̂�k

}

At each step, a KF(called state KF) is used for state esti-
mation by the current model F̂k calculation, while another 
KF(called weight KF) is applied for weight calculation by 
current state Ĵk estimation. This process is schematically 
shown in Fig. 2.

In dual Kalman filter, two ordinary Kalman filters are 
used which are working in parallel with each other. The top 
KF is used for state estimation and the bottom one is for 
model weights calculations. Before dual Kalman Filter for-
mulation, a simple dynamic model should be assumed for 
Fk:

With the covariance of process noise matrix which is defined 
as:

where u1k and u2k are the process and measurement noise of 
Eq. 9 and Ck is defined as:

Then the dual KF equations are presented as follows:

1. Initialization

2. For each sample of time (k ∈ {1, … , T}), the time-
updates equation

(9)
{

Fk = Fk−1 + u1k
Jk = CkFk + u2k

(10)
{

Ru1 = E
{
u1ku1k

T
}

Ru2 = E
{
u2ku2k

T
}

(11)

C
k
=

⎡
⎢⎢⎢⎢⎣

J
(k−1)

1
… J

(k−1)
m

0 J
(k−1)

1
… J

(k−1)
m

0 … .

0 … .

0

0

⋮ ⋱ ⋮

0 … 0 ⋯ J
(k−1)

1
… J

(k−1)
m

⎤⎥⎥⎥⎥⎦

(12)PF0
= E

[
(F − E[F])(F − E[F])T

]

(13)PJ0
= E

[
(J − E[J])(J − E[J])T

]

(14)F̂
k
= F̂k−1

Fig. 2  The dual Kalman filter 
algorithm
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where Ru1 is the covariance of process noise at k − 1 
time sample.

3. The state filter is calculated as follows:

where R� is covariance of state noise.
4. The measurement update equation is

where Re is covariance of measurement noise.
5. And for the weight filter

(15)P
Fk

= P
Fk−1

+ Ru1 = �−1PFk−1

(16)Ĵ
k
= F̂KĴK−1

(17)P
Jk
= F̂KPJk−1

F̂
T

K
+ R�

(18)K
J

k
= P

Jk
G

T
(
GP

Jk
G

T + Re

)−1

(19)Ĵk = Ĵ
k
+ K

J

k

(
Vk − GĴ

k

)

(20)P
Jk
=
(
I − K

J

k
G
)
P
Jk

(21)K
F

k
= P

Fk

C
T

k

(
CkPFk

C
T

k
+ Ru2

)−1

(22)F̂k = F̂
k
+ K

F

k

(
Ĵk − GF̂

k

)

(23)PFk
= (I − k

F

k
Ck)PFk

For clarification, the equations are specified for white-
noise case. In dual Kalman filter, the equations must be line-
arized by recurrent derivatives which are similar to real-time 
recurrent learning [35].

For a better description of F, the first part of state space 
equation is rewritten as follows:

The parameter Fij reflects effective relation between ith 
source at nth time sample to jth source in (n + 1)th time sam-
ple. When F is determined, effective connectivity between 
sources can be represented.

Data synthesis and validation methods

In this study, firstly, the proposed method is applied to simu-
lated EEG signals for validation of the results. These sig-
nals are generated by assuming some active dipoles with 
simulated connectivity between them. In order to simulate 
the method, four dipoles have been selected for EEG signal 
generation and these dipoles are shown in Fig. 3.

In the first simulation the connectivity is fixed during the 
time. The relations between these dipoles are assumed as 
follows [30]:

(24)
⎡
⎢⎢⎣

J1(n + 1)

⋮

Jd(n + 1)

⎤
⎥⎥⎦
=

⎡
⎢⎢⎣

F11 ⋯ F1d

⋮ ⋱ ⋮

Fd1 ⋯ Fdd

⎤
⎥⎥⎦

⎡
⎢⎢⎣

J1(n)

⋮

Jd(n)

⎤
⎥⎥⎦

Fig. 3  The four active dipoles 
used for simulations. The rela-
tions is defined between these 
sources and EEG signal is 
generated
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where Ji(n) is the ith dipole activation in nth sample. In this 
simulation, a(n), b(n), c(n) are set fixed during the time and 
have the values of 0.9, 0.5, 0.7 respectively. These param-
eters are the known relations between these four dipoles, 
which is called effective connectivity.

