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Abstract
Apnea bradycardia (AB) is an outcome of apnea occurrence in preterm infants 
and is an observable phenomenon in cardiovascular signals. Early detection 
of apnea in infants under monitoring is a critical challenge for the early 
intervention of nurses. In this paper, we introduce two switching Kalman filter 
(SKF) based methods for AB detection using electrocardiogram (ECG) signal.

The first SKF model uses McSharry’s ECG dynamical model integrated in 
two Kalman filter (KF) models trained for normal and AB intervals. Whereas 
the second SKF model is established by using only the RR sequence extracted 
from ECG and two AR models to be fitted in normal and AB intervals. In 
both SKF approaches, a discrete state variable called a switch is considered 
that chooses one of the models (corresponding to normal and AB) during the 
inference phase. According to the probability of each model indicated by this 
switch, the model with larger probability determines the observation label at 
each time instant.

It is shown that the method based on ECG dynamical model can be 
effectively used for AB detection. The detection performance is evaluated 
by comparing statistical metrics and the amount of time taken to detect AB 
compared with the annotated onset. The results demonstrate the superiority of 
this method, with sensitivity and specificity 94.74% and 94.17%, respectively. 
The presented approaches may therefore serve as an effective algorithm for 
monitoring neonates suffering from AB.
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1.  Introduction

Apnea is one of the most common complications of premature birth in infants, which can 
affect the cardiac rhythm if it continues for more than a few seconds. Apnea bradycardia 
(AB) is an arrhythmia associated with decreased heart rate (HR), hence it is likely that it can 
be detected from succeeding ECG signal. Decreased levels of blood oxygen and vagal nerve 
stimulation (Zhao et al 2011) are the main causes of bradycardia. Other symptoms in the 
morphology of heartbeats, such as reduction of the QRS amplitude and its width prolongation, 
are also expected to be observed. Recent research has focused on the early detection of apnea 
from electrocardiogram (ECG) employing strong algorithms based on features extracted from 
all of its common symptoms (Altuve et al 2009, Haskova et al 2013). Accordingly, neonatal 
intensive care units (NICUs) are usually equipped with alarms which employ such detection 
algorithms. When an apnea event arises, the alarm is intended to alert nurses. There exists a 
time limit for nursing intervention for preterm infants in need. The more the response time is 
extended, the more difficult it is to stop the episode of AB leading to significant problems and 
consequences that may be irreversible. The average response time delay, measured from the 
activation of the alarm until the application of the therapy, was estimated around 33 s, with 
an average of 13 s of tactile stimulation for the AB event suppression (Pichardo et al 2003). 
Hence the algorithm that activates the alarm has a crucial role in the early detection of respira-
tory arrest.

Although a lot of research conducted to detect apnea employs respiration signals (Varady  
et al 2004), the most appropriate sensor for acquiring bio-signals, especially in neonates, 
is ECG surface electrodes. Since respiration sensors probably interfere with the breathing 
process, it is more convenient to acquire ECG from weightless chest leads. In the following, 
we briefly review some of the works where ECG is used for apnea detection. The studies in 
literature mostly focus on apnea that occurs during sleep in adults (McNames and Fraser 
2000, Penzel et al 2002, Mendez et al 2007). One of them is presented in McNames and 
Fraser (2000), where the significancy of changes in various features including the time dis-
tance between R peaks (RR signal) and amplitudes and width of each QRS complex are stud-
ied. They report HR (∝ RR1/ ) as the most affected feature and the spectrogram of S pulses 
and the QRS energy also provide useful information about occurrence of apnea. Penzel et al 
(2002) suggested that in comparison to HR temporal characteristics, features extracted in the 
frequency domain are more informative. In another research, Chazal et al (2004) suggested 
deriving the respiration effect from an ECG which is integrated with HR features. Then a 
linear discriminant classifier is applied for AB detection. Mendez et al (2007) used the beat-
by-beat power spectral density of HR and the area under the QRS complex in a supervised 
learning K-nearest neighbor (KNN) classifier separating obstructive sleep apnea events from 
normal ones in adults.

The specific type of apnea which we intend to detect is the suspension of breathing which 
normally results in drops in HR and bradycardia indication in preterm infants. Hence, it 
requires specific processing and integrating an analysis of the dynamics of HR through the 
event. The most common approaches for HR characterization and AB detection in this context 
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are based on applying a fixed or an adaptive threshold (Poets et al 1993 and Portet et al 
2007). Different methods have been proposed according to the characterization of HR of AB 
episodes using abrupt-change detection methods (Cruz et al 2006). While some researchers 
have used several complementary detectors to increase AB detection accuracy (Cruz et al 
2006, Portet et al 2007), more recent works are proposed based on Bayesian Network (BN) 
approaches that consider the HR dynamics. An example of such an approach is the work of 
Travieso et al (2013), which classifies the cepstrum of RR signals using the hidden Markov 
model (HMM). Altuve et al (2011) trained two hidden semi Markov models (HSMMs) using 
the RR signal of a normal ECG and those with AB. This approach achieves 74.20% sensitiv-
ity and 92.77% specificity. The same strategy is also used in Masoudi et al (2013) employ-
ing a coupled HMM (CHMM) to obtain sensitivity and specificity as 84.92% and 94.17%, 
respectively. In Altuve et al (2015), some improvements in processing of observations, such 
as quantization are suggested in order to obtain more detection precision (88.66% sensitivity 
and 92.27% specificity).

