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A B S T R A C T

In this paper, we propose a novel method for extracting fiducial points (FPs) of electrocardiogram (ECG) signals.
We propose the use of multi hidden Markov model (MultiHMM) as opposed to the traditional use of Classic
HMM. In the MultiHMMmethod, each segment of an ECG beat is represented by a separate ergodic continuous
density HMM. Each HMM has different state number and is trained separately. In the test step, the log-
likelihood of two consecutive HMMs is compared and a path is estimated, which shows the correspondence of
each part of the ECG signal to the HMM with the maximum log-likelihood. Fiducial points are estimated from
the obtained path. For performance evaluation, the Physionet QT database and a Swine ECG database are used
and the proposed method is compared with the Classic HMM and a method based on partially collapsed Gibbs
sampler (PCGS). In our evaluation using the QT database, we also compare the results with low-pass
differentiation, hybrid feature extraction algorithm, a method based on the wavelet transform and three
HMM-based approaches. For the Swine database, the root mean square error (RMSE) values, across all FPs for
MultiHMM, Classic HMM and PCGS methods are 13, 21 and 40 ms, respectively and the MultiHMM exhibits
smaller error variability than other methods. For the QT database, RMSE values for MultiHMM, Classic HMM,
Wavelet and PCGS methods are 10, 17, 26 and 38 ms, respectively. Our results demonstrate that our proposed
MultiHMM approach outperforms other benchmark methods that exist in the literature; therefore can be used
in practical ECG fiducial point extraction.

1. Introduction

The electrocardiogram (ECG) is used for measuring the electrical
activity of the heart. ECG signal is obtained non-invasively by a simple
device and provides valuable information about the health and heart
diseases in humans. Acquiring the ECG signal and using its informa-
tion are inexpensive and helpful [1].

Measurements used by cardiologists for detecting pathological
beats and heart diseases are actually based on features like heart rate
variability, and various intervals or segments between waves of
successive beats. In this purpose, it is mandatory to be able to
accurately estimate onset, offset and peak locations of the P, Q, R, S
and T waves of each ECG. ECG segmentation and finding the onset and
offset of ECG waves are difficult task due to lack of precise definition for
onset and offset of some ECG waves, for example, there is no exact

definition for the offset of QRS complex and T-wave [1].
Several techniques have been proposed for QRS complex detection

including filtering and derivation, adaptive filtering, dynamic program-
ming, classification methods, mathematical morphology methods and
transformations [2,3]. Low pass differentiation (LPD) [4], hidden
Markov models [5–13], partially collapsed Gibbs sampler (PCGS)
[14,15], wavelet transform [16–18], correlation analysis [19,20],
support vector machine (SVM) [21], empirical mode decomposition
(EMD) [22] and extended Kalman filter (EKF) [23–25] are also used
for ECG segmentation and fiducial point (FP) extraction.

Finding the onset, offset and peak of ECG waves is known as
fiducial point extraction which can be used as a preprocessing step in
many applications [26]. In [27], the authors first extract some features
from ECG signals such as P-wave, QRS complex, T-wave amplitude and
duration. After that they used the extracted features for detection of
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fragmented QRS complex. In [28], the authors used the initial
estimation of ECG waves and their onset and offset locations for
mobile health care applications. They used both time and frequency
analysis and called it as a hybrid feature extraction algorithm (HFEA).
Onset and offset of the P-wave and QRS complex were used as the input
to the model which was proposed by Bono et al. [29] for a “Selvester
QRS scoring” system. Finally, Kumar et al. [30] used the onset and
offset of ECG waves for ischemia detection.

Hidden Markov model (HMM) is a model for describing the process
which is not directly observable but can be observed with sequence of
symbols [31]. HMMs were used for several applications: speech
recognition [32], apnea identification [33], apnea-bradycardia detec-
tion in preterm infants [34–36], segmentation of heart sound record-
ings [37], estimation of fetal cardiac timing events [38] and FP
extraction [7].

HMM is one of the approaches which is used for ECG segmentation.
In most of the previous HMM-based approaches [6,9], each ECG beat
is modeled with a single HMM and ECG waves and baselines are
considered as states of a HMM model. In these approaches, ECG beats
are considered as an observation of HMM model and parameters of
HMM are found using training data set with supervised or unsuper-
vised learning methods. In the test step, ECG segmentation is done
using the inference algorithms.