After generating dipole’s activation value in the time sam-
ples (Ji), EEG signal is generated by multiplying dipole’s 
activation values by leadfield matrix which is calculated by 
FEM or BEM methods [32, 36, 37]. In our work this matrix 
is calculated with fieldtrip toolbox of MATLAB software.

where G is leadfield matrix and � is measurement noise. 
After generating the simulated signal the proposed method 
is applied to the generated signal (V(n)). The source localiza-
tion method which is used in our simulations is Standard-
ized low resolution brain electromagnetic tomography (sLO-
RETA) [38]. As discussed earlier, sLORETA gives good 
localization error in comparison with other methods which 

(25)

J1(n) = 0.65J1(n − 1) + a(n)J2(n − 1) + b(n)J3(n − 1) + �1(n)

J2(n) = 0.87J2(n − 1) + c(n)J3(n − 1) + �2(n)

J3(n) = 0.56J3(n − 1) + �3(n)

J4(n) = 0.87J4(n − 1) + �4(n)

Jl(n) = �l(n) l = 5… 19 (for other dipoles)

⎫
⎪⎪⎬⎪⎪⎭

J1(1) = J2(1) = J3(1) = J4(1) = 1

(26)V(n) = GJ(n) + �

makes use of matrix inversion to localize the active dipoles. 
Then, active dipoles from all of the samples are extracted 
and state space model (Eq. 5) is fit into the extracted dipoles. 
Finally, dual Kalman filter is applied to the model to esti-
mate F and J. In this simulation F is estimated connectivity 
and J is estimated dipole activation in the sample; the con-
nectivity between dipoles is assumed to be constant in time.

In the second simulation, the connectivity estimation is 
done in different levels of noisy signals such that the noise is 
added to signal with different signal to noise ratios (SNRs) 
and the method performance in connectivity estimation to 
these noisy signals is studied. In state space model, two dif-
ferent noise exist, state noise (�) and measurement noise (�). 
Furthermore, the simulated connectivities between dipoles 
are fixed during the time and their values are the same as the 
connectivity values of first simulation.

Most of the brain connectivities are not fixed during time. 
So the connectivity between active dipoles must be assumed 
to be varied during the time. The third simulation is done 
for estimating time varying connectivities between dipoles 
which are assumed to be varied during the time and the 
method is applied to EEG signals which are simulated with 
time-varying connectivity. The time varying connectivities 
are shown in Fig. 4 which shows the value of connectiv-
ity parameters versus time. After active dipole simulations, 
the EEG signal is generated as discussed above (Eq. 26). 
The mean square error of the difference between estimated 
and known error is calculated with different methods for 
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comparing proposed method performance. The other meth-
ods which are used for comparison are MVAR parameter 
estimations and EEG signals should be changed to source 
activity which is done by matrix inversion of leadfield. In 
the last part of this simulation the estimated connectivities 
which are calculated by proposed method are plotted versus 
samples of time for method validation.