As discussed, apnea can greatly affect the activity of the heart. The subtle changes in the 
ECG patterns can be interpreted as a change happening in the dynamic of the ECG beat gen-
eration process. In order to study such systems, one can propose using SKF, which is widely 
used for modelling systems with changeable dynamics (Ghahramani 1996, Marculescu et al 
1998). In a simple form of SKF, it is assumed that the model has a linear dynamic at each time 
instant but it is time variant and switches among several linear subsystems over the time; each 
linear subsystem can be described by linear dynamical equations of continuous states (xk) as 
state equations and a linear relation between states and observation (yk) as an observation 
equation:

γ= +
= +

−x Ax

y Mx r

k k k

k k k

1
� (1)

γk and rk are state and measurement noises. A and M are state and observation coefficients 
respectively. This type of modelling is generally referred to as a state space model (SSM). In 
SKF, the states are estimated by several KFs with different state or observation equations at 
each time instant. Meanwhile, a hidden discrete state variable called a switch (s) is considered, 
so according to Markov characteristics, the status of this state changes over the time and indi-
cates to the KF with the best state estimation performance. In the general structure of SKF, 
both state and observation equations depend on the switch variable as follows:

γ= ( ) + ( )
= ( ) + ( )

−x A s x s

y M s x r s

k k k

k k k

1
� (2)

where Γ( )s  and R(s) are covariance matrices of γk and rk, respectively which are related to the 
switch s. The inference and training algorithms of SKF are fully described in Murphy (1998). 
In SKF, an expectation-maximization (EM) approach is applied to estimate the parameters 
of the linear models. This approach was used previously in other contexts such as tracking 
meteorological features over time (Manfredi et al 2005) and in a computer vision applica-
tion for event detection and data collection at traffic intersections (Veeraraghavan et al 2005, 
Veeraraghavan et al 2006). In Pavlovi et al (1999), an approximate Viterbi inference approach 
is proposed by defining a cost function based on KF parameters. They employ their method 
for figure motion analysis and the results show that SKF performance is promising and capa-
ble of modelling a complex nonlinear system with a set of linear models chosen by a switch at 
each time instant. This algorithm is also applied in Zheng and Hasegawa-Johnson (2003) for 
segmentation of vowels, nasal, frication and silence in an acoustic signal. Depending on SKF 
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application and BN structure, a switch may be set on some of the continuous state variables 
rather than all of them, thus the independent states to the switch are simply estimated by a 
standard KF algorithm (Wu et al 2003). In some other works where multiple independent state 
variables have their own dynamics and it is not specified that which of them should be used, 
the switch is only set on the observation equation (Wu et al 2004).

In this paper, in order to model dynamic changes caused by AB occurrence in ECG, we 
propose two approaches (wave-based and R-based), each of which includes two models cor-
responding to normal and bradycardia dynamics. Moreover, a switch represents a discrete 
state that indicates the model with best performance at each time instant. The R-based method 
inspired by Wu et al (2004) is the most apparent way to employ SKF on RR signal for AB 
detection. Two first-order AR models are expected to model bradycardia pattern and nor-
mal RR signal independently. The switch is set on the observation equation  and indicates 
which state should be used in the observation equation. It can be concluded that this approach 
employs just the inter-beat information since it employs RR signal as the only observation. In a 
wave-based approach, we try to present a method which gets the benefits of inter-beat as well 
as intra-beat characteristics. This can be achieved by using a dynamical model for the wave-
forms of a beat and including ECG signal in addition to observations, which is proportional 
to RR1/ . One of the famous dynamical models of ECG beats is McSharry’s model, which is 
used by Sameni et al (2007) in an extended Kalman filter (EKF) based framework. Hence, for 
normal beats and those associated with bradycardia, two dynamic models are considered and 
the SKF switch indicates the appropriate dynamic model. The algorithm is called the switch-
ing extended Kalman filter (SEKF). The details of the proposed approaches are presented in 
section 2.

The paper is organized as follows. Section 2 provides relevant background on the ECG 
dynamical model and two algorithms EKF2 (Sameni et al 2007) and EKF3 (Akhbari et al 
2012). This section also includes the details of wave-based SEKF and R-based SKF approaches 
for AB detection for real data. Section 3 is devoted to the results of the two methods. Finally, 
a discussion and concluding remarks are provided in section 4.

2.  Methods

In this section, in order to be self-contained, a dynamical model of ECG and two EKF-based 
algorithms which were proposed previously for ECG denoising are presented. Then, the pro-
posed SEKF called wave-based approach is fully described. Finally, the proposed R-based 
SKF is explained.

2.1.  Waveform based SEKF model

Every heartbeat on an ECG record consists of finite number of characteristic waveforms (typi-
cally the P wave, QRS complex and T wave), each of which can be easily modelled by the sum 
of Gaussian kernels. This idea was presented by McSharry et al (2003) in order to propose 
a nonlinear dynamic model for generating synthetic ECG. This model consists of three dif-
ferential equations in Cartesian coordinates whose solution generates a trajectory in 3D space 
around a circular limit cycle that upward and downward deviations from the plane of the circle 
create waves like the waveforms of an ECG beat. The EKF2 algorithm introduced by Sameni 
et al (2007), includes the simplified discrete form of McSharry’s model in a cylindrical coor-
dinate system as follows:
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� (3)

where φ φ θΔ = ( − )−n k n1 , φk is the phase of ECG signal, ωk is angular velocity (proportional to 
the inverse of the RR-interval), zk is the ECG signal considered as the sum of some Gaussian 
functions and ηk is a random additive white zero-mean noise that models the baseline wander. 
δ is the sampling period and αn, bn and θn are the parameters of the Gaussian kernels (ampli-
tude, angular spread, and location of the Gaussian functions, respectively and assumed to be 
state noises). A simple interpretation of this model is to map each heartbeat over the time on 
a unit circle lying on an XY plane in a way that the first and last samples of a beat take phase 