Supervised learning methods require to accurately label the ob-
servations. In contrast, unsupervised learning methods work automa-
tically and do not require the labels of observation symbols and the
relevant hidden states, but these methods may suffer from falling into
local maxima due to the ill-suited initial values. Hence, in some cases
the obtained results are not accurate, especially for the ECG segmenta-
tion and fiducial point extraction [11].

It is worth noting that: (i) HMMs have been used in previous works,
for ECG segmentation and detection of ECG waves [6–9,13], or for beat
detection and classification [5,7,9,11], while our work is focused on
fiducial point extraction, which is a much more complex task. Only [7]
proposed a HMM model for such purpose, but considering wavelet
transform of the ECG signal, (ii) Most of these studies are based on
supervised learning approach which need the accurate labels of expert
and are time consuming, (iii) In some works [6–9] encoded ECG by the
wavelet transform or the coefficients of wavelet in different scales are
used as an observation of HMM models, (iv) Some works [6] use
hidden semi-Markov model to improve the results and solve the
“double beat segmentation” problem.

Conversely, we will show that the proposed approach has many
advantageous over previous methods. It is used for ECG fiducial point
extraction, it uses raw ECG signal as an observation of HMM and
finally can solve the double beat segmentation problem and also can
accurately estimate fiducial points for many pathological beats.

In this paper, the approach for extracting ECG fiducial points is
based on HMM, too. It is called “MultiHMM” since one HMM model is
considered for each ECG segment and in the training step, a rough
segmentation is performed to define the training data for each HMM.
Then, the Baum-Welch algorithm is used to find the parameters of each
HMM, separately. Afterwards in the test step, the label of the current
beat segment (i.e., the most appropriate HMM model) is estimated
through comparison of log-likelihood of HMMs.

The performance of the proposed method is compared with
previously published methods, including Wavelet [17], LPD [4],
PCGS [14], HFEA [28], three HMM-based approaches [7] and
“Classic HMM”. Validation and comparison are done on the
Physionet QT database [39,40] and an annotated Swine ECG database
[41].

The rest of this paper is organized as follows: Related work,
essentially methods used in performance comparison, are described
in Section 2. The proposed method is explained in Section 3. Section 4
presents the experimental results, and finally Section 5 concludes the
paper.

2. Related work

2.1. A method based on wavelet transform

In [17], a method based on the wavelet transform is used for finding
the fiducial points of ECG waves. In this method, wavelet decomposi-
tion into 5 scales (2 –2 )1 5 is used. Because most of the energy of QRS
complexes lies in scales 2 –21 4 and for P and T waves, most of the energy
lies within scales 2 –24 5. Local maxima, minima and zero crossings at
different scales are used to detect the QRS complexes, P- and T-waves
and their peak, onset and offsets.

2.2. Partially collapsed Gibbs sampler method (PCGS)

Lin et al. [14] proposed a method based on partially collapsed Gibbs
sampler (PCGS) to delineate P- and T-waves and find their peak, onset
and offset. In this model, the proposed algorithm first detects the QRS
complexes, then constructs two search blocks for P- and T-waves,
finally uses Bayesian inference in each block to delineate the P- and T-
waves. This model uses prior distribution of wave locations, amplitude
and waveform coefficients. Detection of P and T waves are based on
using theses prior distributions and the likelihood of observed data.

2.3. HMM-based methods

2.3.1. Review on mathematical equations of HMM
A discrete density HMM is characterized by the following para-

meter set: λ A B π= ( , , ) where A is the matrix of state-transition
probabilities, B is the observation probability, and π is the initial state
probability [32].

In some applications, the observations are continuous signals (or
vectors) and it would be advantageous to be able to use HMMs with
continuous observation densities [32]. The most general representation
of the model probability density function (pdf) is a finite mixture of the
form:

∑b c μ j NO O U( ) = [ , , ], 1 ≤ ≤j
m

M

jm jm jm
=1 (1)

where O is the vector being modeled, cjm is the mixture coefficient for
the mth mixture in state j and is Gaussian model, with mean vector
μjm and covariance matrix Ujm for the mth mixture component in state
j. The usual observation model is a weighted mixture of Gaussian
distributions. The mixture gains cjm satisfy the stochastic constraint

c j N
c j N m M
∑ = 1, 1 ≤ ≤

≥ 0, 1 ≤ ≤ , 1 ≤ ≤
m
M

jm

jm

=1

(2)

so that the pdf is properly normalized, i.e.,

∫ b x dx j N( ) = 1, 1 ≤ ≤j
−∞

∞

(3)

We use the compact notation λ A μ πU= ( , , , )jm jm to indicate the
complete parameter set of the model.