In the fourth simulation, the ability of the method to esti-
mate the connectivity with higher model order is studied 
in which the degree of model or the state equation is set 
second order of MVAR model. As demonstrated in Eq. 25, 
the model order of the previous simulation is one and in this 
simulation the method performance to estimate the connec-
tivity with higher order model is analyzed. The formulation 
of this part is as follows:

In the last simulation, the real data is used for method valida-
tion. These data are recorded from normal children at HRL 
laboratories and UCLA Semel Institute for Neuroscience and 
Human behavior with open eyes and fixed on a spot directly 
in front of them. In preprocessing step, a high pass filter with 
1 Hz cutoff frequency is applied to signal for baseline drift 
and low variation removing. A sweeping window is defined 
which moves along the signal and model parameters are esti-
mated inside the window by proposed method. Then, the last 
sample of window is reconstructed by model parameters and 
compared with real sample of signal. The mean square error 
between real and reconstructed sample of each window dur-
ing the signal is calculated. In this simulation three example 
signals are used for this simulation.

Model implementation and result

After data synthesis and defining validation methods, the 
proposed method should be applied to these data. The pro-
posed method algorithm is shown in Fig. 5.

In the first simulation the connectivity among dipoles 
during the time are set fixed. In the first simulation the con-
nectivity [a(n), b(n) and c(n) in Eq. 25] are assumed to be 
fixed and with the values of 0.5, 0.9 and 0.7 respectively. 
After EEG simulations with underlying interacting connec-
tivity are done, the source localization method is applied on 
signals during the time and more active diploes of each time 
are estimated. The dipoles which are more active during the 

(27)

J1(n) = 0.65J1(n − 1) + a(n)J2(n − 2) + b(n)J3(n − 1) + �1(n)

J2(n) = 0.87J2(n − 1) + c(n)J3(n − 1) + �2(n)

J3(n) = 0.56J3(n − 1) + �3(n)

J4(n) = 0.87J4(n − 1) + �4(n)

Jl(n) = �l(n) l = 5… 19 (for other dipoles)

⎫⎪⎪⎬⎪⎪⎭

J1(1) = J2(1) = J3(1) = J4(1) = 1

time are extracted and active dipoles of this simulation are 
plotted in Fig. 6.

Then dual Kalman filter is applied to signals and esti-
mated connectivity matrix is calculated. The mean of 
extracted connectivity during the time is the feature to sepa-
rate simulated dipoles. The connectivity of simulated dipoles 
is shown in Fig. 7. It can be concluded that the estimated 

sLORETA is applied to EEG signals and 
ac�ve  dipoles during the �me are 

extracted. 

Ac�ve dipoles and their lead field 
matrix(G) are separated 

The mul�variate autoregressive 
(MVAR) model is fi�ed to dipole 

matrix( )(Eq.8 with known G and 
and unknown and ). 

Dual Kalman Filter is applied to MVAR 
model and and  are es�mated 

 is connec�vity matrix between 
ac�ve dipoles and  is dipole 
ac�va�on amplitude during �me 

Fig. 5  The flowchart of proposed method steps
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connectivity gives acceptable answers in comparison with 
simulated connectivity. The mean of estimated connectiv-
ity (0.8996, 0.4831 and 0.7072) is close to the underlying 
interacting connectivity which is set active in signal simula-
tion step.

In the second simulation, the performance of proposed 
method in noisy environment is analyzed since the con-
nectivity of dipoles is the same as the first simulation. The 
results of applying proposed method to noisy EEG signals 
are reported in Tables 1 and 2.

In Table 2, the mean and mean square error of estimated 
connectivity are shown in different measurement noise (in 
Eq. 7) levels. The results of this table show that a good esti-
mate was found for SNRs more than 20 dB (Table 3).

Table 1 shows the mean and mean square error of esti-
mated time invariant connectivity with state noise (ηk in 
Eq. 7) variation. It can be concluded from Table 1 that the 
method gives a better and closer result by decreasing signal 
to noise ratio of state noise. It can be concluded that by 
increasing state noise or decreasing SNR the mean value gets 
closer to actual values and its mean square error decreases. 
On the other hand, Table 2 shows that by increasing meas-
urement noise level or decreasing SNR the mean value of 
signal becomes far from actual value and mean square error 
of signal increases.