π−  and π respectively. Accordingly, the R peak is expected to be located around phase zero. 
Changing the parameters of the Gaussian kernels results in ECG generation with different 
morphology. The parameter ωk tunes the HR of generated ECG and determines the velocity 
of moving on an unit circle. The aforementioned differential equations can be integrated in 
the KF model if we consider appropriate observations and relate them to the state variables. 
Equation (4) shows the observation equations of the EKF2 model:

φΦ = +
= +

r

Z z r

k k k

k k k

1

2
� (4)

where rk = [r1k, r2k] is the measurement noise vector of the model. Φk is the phase observa-
tion and Zk represents the measured ECG signal. Since the state equation of this model is 
nonlinear, EKF is applied for state estimation. The main application of EKF2 is the denoising 
and compression of ECG signal (Sayadi and Shamsollahi 2008). In a previous algorithm, the 
angular velocity, ωk, is one of the state noises. However, it can also be considered as a state 
variable (Lin et al 2011). This is the main object of the EKF3 algorithm proposed by Akhbari 
et al (2012). In this algorithm, ωk is considered as the third state variable and an appropriate 
corresponding observation is introduced. Due to the small changes of the distance between 
different waveforms during several consecutive beats, a simple autoregressive (AR) model is 
used for angular velocity as ω ω β= +−k k k1 , where βk is a white zero-mean Gaussian noise 

with variance, σβ
2, and represents the uncertainty in angular velocity estimation. In this model, 

angular velocity observation, Ωk, is obtained using RR signal and it is assumed to be almost 
constant during each beat, but may be contaminated by noise. Hence the corresponding obser-
vation equation may be considered as ωΩ = + rk k k3 .

In order to detect AB from normal beats in ECG, some modifications can be applied to the 
EKF3 algorithm to incorporate dynamical variations. In a wave-based approach, we try to 
employ inter-beat as well as intra-beat characteristics. This can be achieved by using a dynam-
ical model for the waveforms of a beat. Inspired by existing studies, the famous dynamical 
model of ECG beats suggested by McSharry is used. Hence, for normal beats and those asso-
ciated with bradycardia, two dynamic models are considered. At this stage, we assumed that 
bradycardia complications do not change the morphology of the waveforms; hence the proper-
ties of parameters of Gaussian kernels (αi, bi and θi) which are considered as state noise vari-
ables during EKF2 and EKF3 algorithms are constant. The only parameter that can be affected 
by bradycardia is the temporal distance between the peaks of these waveforms. To character-
ize such phenomena, we take the main idea of the EKF3 algorithm, which gives a continuous 
state variable to angular velocity (ωk) and represents the speed of beat generation on the unit 
circle in McSharry’s model. If ωk is low, the generated beats elongate in time samples and 
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vice versa. This parameter was mainly applied as a noise with constant properties during beat 
generation (see Sayadi et al 2010). However, by using the EKF3 idea, we relax this parameter 
to be assigned at each instant of algorithm evolution. The state variable representing ωk is 
added to the other state variables in EKF2 to form EKF3 state equations. Consequently, any 
subtle changes in ωk can be detected. In our proposed approach, a two-value switch s is set on 
the state equation corresponding to ωk, in order to change it whenever the dynamic changes 
and to judge between normal and bradycardia conditions. This switch indicates the most prob-
able one by which the observation may be generated. s is a discrete state and assumed to have 
a first-order Markov chain with matrix transition C with = ( = = )−c P s i s jji k k 1 . Note that 
...i = ...(sk = i) can be considered for all the parameters of the SKF model (A, M, Γ and R) on 
which the switch is allocated. The modified EKF3 is given as follows:

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟∑

ω ω β
φ φ ω δ π

δ α ω φ
φ

η

= ( ) + ( )
= ( + ) ( )

= − Δ −
Δ

+

−

− −

−
∈{ }

−

A s s

z z
b b

mod 2

exp
2

k k k

k k k

k k

n P Q R S T

n k

n
n

n

n
k

1

1 1

1

, , , ,

1
2

2

2

�

(5)

The observation can be related to the states of equation (5) as the following equations:

ω
φ

Ω = +
Φ = +

= +

r

r

Z z r

k k k

k k k

k k k

1

2

3

� (6)

where rk  =  [r1k,  r2k,  r3k] is the measurement noise. Moreover, we define a physiological 
envelope on the amplitude of the angular velocity corresponding to normal condition (i.e. 
ω ( = )s 1k ) that spans between the upper and lower ranges of Ωenv defined as:

σΩ = Ω ± Ω3env normal normal� (7)

where Ωnormal is the mean of the observation of angular velocity related to normal ECG and 
its standard deviation is σΩnormal. Ωenv is set by the training data. This constraint is defined 
since, practically, the value of ω ( = )s 1k  is nearly constant in normal beats. In the case of bra-
dycardia, the value of angular velocity decreased due to beat elongation. So ω ( = )s 1k  is set 
to the nearest endpoint. Similarly, in normal circumstances, the value of the state of angular 
velocity related to AB, ω ( = )s 2k , is equal to the mean of Ωk during the intervals where an AB 
is observed in training data. As mentioned above, due to the nonlinearity of the third equa-
tion in equation (5), our proposed model is called the SEKF. Following the notation of equa-
tion (A.1), the state, observation and their corresponding noise vectors are defined as:

ω φ

γ α θ β η

= [ ]
= [ ] ∈ { }
= [Ω Φ ]
= [ ]

x z

b n P Q R S T

y Z

r r r r

, , , ,

k k k k

k n n n k k

k k k k

k k k k1 2 3

� (8)

where the covariance matrix of states γk is a 17-dimensional matrix, as we have considered 
three parameters for five Gaussian kernels in addition to two additive noises.
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Since the second process equation is nonlinear, a linear approximation of equation (5) near 
a desired point γ( )x̂ , ¯k k  is required for estimating the state vector according to the EKF algo-
rithm. Linearization can be performed as follows:

γ γ γ γ= ( ) = ( ) + ( − ) + ( − )− − − −x f x k f x k G x x F, , ˆ , ¯ , ˆ ¯k k k k k k k k k k k1 1 1 1� (9)

where f represents the nonlinear state evolution function. Gk and Fk are state linearization 
coefficients given by:

γ

γ
γ

=
∂ ( )

∂
∣

=
∂ ( )

∂
∣γ γ

−

−
= = =

−
= = =

− − −

−

ˆG
f x k

x

F
f x k

, ¯ ,

ˆ , ,

k
k k

k
x x s i s j

k
k k

k
s i s j

1

1
, ,

1
¯ , ,

k k k k

k k k k

1 1 1

1

� (10)

According to equations  (5) and (10), we are able to compute Gk and Fk, whose deriva-
tions are explained extensively in the appendix A.1. The evolution of the SEKF is changed 
based on the switch state and consists of three stages summarized in FilteringSEKF, 
StatesProbability and Collapsing functions (see appendix A.2). In these relations, we 

define = { ∣ = = }−x E x y s i s j, ,k
ji

k k k k1: 1  and = { ∣ = = }−P x y s i s jCov , ,k
ji

k k k k1: 1  that the 
standard EKF algorithm can be utilized for their calculation in FilteringSEKF function. 

= ( ∣ = = )− −L p y y s i s j, ,k
ji

k k k k1: 1 1 , the likelihood of observation given states at time k and k  −  1, 
is also calculated within the execution of this function. Moreover, the StatesProbability function 

calculates some of the probabilistic parameters: = ( = ∣ )K P s i yk
i

k k1: , = ( = ∣ = )−g P s j y s i,k
j i

k k k1 1:  
and = =K K gk

ji
k
i

k
j i  for = ⋯i j N, 1, ,  that are used for choosing the EKF with the best per-

formance at each time instant. The Collapsing function computes the estimation of xk
i and 

Pk
i from the mixture model using an approximation of N( ∣ = ) ≃ ( )p x y s i x P, ,k k k k

i
k
i

1: , where 
= { ∣ = }x E x y s i,k

i
k k k1:  and = { ∣ = }P x y s iCov ,k

i
k k k1: .

In order to establish our proposed SEKF model, all needed initial values are set similar to 
Sameni et al (2007) and we apply the SKF training approach presented in Murphy (1998). The 
unknown parameters of switching dynamics (i.e. Ai, Γi and C) are achieved during execution 
of training iteratively. We can write the loglikelihood and optimization criterion respectively 
as follows:

∑= ( { }) = − {{( − )Γ ( − ) + ∣Γ∣}

+( − ) ( − ) + ∣ ∣+ } + ( ( ) ( ∣ ))
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1: 1: 1:

1
1

1
1

1
0 0 0k k1

�

(11)

({ }) = ( ) ( ∣ ) ( ∣ )

= ( ) ( ∣ )

Γ Γ

Γ

p s y x p s p x s p y x

p s p x s

arg max , , arg max

arg max

A c
T T T

A c
T T T T T

A c
T T T

, ,
1: 1: 1,

, ,
1: 1: 1: 1: 1:

, ,
1: 1: 1:

i i ji i i ji

i i ji

�
(12)

where ( ): :p y xT T1 1  is omitted since there is no unknown parameter in this term. Note that the 
parameter M in the observation equation is known by considering the relation between obser-
vation and state variables. R can be set by estimating the covariance of the observation noise 
vector. The re-estimation repeats until convergence.
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We only show the closed-form solution using an approximation of the maximum likelihood 
(ML) approach for re-estimation as follows:
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where it is straightforward to show that:
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Obtaining the parameters of each model, the probability of the dynamic i for each time 
instants ( =K i, 1, 2k

i ) is computed using the inference over each test signal. If >K Kk k
1 2, the 

observed temporal sample k is likely generated by dynamic 1. The mentioned functions of the 
SEKF are used in algorithms 1 and 2 illustrating the training and inference procedures.