2.3.2. Previous HMM-based methods
In 1990, Coast et al. [5] proposed a Markov model for cardiac

arrhythmia analysis. Hughes et al. [6] used HMM for ECG segmenta-
tion. In their first model, they considered raw ECG as an observation of
HMM. After that, they improved the results by applying HMM on the
wavelet encoded ECG and also applying hidden semi-Markov model
(HSMM) on the wavelet encoded ECG. Andreao et al. [7] proposed
three HMM-based approaches for finding the onset and offset of ECG
waves: (i) generic HMM training, (ii) individual's HMM training, and
(iii) generic HMM adapted to each individual. Krimi et al. [8] used the
combination of the wavelet transform and HMM for ECG segmenta-
tion. They first used the wavelet transform to find the edge and peaks of
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ECG signal, then the features extracted from the edges serve as inputs
for the HMM [8]. Andreao et al. [9] also combined the wavelet
transform and HMM for ECG beat segmentation and classification.
Thomas et al. [10] proposed two HMM-based approaches for ECG
interval analysis. In the first one, called generic, a global model which is
a concatenation of six HMMs, is built. The resulting global HMM can
be regarded as a hierarchical HMM and the decision for a new ECG
beat is made using this HMM model. In the second one, called
clustering, ten classes of ECG beats are generated and the decision
for a new ECG beat is made after clustering it. Liang et al. [11]
proposed a two-layered HMM algorithm for ECG feature extraction
and classification. In the first HMM layer, the ECG signals are
segmented into baseline intervals, P-wave, QRS complex and T-wave,
respectively. Then the corresponding interval features are used to
classify the ECG into normal or abnormal types in the second HMM
layer [11]. Li et al. [13] proposed an HMM-based approach for ECG
segmentation. They first estimated the QRS complexes. After that,
based on the detected R peaks, the ECG data are segmented. By using a
heuristic rule segmented ECG is classified to N groups. The classifica-
tion is based on the length of the RR-intervals and each group includes
ECG data with similar RR-intervals and temporal features. A separate
HMM is defined for each group and is only used for extracting the ECG
characteristic waves of signals of that group. The authors presented the
sensitivity and positive predictive for detecting ECG waves but they did
not estimate the exact location of ECG fiducial points. Altuve et al. [36]
proposed a model with several hidden semi-Markov models for online
apnea bradycardia detection in preterm infants.

Here, we discuss a widely-used ECG FP extraction method based on
HMM. In this model, which referred to as “Classic HMM”, a left-right
continuous density HMM with seven states, corresponding to B1, P,
PQ, QRS, ST, T and B2 segments of an ECG beat, is considered (Fig. 1).
This structure is almost similar to the structure which has been used in
[6,8,9,11] although the aim of these works are not FP extraction. Fig. 2
shows these seven ECG segments. The four baselines are defined as
below: B1: segment from beginning of beat to Pon, PQ: segment from
Poff to QRSon, ST: segment from QRSoff to Ton and B2: segment from
Toff to end of beat...

In Classic HMM, the labeled data set of ECG waveforms is used and
a HMM model is trained. The observations of a HMM are a continuous
signal, modeled by a Gaussian mixture model (GMM). In order to find
the suitable number of Gaussians for GMM, the Akaike information
criterion (AIC) [42] or the Bayesian information criterion (BIC) [43] is
used. Once the model has been trained, the Viterbi algorithm [32] is
used to infer the optimal state sequence for each beat of the signals in
the test set. The obtained optimal state sequence (estimated path) has
seven levels, each one associated to one segment. Levels 1–7 represent
the B1, P, PQ, QRS, ST, T and B2 segments, respectively. The proposal
to find the onset and offset of waves from the estimated path is as
follows:

• Pon: The point in which the path transits from level 1–2.

• Poff: The point in which the path transits from level 2–3.