In the third simulation, the connectivity among active 
dipoles is assumed to be varied through the time accord-
ing to what occurs in real brain. The time varying functions 
are shown in Fig. 4. After EEG generation and applying 

Fig. 7  Plot of the estimated 
a(n), b(n) and c(n) with known 
connectivity against time 
samples
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Table 1  The mean and mean square error of estimated time invariant 
connectivity in several state noise levels

SNR in dB Actual value Estimated value

−10 0 10 20

Mean
 a(n) 0.9 0.8996 0.8956 0.8960 0.9979
 b(n) 0.5 0.4831 0.4676 0.4821 1.4519
 c(n) 0.7 0.7072 0.7038 0.7128 0.5038

Mean square error
 a(n) 0.0552 0.0542 0.0725 1.9939
 b(n) 0.0865 0.0922 0.0794 3.5356
 c(n) 0.1140 0.0768 0.1097 0.6376

Table 2  The mean and mean square error of estimated time invariant 
connectivity in several measurement noise levels

SNR in dB Actual value Estimated value

10 20 30 40

Mean
 a(n) 0.9 0.6846 0.8453 0.8832 0.9103
 b(n) 0.5 0.3291 0.4678 0.5110 0.4933
 c(n) 0.7 0.5453 0.6734 0.7167 0.7043

Mean square error
 a(n) 1.0760 0.1022 0.0389 0.0134
 b(n) 0.5851 0.0828 0.0674 0.0120
 c(n) 1.0110 0.0826 0.0895 0.0150



683Australas Phys Eng Sci Med (2017) 40:675–686 

1 3

proposed method to simulated signal, the estimated connec-
tivity matrix is calculated.

For comparing proposed method in this study, several 
other methods are applied to generated signals with different 
SNRs of measurement noise. In other comparative meth-
ods leadfield matrix is calculated by forward problem and 
inverted and then applied to generated EEG signals. Then 
EEG signals are converted to source space activities and 
three methods are applied to source activities for connec-
tivity estimation. The mean square error of the difference 
between estimated connectivity and known connectivities 
which are calculated by different methods are shown in 
Table 3. The other methods which are used in this simula-
tion are as follows:

• Method 1: modified Yule–Walker [25]
• Method 2: Newton–Raphson gradient search method [28]
• Method 3: Vieira–Morf [27]

As it can be concluded from Table  3, the proposed 
method gives better error in comparison with other related 
methods. The estimated connectivities have some variations 
close to simulated connectivities and proposed method gives 
less MSE than other methods. It is because of the advantage 
of proposed method which the connectivity estimation is 
done in parallel with active source localization method. But 
in other methods, first, source localization method is applied 
to signal and source activities are not updated during the 
signal.

After applying connectivity matrix estimation, meaning-
ful connectivities are extracted and plotted in Figs. 8, 9 and 

10. As it can be concluded from these figures, the proposed 
method gives an acceptable and good result in comparison 
with simulated connectivity functions.

The fourth simulation is for estimating the connectivity 
which is defined by second order of MVAR model. In this 
step, the result of applying proposed method to signals is 
analyzed when they are generated from second order con-
nectivity (defined by second order MVAR model which is 
shown in Eq. 27). The estimated connectivity [a(n)] and 
underlying simulated version are shown in Fig. 11.

As can be deduced from the figure, the method proposed 
in this study gives an acceptable estimation of the connectiv-
ity among dipoles (not as good as first order model) as the 
model order increases. By comparing Figs. 8 and 11, it can 
be concluded that the proposed method can estimate higher 

Table 3  The mean square error of different methods in estimating 
connectivities of Eq. 25

SNR in dB 10 20 30 40

Proposed method
 a(n) 1.0523 0.1835 0.0893 0.0861
 b(n) 1.9943 0.2237 0.1031 0.0904
 c(n) 1.5700 0.1762 0.1249 0.1116