Physiologically speaking, the elongation of a beat does not occur only at the end of the 
beat and it is accompanied by an increase of temporal distances between different waveforms. 
Hence, we try to give an intra-beat interpretation of angular velocity by using a dynamical 
model to detect the changes not only in R–R distance but also in temporal distance between 
the waveforms peaks in a beat. Furthermore, since bradycardia is an event which appears more 
clearly in terms of beats than in time instants, beats are related conveniently to a dynamic. 
Therefore, we investigate two approaches in order to compute the local mode on the label of 
consecutive samples. The first method, mode on window (MOW), is to calculate the mode of 
labels falling in a window moving through the signal as the SEKF algorithm evolves sample 
by sample. The length of the moving window is considered equal to the average length of 
ECG beats in the training data set. In this approach, if more than ξ% of the temporal samples 
of an ECG beat are labeled as AB, it is supposed that the AB begins from the first sample of 
that beat. Alternatively, in the second method, mode on beat (MOB), we can consider the label 
of samples of a beat and calculate their mode. Note that in the MOB method, the label of the 
samples in a beat located in the beginning of AB event is determined at the end of the beat. 
Therefore, although all of its samples are likely to be labeled equally as AB, the detected time 
onset of AB is set at the end of the beat for time delay of detection. There is an ambiguity in 
the borders of a beat, so it is necessary to choose a logic for defining the beginning and end 
points. We have used Sameni’s definition in this regard (Sameni et al 2007), where the begin-
ning of a beat is considered on a point placed at a equal distance between the corresponding 
R peak and the previous one.

2.2.  R-based SKF model

The alternative and simple method that we propose for AB detection consists of an SKF struc-
ture where the switch affects just the observation equation. In this structure, the observation 
includes the RR signals obtained from raw ECG. The normal RR signals are modelled by an 
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AR process. A bradycardia episode commutes a rise in RR signal and can also be indepen-
dently fitted by an AR model, which differs from the AR model corresponding to normal 
HR. Normal and bradycardia AR models whose parameters are obtained during the training 
phase configure the state equation of this SKF. Using higher order AR models would be more 
accurate, but would be more complex. Therefore, we restrict our study to the first-order AR 
models. The states of these two models evolve independently and estimate the amplitude of 
RR based on their given dynamic. Hence, x1k and x2k are RR signals corresponding to normal 
and AB, respectively, resulting from two independent AR models. They generate various Kk

1 
and Kk

2 which are used to classify the samples of RR signal into one of the normal and brady-
cardia classes. It can be concluded that the approach employs just inter-beat information since 
it employs RR signal as the only observation. The state and observation equations are given as:

γ= [ ] = [ ] +
= ( )[ ] + ( )

⊺
×

⊺

⊺
− −x x x A x x

y M s x x r s

k k

k k

1 2 2 2 1 2

1 2

k k k k

k k

1 1

� (15)

where yk is the calculated RR from recorded ECG that can be considered as a noisy version of 
x1k or x2k. A is a diagonal matrix. In this structure all the model parameters (A, Γ, Mi, Ri and cji) 

Algorithm 1. Wave based: training

Inputs: x ji
0 , P ji

0 , initial values of Ai, Γi, M, R and C, i, j=1,2.
Outputs: Trained values of Ai, Γi and C

1: repeat
2:   for = ⋯k T1, 2, ,  do
3:     Compute Gk and Fk from equation (10).
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7:   end for
8:   Calculate Ai, Γi and C using equation (13).
9: until Convergence

Algorithm 2. Wave based: inference

Inputs: x ji
0 , P ji

0 , Ai, Γi, M, R and C, i, j=1,2.
Outputs: Kk

i,

1: for = ⋯i M1, 2, ,  do
2:   for = ⋯k T1, 2, ,  do
3:     Compute Gk and Fk from equation (10).
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7:   end for
8: end for

9: Applying a threshold on Kk
i
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can be estimated optimally. If we consider the structure of the SKF, the optimization criterion 
based on the joint probability of states, switch and observation is as equation (16) which is 
proposed by Wu et al (2004):

({ })

= ( ) ( ∣ )
Γ

Γ

p x s y

p x p s y x

arg max , ,

arg max arg max ,

A M R c
T T T

A
T

M R c
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i i ji

�
(16)

The first term relates to states which are continuous variables and its maximization is 
straightforward by using the EM algorithm and gives parameters A and Γ:
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By using the second term, we can estimate parameters of the observation equation and the 
transition matrix of the switch, which is a discrete variable. Therefore, the Baum–Welch algo-
rithm should be applied to estimate the transition matrix of the switch. This algorithm uses 
expectation of the log likelihood for the discrete parameter estimation. Hence we have the rest 
of the unknown parameters as follows:
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The training and inference of this method are performed according to algorithms 3 and 4 
using FilteringKF which is defined in the appendices and includes the standard KF algorithm.

2.3.  Data and evaluation metrics

A database including one-lead ECG and respiration signals acquired from 32 preterm 
infants hospitalized in the NICU at the University Hospital of Rennes, France (Altuve et al 
2011) is used to study the performance of the proposed wave-based and R-based methods. 
ECG signals were acquired at 400 Hz. This observational study was approved by the ethi-
cal committee of the University Hospital of Rennes and written consent was obtained from 
the parents of each infant. All data were anonymized at acquisition. The data is comprised 
of 105 segments of ECG with 250 s duration and the total number of AB episodes equal 
to 233. Each acquired ECG segment was denoised by using a combination of filters for 
discarding the baseline and the noise of 50 Hz respectively. For baseline cancelation, the 
output of the 8 Hz low pass filter is subtracted from the main ECG signal. Individual beats 
for each segment were detected using the R-peak detection algorithm proposed in Pan and 
Tompkins (1985).
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In this study, ABs were manually annotated by a clinician. In addition, a curve fitting 
procedure was proposed to locate, with the best reproducibility, the beginning of the AB. A 
sigmoid function is used to approximate the rise of RR time series around the AB episode. 
The AB onset is the first point at which the derivation of the sigmoid function is greater than 1  
(Altuve et al 2015) at a sampling rate of 400 Hz. In order to cross-validate the results, the 
detection procedure is repeated in 5 rounds, each of which involves a holdout cross-validating 
and calculation of metrics. In the holdout procedure, we preliminary performed a permuta-
tion on the data and then chose 20% of the shuffled data for training and the rest of them for 
testing. Each segment includes at least one AB episode; therefore, various number of ABs are 
used for training in each round.