• QRSon: The point in which the path transits from level 3–4.

• QRSoff: The point in which the path transits from level 4–5.

• Ton: The point in which the path transits from level 5–6.

• Toff: The point in which the path transits from level 6–7.

Since the peaks can be positive or negative, peak position of waves
P R T( , , )peak peak peak are defined as the maximum of absolute value of
signal between onset and offset.

3. Proposed method (MultiHMM)

3.1. Methodology of MultiHMM

In the MultiHMM method, each segment of an ECG beat (Fig. 2) is

represented by a separate ergodic continuous density HMM. Similar
state numbers are not assumed for different HMMs. The AIC or BIC
criterion is used to obtain a rough estimation of the number of states,
and the exact number of states in each HMM is found experimentally in
the training step. First we detect the R-peaks of ECG beats and
associate a linear phase between π− to π to it, similar to Sameni
et al. [44] (R-peaks have phase equal to 0, beginning and end of the
beats have phase equal to π− and π, respectively.) According to the
phase transitions from π to π− , we can find the beginning and end of
beats. The onset and offset of ECG waves are annotated by physicians
and from the ECG segments, we can construct the train data for each
HMM as follows: training data of the first HMM is constructed from
the B1 segments of all beats and training data of the second HMM is
constructed from the P segments of all beats, etc. We use the Baum-
Welch algorithm [32] to find the HMM parameters:
λ λ λ λ λ λ, , , , ,B P PQ QRS ST T1 and λ λ λ( ,…, )B 1 72 . λk is defined as
λ A μ πU= ( , , , )k k jmk jmk k , k = 1, 2,…,7. We use the HMM toolbox written
by Kevin Murphy [45] for training the HMMs.

Fig. 3 shows the blockdiagram of our proposed MultiHMM
approach for finding the peak, onset and offset of ECG characteristic
waveforms..

After training all HMMs, we use test data and define a sliding
window with length “nw” and consider the data inside the window as
the observation of HMMs (O with length nw). The length of sliding
window is fixed. Each window has n − 1w overlapping samples with
previous window and only one sample differs between two consecutive
windows. We then compute the log-likelihood of each HMM as:

L P O λ k= log ( | ), ∈ {1, 2,…,7}k n k1: w (4)

where P O λ( | )n k1: w is the probability that the observation sequence
O O O O= , ,…,n n1: 1 2w w is generated by the model with parameters λk.
Afterwards, we compare the log-likelihood of two consecutive HMMs
and choose the HMM with the maximum log-likelihood:

index P O λ k i i= argmax log ( | ), ∈ { , + 1}
k

n k1: w (5)

where i is the number of the current HMM.
The procedure of finding the path is done for each ECG beat

separately. Since each ECG beat starts with B1 segment, hence we
assume that the first observation sequence O n1: w is in B1 and at the
beginning we set “index=1”. Then, we compare the log-likelihood of
two consecutive HMMs: HMM1 and HMM2, i.e. k ∈ {1, 2} in (5) and
the result will be index=1 or index=2. We start to compare the next two
HMMs (k ∈ {2, 3} in (5)), when we achieve index=2 for at least mm
times. mm is a parameter which is defined experimentally smaller than
nw and prevents oscillations between two successive indexes. Finally, a
path is estimated which shows the correspondence of each part of the
ECG signal to the HMM with the maximum log-likelihood. The
estimated path has seven levels, each one associated to one HMM
(one ECG segment). Levels 1–7 represent the B1, P, PQ, QRS, ST, T and
B2 segments, respectively. The onset and offset of the P-wave, QRS
complex and T-wave are found from the transitions of one level to
upper level in this path (same as for the Classic HMM which is
explained in Section 2.3). Peak position of waves are defined as the
maximum absolute value of signal between onset and offset of waves.

3.2. Data and evaluation metrics

To evaluate the performance of the proposed method in extracting

Fig. 1. A left-right continuous density HMM with 7 states for classic HMM.
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ECG fiducial points, the following two databases are used which
include ECG signal annotations by physicians: the Physionet QT
database (human ECG) [39,40] and a Swine ECG database (Swine
ECG) [41]. The Swine database includes ECG signals acquired during
acute myocardial infarction, which exhibit significant morphologic
changes (such as ST elevation and QT prolongation). Records of this
database are sampled at 1000 Hz and each record of each subject has
200 annotated beats. Records of the QT database are sampled at
250 Hz (one sample=4 ms) and each record has 30–50 annotated
beats.