Method 1
 a(n) 2.2439 0.1283 0.0652 0.0192
 b(n) 2.9124 0.1752 0.0824 0.0264
 c(n) 2.4435 0.1462 0.0459 0.0265

Method 2
 a(n) 1.9923 0.1023 0.0541 0.0184
 b(n) 2.4023 0.1932 0.0851 0.0293
 c(n) 2.2787 0.0943 0.0591 0.0398

Method 3
 a(n) 2.5321 0.1325 0.0425 0.0152
 b(n) 3.1362 0.1653 0.0616 0.0291
 c(n) 3.0235 0.1042 0.0449 0.0352
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Fig. 8  Plot of the estimated a(n) (which is defined in Eq.  25) and 
known connectivity against time samples
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Fig. 9  Plot of the estimated b(n) (which is defined in Eq.  25) and 
known connectivity against time samples
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order connectivity. In Fig. 8 the order of connectivity or 
the order of model which defines the connectivity with that 
model is one (Eq. 25) and in Fig. 11 the defined model order 
for connectivity is two (Eq. 27). The proposed method can 
estimate both of them (Eqs. 25 and 27) correctly and it can 
be used for estimating higher order model for connectivity 
definition.

The last simulation is done on real EEG sample signals 
of three normal children. These signals have the amplitude 
about 30 μV. A sweeping window with the length of 64 
samples is moved 32 samples in each run during the sig-
nal. Then the connectivity between two sample dipoles is 
estimated inside the window and the model parameters are 
calculated in moving window. The last sample of window 
is reconstructed from estimated parameters and is compared 

with real value of that sample. The mean square error of 
all windows of signals and the result of this error are in 
Table 4. As it can concluded from Table 4, the proposed 
method gives accurate and acceptable mean square error 
in three signals.

Conclusion

Studying the relations and interactions among brain regions 
and its functional workings is one of the important fields in 
analyzing brain function. These relations which are called 
brain connectivity are divided into 3 fields. One of the con-
nectivity subsections is effective connectivity. The proposed 
method in this paper is used for estimating effective con-
nectivity of brain by dual Kalman filter. Dual Kalman filters 
are used in prediction and estimation of states and the rela-
tion between states simultaneously from observations. It is 
used when state space model is assumed between states and 
observations when states and their relations are unknown. 
In this paper Dual Kalman filter is used for estimating the 
brain regions activity and their relations by considering EEG 
signals as observations. The proposed method estimates 
connectivity in conjunction with dynamic source activation 
detection and its modification. So it is more accurate than 
other methods which use static source activation algorithms. 
This method does not need any predefined information (such 
as other model based methods). In this paper, first, simulated 
and generated signal is used for method validation whose 
connectivities are known and signal is generated from known 
connectivity. As it can be understood from the results, the 
proposed method gives acceptable and reliable results in 
estimating time-varying and time-invariant connectivities 
with different model orders. The results of proposed method 
to noisy data in several levels are analyzed. The proposed 
method can be used for connectivity estimation when higher 
order model is used for connectivity modeling. The perfor-
mance of method is compared with other methods in esti-
mating time varying connectivity and the results show that 
the proposed method because of simultaneous estimation 
of source activities gives a better result than other methods. 
Lastly, the method is applied to three real EEG signals and 
their estimation error during sweeping window is analyzed. 
In future works, this method can be applied to other EEG 
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Fig. 10  Plot of the estimated c(n) (which is defined in Eq.  25) and 
known connectivity against time samples
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Fig. 11  Plot of the estimated higher order connectivity a(n) (which 
is defined in Eq. 27) and simulated connectivity against time samples

Table 4  The mean square error between reconstructed and real sam-
ple of EEG signal for reconstructing last sample of sweeping window

Signal no. 1 Signal no. 2 Signal no. 3

Mean square error 0.2338 0.0567 0.0709
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signals to estimate effective connectivity of brain which can 
be used for analyzing neurological disorders such as Autism.
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