Quantitative results are reported using common metrics: sensitivity (SEN) and specificity 
(SPC), defined as ( + )TP TP FN/  and ( + )TN TN FP/  respectively where TP, FP, TN and FN 
denote the number of true positives, false positives, true negatives and false negatives, respec-
tively, which are counted over the samples of observations of test data. In R-based method, the 
extracted RR signal is interpolated to reach 400 Hz sampling rate to be matched with annota-
tions. Then, in order to have AR models with more convenient parameters, it is downsampled 
to 10 Hz to avoid the algorithm being overtrained, tedious and time-consuming. Although, the 
number of wave-based and R-based samples are not equal, quantitative comparison between 
them is possible since the metrics are relative criteria. We define another metric to show the 

Algorithm 3. R-based: training

Inputs: x ji
0 , P ji

0 , initial values of A, Γ, Mi, Ri and C, i, j=1,2.
Outputs: Trained values of A, Γ, Mi, Ri and C

1: repeat
2:   for = ⋯k T1, 2, ,  do
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6:   end for
7:   Calculate A and Γ using equation (17) and Mi, Ri and C using equation (18).
8: until Convergence

Algorithm 4. R-based: inference

Inputs: x ji
0 , P ji

0 , A, Γ, Mi, Ri and C, i, j=1,2.

Outputs: Kk
i,

1: for = ⋯i M1, 2, ,  do
2:   for = ⋯k T1, 2, ,  do
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6:   end for
7: end for

8: Applying a threshold on Kk
i
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speed of an algorithm to detect an AB. This metric is time delay (TD), calculated as the elaps-
ing time between the annotated onset of occurring AB and the onset, which the algorithm 
determines. The wave-based method is expected to find the onset by 2.5 ms time resolution 
while R-based method has 0.1 s time resolution according to the sampling rate. The accuracy 
(AC) of detection in terms of events is also computed in each round.

3.  Results

Implementation of the wave-based and R-based approaches includes a training phase primar-
ily for estimation of unknown parameters of the model and a test phase to evaluate the per-
formance of the proposed procedure in terms of metrics. In this section, we firstly show the 
method’s performance by using an example of an RR series in order to visually demonstrate 
the qualitative results. Then, quantitative results in terms of SEN, SPC, TD and AC of detec-
tion are presented. Finally, the best proposed method is compared with existing methods in an 
AB detection context.

3.1.  Qualitative results of wave-based performance

Figure 1 depicts an example of the AB detection using the wave-based method in a segment. 
The RR signal of the test data is shown in figure 1(a). Moreover, Kk

i is illustrated in figure 1(b). 
As depicted in this figure, Kk

i of the wave-based method has many fluctuations. Hence, a mode 
calculation procedure is employed, which is implemented by using two methods: MOW and 
MOB. In MOW, first, a mode calculation is employed, hence the local changes in labels, 

Figure 1.  The performance of wave-based frameworks. (a) RR signal. (b) Kk
i for i=1,2. 

(c) and (d) the real annotations and labels determined by the algorithm with MOB 
and MOW processing, respectively. Labels 0 and 1 indicate normal and bradycardia, 
respectively.
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determined by comparing the Kk
1 with Kk

2, are decreased. Then, the decision on the labels of 
beat is made using the parameter ξ. The duration of a moving window is 360 samples and 
the value of ξ is optimized by using the receiver operating characteristic (ROC) curve. Each 
point on the ROC curve represents a value for sensitivity and specificity achieved by a specific 
value for ξ. Figure 2(a) shows the ROC curve obtained by altering the value of ξ. The marked 
point, the perfect detection (PD) point, is introduced by searching according to the following 
criterion:

= { × }PD SEN SPCarg max� (19)

According to figure 2(a), the parameter ξ is chosen equal to %85  for the best detection 
of MOW using training–test data. The corresponding time delay plot is also depicted in 
figure 2(b).

In MOB, the result of mode calculation directly leads to the label determination of the cor-
responding beat.

The annotations determined by an expert and the label decided by the wave-based algo-
rithm by using MOB method are shown in figure 1(c). Similarly, figure 1(d) illustrates the 
labels decided by this algorithm with the MOW method as well as those determined by an 
expert.

The estimated state variable corresponding to the angular velocity of the wave-based model 
is illustrated in figure 3. The physiological envelope (equation (7)) restricts the range of this 
state variable value (ωk

i).

3.2.  An example of R-based approach performance

The performance of the R-based method on the same example segment is shown in figure 4. 
As can be seen, since each sample of the feature RR is extracted from a beat, no fluctuation 
can be observed in Kk

i (figure 4(b)), thus unlike the wave-based method, mode calculation is 

Figure 2.  Searching for the best value of ξ, which is the percentage of samples in a 
beat labeled as AB event by our wave-based MOW method. The results are achieved 
on training–test data. (a) ROC curve (SEN versus 1-SPC). (b) Time delay of detection 
versus 1-SPC. PD is marked by an square in each plot.
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not required. The labels obtained by R-based models and the expert annotations are illustrated 
in figure 4(c).