As a pre-processing step, the ECG mean is removed and its variance
is set to one. The baseline wander of signal is also removed by median
filter which is available in the “open-source electrophysiological tool-
box (OSET)” [46], and its length is f0.3 s (fs is sampling frequency).

For quantitative evaluation of a FP extraction method, we calculate
estimation error defined as time differences between cardiologist
annotations (considered as ground truth) and results of the method.
Quantitative results are reported using common metrics: mean (m),
standard deviation (s) and root mean square error (RMSE), defined as:

∑RMSE MSE
N

e m s= = 1 ( ) = ( + )
j

N

j
=1

2 2 2

(6)

where e y y= −j j j is denoted as the jth element of the estimation error
vector and N is the length of the error vector (number of annotations).
yj and yj are the jth cardiologist annotation and estimated point,
respectively. m, s and RMSE are given in millisecond (ms). Since the
RMSE considers both mean and standard deviation of error, it is a
more relevant parameter for comparing the methods.

Some authors considered the values given by the “CSE working
party1″ in [47,48] as a reference for delineation error tolerances. In
[47], it is stated that “the standard deviation of the differences [of an
algorithm results] from the reference (s) should not exceed certain
limits s(2 )CSE ”. The limits given in [47], are obtained as two standard

deviations of the differences (in ms) between the median of the
individual readers and the final referee estimates [17]. These results
take into account the large variability in expert annotations.

As a consequence, we can consider that, for being competitive with
a good expert, an algorithm must achieve s s< 2 CSE (“loose criteria”) or
strictly s s< CSE (“strict criteria”): in Sections 4.1 and 4.2, we will
discuss about these criteria for the records of the Swine and QT
database, respectively.

To assess the degree of agreement between each of the automated
methods and the manual annotations, we use the Bland-Altman
approach [49] to estimate the mean difference and the standard
deviation of the difference among all annotations of physicians, across
all subjects. The mean of the estimation error and the limits of
agreement (defined as twice the standard deviation of the estimation
error) are estimated for different methods and discussed in Sections
4.1 and 4.2 for both databases.

We will also use the Wilcoxon rank-sum test with Bonferroni
correction [50] to statistically compare all method pairs.

4. Results

4.1. Results for the Swine database

Fig. 4(a) shows the estimated path by the Classic HMM for a small
segment of the record Ischemia09 of the Swine database. It also shows
the estimated fiducial points by the Classic HMM which are found from
the estimated path. Fig. 4(b) shows the estimated path and FPs by the
MultiHMM approach for this record. It is worth to mention that these
subfigures are illustrative examples of what the estimated path looks
like and clarify how the onset and offset of waves can be found from the
transition of one level to upper level in a multi-level estimated path. In
this example, the two methods achieve good (and thus similar) results
in FP estimation..

Here, we use 5-fold cross validation [51] for training the
MultiHMM for each subject, i.e., for each record. The performance of
different methods for ECG FP extraction in the Swine database are
compared in Table 1, where the best results of RMSE values are
denoted as bold. We see that for all FPs except Toff, the MultiHMM
achieves the least RMSE value and exhibits smaller error variability
than others.

The mean and standard deviation of aggregate results across all FPs
are calculated and Bland-Altman analysis, which is briefly presented in
Section 3.2, is performed. The mean of estimation error and the limits
of agreement (twice of standard deviation) estimated for MultiHMM,
Classic HMM and PCGS methods are equal to 2.2 ± 27, 1.6 ± 42 and
6.9 ± 78 ms, respectively. The RMSE values across all FPs for above-
mentioned methods are equal to 13, 21 and 40 ms, respectively. We
observe that the limits of agreement and RMSE values for MultiHMM
are smaller than those for others, indicating the superior performance
of the proposed method in extracting FPs.

For all FPs, standard deviation of the MultiHMM method is below
the CSE loose criteria (last row of Table 1), which is not the case for the

Fig. 2. Segments of a single ECG beat.

Fig. 3. Blockdiagram of the proposed MultiHMM approach for finding the peak, onset and offset of ECG characteristic waveforms.
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other methods. It means that results provided by the MultiHMM
method is competitive with result obtained by a good physician expert.
The MultiHMM also satisfies the “strict criteria” for Toff.