3.3.  Quantitative results

The metrics for the proposed approaches over test data calculated by cross-validation are 
reported in table 1. According to this table, MOB comparing with MOW is found to be more 
reliable for detecting an AB event. This shows that the assumption used for defining the begin-
ning and ending of the beats in ECG is significant. In addition, calculation of mode over beats 

Figure 3.  Estimated angular velocity (state variable controlled by switch) and the 
observation of the angular velocity for the wave-based method.

0 50 100 150 200 250
6

8

10

12

14

16

18

Time(s)

A
ng

ul
ar

 v
el

oc
ity

(r
ad

)

 

 
ω(s=2)
ω(s=1)
Ω=1/RR

Figure 4.  The performance of R-based frameworks. (a) RR signal. (b) Kk
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The real annotations and labels determined by the algorithm. Labels 0 and 1 indicate 
normal and bradycardia, respectively.
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mainly reduces the amount of computation compared to MOW in which the mode is com-
puted sample by sample. The results show the ability of wave-based and R-based methods to 
detect the AB occurrence accurately. However, wave-based methods reflect better detection 
performance, although they are more complicated. Moreover, they are capable of detecting the 
AB nearly faster than R-based method.

The average values of SEN and SPC using MOB are 94.74% and 94.17%, respectively. The 
low average time delay in this method, ±0.35 2.12, is achieved by searching for AB sample 
by sample in the SEKF algorithm with MOB postprocessing and introduces this approach as a 
fast detector. Whereas, in an R-based detector, processing of the RR signal loses the intra-beat 
information and has a higher average value for time delay reported as ±1.80 1.94.

It can be seen that the wave-based MOB demonstrates the best average performance. MOW 
performs marginally better than the R-based, but still underperforms the MOB approach while 
the AC of all methods are more than 99%.

It should be noted that, in wave-based detectors, the average standard deviation (std) of time 
delay is larger than its mean, which implies that, in some cases, these detectors predict the 
occurrence of AB since its onset is reported prior to the annotation determined by the expert. 
Moreover, the reported value of time delay is the average of all obtained values consisting of 
the prediction with negative time delays and the detection cases with positive time delays.

3.4.  Comparing MOB with other existing methods

In order to compare the proposed methods with other benchmarks, we have studied the previ-
ous methods on our database for AB detection in preterm infants. Furthermore, the conven-
tional thresholding has been tested. In this simple method, the value of threshold is determined 
on training data and the evaluation is performed over test data. The reported results are based 
on R peak detection (Pan and Tompkins 1985) and RR signal extraction (the same algorithm 
used in proposed methods), together with a fixed hard thresholding strategy. For performance 
evaluation, Altuve et al (2011) used 148 RR series (series duration = ±26.25 11.37 min) with 
233 bradycardia episodes. They employed 48 series for training and left the rest for test. We 
have used the same records; however, to ensure the consistency of the results on various sub-
jects and reducing the number of normal temporal samples, the full length of the records was 
divided in to 105 segments with 250 s duration with the same total number of AB episodes. 
The whole procedure was repeated five times over the training data consisting of the 20% of 
selected records, each time using the same initial parameters.

The average SEN and SPC of the AB detection for different methods are depicted in 
table 2. For HSMM and HMM methods, two values for each metric are reported, the first 
one is the value reported in Altuve et al (2015), and the second one (shown by a in table 2)  
is obtained by our implementation of the corresponding algorithm. The minor differences 
observed between these two results are due to small differences in implementation (for 
instance in optimum number of states in the models and the cross-validation procedure). The 
p-values of MOB compared to other methods are computed based on the Mann–Whitney 
u-test. According to the p-values, a significant enhancement in most of the metrics can be 
observed in MOB (assuming p  <  0.05 as a significant improvement of our algorithm com-
pared to each of the other methods). It can be seen that MOB demonstrates the best average 
performance in lower ratio of the number of records in training over those in test procedures. 
Furthermore, its superiority is obvious, especially in terms of average time delay, where it can 
detect AB far faster than the others. The thresholding method finds the AB episodes based on 
the amplitude of observation and according to table 2, it has weaknesses in time delay and the 
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precision of detection, while other methods learn the dynamic rather than depending on the 
amplitude of observation.

Figure 5 is illustrated in order to visually compare the repeatability of the results of table 2. 
It shows five values for each metric resulted from the cross-validation rounds. The values 
corresponding to HSMM and HMM are obtained from our implementation. Moreover, lower 
quartile, median and upper quartile values of the results are included. As depicted, the CHMM 
method proposed by Masoudi et al demonstrates lower std among the other studied methods. 
In this method, the QRS complex duration is also employed as the second feature beside RR 
signal; hence, it might result in a low variance in metrics. However, it still takes more time to 
detect AB. While, MOB shows a reasonable std and mostly the best average results.

4.  Discussion and conclusions

In this work, the main goal is to use SKF for AB detection. Therefore, we proposed two SKF-
based models where in one approach ECG signal is utilized as an observation while, in the 
other, RR series is employed. In the EKF framework previously used in different applications 
like denoising or compression, McSharry’s model is applied in order to model ECG signal as 
a combination of a finite number of Gaussian kernels and establish a set of state equations of 
KF. The performance of this model is eligible if the characteristics of ECG has slight altera-
tions. Hence, when an arrhythmia like AB happens, the parameters of the relevant model is 
totally different from the normal situation. Therefore, if we intend to detect AB, it is conve-
nient to integrate two EKF models for normal and AB in the form of an SKF and monitor the 
probability of discrete state variable corresponding to the switch (Kk

i) as a detector.