Finally, pairwise comparisons using the Wilcoxon rank-sum test
show a statistically significant difference between any two methods
(p − value < 0.0001).

4.2. Results for the QT database

Here, we use 2-fold cross validation for training the MultiHMM for
each subject, i.e., for each record of the QT database. Each record has
30–50 annotated beats. We separate the data into two parts with equal
size, we then train on first part and test on second part, followed by
training on second part and testing on first part, and finally find the
estimation error vector for each record. After that we aggregate the
error vector for all records and find the mean, standard deviation and
RMSE of total error across all records. The performance of different
methods for ECG FP extraction in the QT database are compared in
Table 2. Since in the QT database, the physician annotations for Ton
are not available, therefore we can not estimate the estimation error for
Ton. The Table 2 is split in different parts which differ by the number of
records of the QT database used in each experiment. In this table, rows
1–4 represent the results obtained using MultiHMM, Classic HMM,
Wavelet and PCGS methods, respectively, on records of Arrhythmia
and Normal Sinus Rhythm databases which are annotated in the QT

database (19 records). “*” in rows 3 and 4 of this table, indicates that
these results are obtained by using MATLAB codes provided by the
authors of [17,14] for 19 records. The least RMSE values among rows
1–4 are denoted in bold.

Rows 5–7 of Table 2, represent the obtained results of Wavelet,
PCGS and LPD methods, respectively, for all records of the QT
database which are reported in [17,14,4], respectively. Row 8 of the
Table represents the results of hybrid feature extraction algorithm
(HFEA) method for 27 records of the QT database which is reported in
[28]. Finally, rows 9–11 of this Table, represent the results of HMM-
based approaches which are reported in [7]. They considered three
cases: (i) generic HMM training, (ii) individual's HMM training and
(iii) generic HMM adapted to each individual. In rows 5–11, red values
show the RMSE values which are less than RMSE values of MultiHMM
method.2

According to the results of Table 2, for the MultiHMM method, the
mean errors for all FPs are smaller than or around one sample (4 ms).
The standard deviations are around three samples for the onset and
offset of waves and around one sample for the peak of waves. Median of
estimation error for all FPs except QRSon are equal to zero. Any
variation at the level of one sample is not significant.

Comparison of rows 1–4 of Table 2 shows that the RMSE values of
MultiHMM for all FPs are less than others, especially for Pon and Toff.
We observe that for all FPs MultiHMM has also smaller standard

Fig. 4. Estimated path and fiducial points by the (a) Classic HMM and (b) MultiHMM method for the record Ischemia09 of the Swine database.

Table 1
Mean ± standard deviation (first line) and RMSE (second line) of error in ms between estimated FPs and manual annotations for signals of the Swine database (fs=1000 Hz), (N.A.: Non
Available).

Method Pon Ppeak Poff QRSon Rpeak QRSoff Ton Tpeak Toff

MHMM 7± 6 2 ± 2.7 −2.3 ± 7 −0.7 ± 6 0.9 ± 0.3 0.3 ± 11 25 ± 21 0.03 ± 4 −13 ± 8
10 3 7 6 1 11 32 4 15

CHMM 6± 15 2 ± 2.7 −6 ± 8 −0.5 ± 11 0.9 ± 0.3 0.05 ± 23 22 ± 47 0.07 ± 4 −10 ± 10
16 3 10 11 1 23 52 4 14

PCGS 4 ± 19 3 ± 6.7 16 ± 16 N.A N.A N.A 37 ± 52 −8 ± 50 −11 ± 42
19.5 7 22 N.A N.A N.A 64 51 44

2sCSE 10.2 – 12.7 6.5 – 11.6 – – 30.6

1 Common standards for quantitative electrocardiography (CSE) is an international
project initiated by European community.

2 It is worth to mention that the number of beats used by the different authors are
quite different (and we do not know how the beats are selected or rejected) and
consequently the comparison is not very easy.
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deviation than others: it means that the proposed MultiHMM can find
FPs more accurately than previously described methods.

The comparison of the RMSE values of the MultiHMM with results
of rows 5 and 6 of Table 2 shows that for all FPs except QRSon and
QRSoff, the MultiHMM method achieves lower RMSE values than LPD
and Wavelet methods and can estimate FPs more precisely.
Comparison of the RMSE values of MultiHMM with results of PCGS,
in row 7, shows that for all FPs, the MultiHMM method has better
results than PCGS.

Comparing the results of the MultiHMM with results of the HFEA
method, in row 8 of Table 2, shows the superiority of the MultiHMM
for all FPs except QRSon. Finally, comparison of the RMSE values of
the MultiHMM with results of rows 9–11 of this table shows that our
proposed MultiHMM has better results than “generic HMM training”
and “generic HMM adapted to each individual” approaches in rows 9
and 11 (except for QRSoff). We observe that for all FPs except QRSon
and QRSoff, MultiHMM has less RMSE than “individual's HMM
training” approach in row 10.

The last row of Table 2 shows the CSE tolerance, which is described
in Section 3.2. We see that for all FPs, RMSE of the MultiHMM is
always smaller than those for other methods, and its standard
deviation usually less or very close (except QRSon) to CSE tolerance.
The MultiHMM also satisfies the “strict criteria” for Toff.

Mean and standard deviation of aggregate results across all FPs are
estimated for MultiHMM, Classic HMM, Wavelet and PCGS methods
as −1 ± 10, 0.2 ± 17.6, 1.9 ± 26.2 and 5.5 ± 38 ms, respectively. RMSE
values across all FPs for above-mentioned methods are estimated as
10.1, 17.6, 26.3 and 38.5 ms, respectively. We observe that standard
deviation and RMSE values for the MultiHMM are smaller than others.

Pairwise comparisons using the Wilcoxon rank-sum test show a
statistically significant difference between any two methods
(p − value < 0.0001).

4.3. Classic HMM limitation (double-beat segmentation)

For some (usually pathological) signals, the Classic HMM cannot
estimate a suitable path and suffers from a problem which is named
“double-beat segmentation”. Such segmentations occur when the
model incorrectly infers two (or more) beats where there is only a
single beat present in that part of the signal [6].

Fig. 5(a) shows the estimated path by the Classic HMM method for
the record Ischemia05 of the Swine database. We see that, during a
unique beat, the estimated path goes from 1 to 2, then 3,…. and reaches
7 and again goes to 1, 2,…. and reaches 7. In the second part of the
estimated path the transitions between levels are so fast that levels 3, 4,
5 and 6 appear only for one sample. In Fig. 5(a) the preliminary
estimated onset and offset points which are found from the estimated
path are shown. We see that for each onset or offset, two points are
estimated, one of which with a wrong location should be canceled.
Fig. 5(c) shows the final estimated onset and offset points (after
omitting incorrect points) using colorful points and the physician
labels using vertical lines. According to this figure, the Classic HMM
achieves high error in estimating the QRSoff and Ton..

Fig. 5(b) shows the estimated path, onset and offset points by the
MultiHMM method for the same record Ischemia05. We see that the
path and points are estimated correctly. Fig. 5(d) shows the estimated
onset and offset points using colorful points and the physician labels
using vertical lines. Consequently, conversely to the Classic HMM
method, the MultiHMM can solve the double-beat segmentation
problem and achieves a good FP extraction.

4.4. PCGS limitation in FP estimation of biphasic waves

Fig. 6 shows the estimated FPs by PCGS and MultiHMM methods
for the records Ischemia06 and Ischemia07 of the Swine database.

Table 2
Mean ± Standard deviation (first line) and RMSE (second line) of error in ms between estimated FPs and manual annotations for signals of the QT database (fs=250 Hz), (N.A.: Not
Available). ‘*” in rows 3 and 4 indicates that these results are obtained for 19 records of the QT database.
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Here, the original labels are shown using color vertical lines and
estimated onset, offset and peak of T waves are shown using stars..

In Fig. 6 left, we see that the record Ischemia06 has a biphasic T-
wave and physicians considered the positive peak as a label for Tpeak,
whereas the PCGS method estimates only the first part of the T-wave
(negative peak). Therefore, the estimation error of the PCGS method
for Tpeak and Toff will be very high. Here, the MultiHMM method
estimates Ton, Tpeak and Toff more exactly than the PCGS method.

Fig. 6 right, shows that the record Ischemia07 has also a biphasic T-
wave and physicians considered the negative peak as a label for Tpeak,
whereas the PCGS method estimates only the last part of the T-wave
(positive peak). Hence, the estimation error for Ton and Tpeak will be
very high. Also in this case the MultiHMM method estimates Ton,
Tpeak and Toff more precisely than the PCGS method. These figures
show the superiority of the MultiHMM approach in estimating the
fiducial points of signals with biphasic waves.

5. Discussion and conclusions

In this paper, a novel method (MultiHMM) for ECG fiducial point
extraction is proposed. Experiments carried out on ECG signals from
QT and Swine databases show that the MultiHMM performance is
better than the state of the art ECG delineators such as Classic HMM,
PCGS, LPD, HFEA, Wavelet and three HMM-based approaches.

The main contribution of this paper is proposing a MultiHMM
model for ECG FP extraction, which for each ECG wave or segment, a

separate HMM is considered and the parameters of each HMM are
trained separately. The number of states for HMM of baselines are 2–3,
of P-wave and T-wave are 2–6 and of QRS complex are 4–8. It means
that for segments which have more complex shape like QRS complex,
more states are required for modeling that segment by HMM.

Two parameters are defined in this paper: nw which is the length of
the window and mm which is a parameter smaller than nw, used for
preventing oscillations between two successive indexes. The value of
these parameters are defined experimentally and for each record
individually. For the records of Swine database, we have these values:
fs (sampling frequency)=1 kHz, nw=31 and mm=12. For the records of
QT database, fs=250 Hz, nw=21 or 16 (for some records nw is 21 and
for others is 16) and mm=6.

After training all HMMs, we use test data and define a sliding
window with length “nw” and consider the data inside the window as
the observation of HMMs (O with length nw). We then compute the
log-likelihood of each HMM. Afterwards, we compare the log-like-
lihood of two consecutive HMMs and choose the HMM with the
maximum log-likelihood. Finally, a path is estimated which shows the
correspondence of each part of the ECG signal to the HMM with the
maximum log-likelihood. The onset and offset of the P-wave, QRS
complex and T-wave are found from the transitions of one level to
upper level in this path. Peak position of waves are defined as the
maximum absolute value of signal between onset and offset of waves.

The advantages of the proposed model are: (i) the ability to estimate
the ECG FPs from raw ECG signals, while in several related work [6–9],

Fig. 5. (a) Estimated path and preliminary FPs by Classic HMM (b) Estimated path and FPs by MultiHMM (c) Original and final FPs by the Classic HMM (d) Original and estimated FPs
by MultiHMM for the record Ischemia05 of the Swine database. In this figure, the physician labels are shown using vertical lines.
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encoded ECG by the wavelet transform or the coefficients of wavelet in
different scales are used as an observation of HMM models; (ii) the
ability to successfully segment pathological beats (biphasic waves),
while the PCGS method fails under these conditions; (iii) the ability to
solve the double-beat segmentation problem, while for some signals,
the Classic HMM suffers from this problem and obtains a high
estimation error; (iv) the MultiHMM is not very sensitive to the
number of each HMM's states while the Classic HMM is weakly
sensitive to the number of Gaussian functions of GMM.

For the Swine database, the RMSE values across all FPs for
MultiHMM, Classic HMM and PCGS methods are 13, 21 and 40 ms,
respectively: the MultiHMM method is then much more accurate than
other methods.

For the QT database, RMSE values across all FPs for MultiHMM,
Classic HMM, Wavelet and PCGS methods are 10, 17, 26 and 38 ms,
respectively: again the MultiHMM method is much more accurate than
other methods. For the MultiHMM, the mean errors for all FPs are
smaller than or around one sample (4 ms). The standard deviations are
around three samples for the onset and offset of waves and around one
sample for the peak of waves. Median of estimation error for all FPs
except QRSon, are equal to zero, which shows the superiority of the
MultiHMM method over others.

For both databases, standard deviation of the MultiHMM is less
than the CSE tolerance s s( < 2 )CSE , which means that it can be
competitive with a good physician expert.

The run-time of the proposed method for a 15 s record takes about

3.5 s for training and 21.5 s for test step (using a Core i3, 2.53 GHz
CPU), suggesting that this method is almost fast. It is worth to mention
that our simulations are done in MATLAB, which is not a very fast
language, and it could be improved by C implementation.
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