Table 1.  Proposed wave-based (MOW and MOB) and R-based methods performance 
evaluation using cross-validation.

Method AC SEN SPC Mean TD (s) std TD(s)

MOW ±99.29 0.40 ±94.51 0.35 ±92.68 0.30 ±1.78 0.52 ±1.77 0.53
MOB ±99.11 0.73 ±94.74 0.69 ±94.17 0.87 ±0.35 0.13 ±2.12 0.29
R-based ±99.13 0.02 ±90.35 5.46 ±88.59 11.28 ±1.80 0.89 ±1.94 0.43

Note: accuracy is computed over the average number of events detected correctly. The rest of the 
metrics are in terms of samples.

Table 2.  Comparing the best results with other methods.

Method SEN SPC Mean TD (s) std TD (s)

Our work MOB ±94.74 0.69 ±94.17 0.87 ±0.35 0.13 ±2.12 0.29
Altuve et al (2015)a HSMM ±88.66 1.72 ±92.87 0.86 ±1.59 0.24 ±3.61 0.30

±88.46 1.16 ±93.57 1.14 ±2.10 0.66 ±2.26 0.81
p=0.0079 p=0.5476 p=0.0079 p=1

Altuve et al (2015)a HMM ±86.52 3.96 ±92.27 1.77 ±1.61 0.43 ±3.74 0.32
±89.06 1.08 ±92.28 0.71 ±1.59 0.36 ±1.28 0.17

p=0.0079 p=0.0079 p=0.0079 p=0.0079
Masoudi et al (2013) CHMM ±84.92 0.26 ±94.17 0.51 ±2.32 0.01 ±4.82 0.03

p=0.0079 p=0.6508 p=0.0079 p=0.0079
— Thresholding ±87.98 0.88 ±84.46 1.42 ±2.71 0.12 ±2.07 0.17

p=0.0079 p=0.0079 p=0.0079 p=0.4206

a The results are obtained based on Altuve et al (2015) and by our implementation to reconstruct raw results.

N Montazeri Ghahjaverestan et alPhysiol. Meas. 36 (2015) 1763



1779

On the other hand, we suggest an R-based method based on the SKF structure proposed in 
Wu et al (2004), which includes two independent linear AR models. The models provide a state 
equation whose states are the RR signal corresponding to normal and AB. The observation is 
calculated RR which can be considered as a noisy version of state variables. The switch indi-
cates to the state variable which one of the models should be used in the observation equation.

The SKF algorithm is comprised of several KF, each including the model parameters 
related to a dynamic. Each filter is able to adapt with different morphologies and temporal 
nonstationarities since the variance of the observation noise defines the degree of reliability 
of an observation. This determines a bound of how much tracking the observation interferes 
in estimation of state variables. However, in the case of powerful noises in observation or 
dynamic alteration, the information that KF obtains from its model is expected to be poor and 
it decreases the probability of observation to be generated by such model. The SKF quantifies 
this probability and refers to it as the probability of switch conditions.

The designed filter was applied to real ECG databases comprising AB acquired from pre-
term infants. Compared to the R-based detection scheme, the wave-based model provides a 
better detection performance, especially in finding bradycardia events without missing them.

The application of HMM-based approaches had been previously reported (Altuve et al 
2011, Masoudi et al 2013, Altuve et al 2015). The major drawback of such methods is that 
each beat is represented by finite number of features, which results in methods using only the 
inter-beat information, like our R-based method. However, the wave-based technique does 
not depend on the specific features and instead uses a dynamic state space representation 

Figure 5.  The comparison of wave-based MOB performance with existing methods 
showing the lower quartile, median and upper quartile values. The raw data are 
illustrated by red crosses. (a) Sensitivity. (b) Specificity. (c) Mean of time delay. (d) 
Std of time delay.
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for adaptive signal tracking sample by sample. Moreover, unlike the EKF, which depends 
on covariance of observation noise in the case of nonstationarities, the wave-based method 
evaluates the performance of different EKFs and uses the most probable one to match the state 
variables to the observation. Another point of interest is time delay improvement of the wave-
based model that ensures early detection of bradycardia, which is an important factor for the 
algorithm of a monitoring device in an NICU. A simple thresholding approach takes a couple 
of seconds detecting a rise in RR signal and mainly uses the amplitude, yet the proposed meth-
ods are expected to learn the dynamic and to detect the change in observation earlier with bet-
ter precision. The results show that our proposed wave-based method is capable of detecting 
AB faster than the other methods such as (Masoudi et al 2013, Altuve et al 2015).

In summary, the main contribution of this work is summarized as: (1) the introduction of 
a wave-based state space formulation according to the SEKF for detecting bradycardia, and 
(2) the derivation of a linear R-based model according to the previously proposed SKF for 
detecting the bradycardia from RR signal. Future works include incorporating AR parameter 
estimation methods instead of the ML approach for the training procedure in both proposed 
approaches. In the wave-based approach, we can use other dynamical models for ECG wave-
forms. Other feature signals (like duration and the amplitude of QRS complex) rather than RR 
signal can be extracted and, then, an SKF model similar to the R-based approach can be used 
for processing and AB detection. Furthermore, we can also use multidimensional observa-
tion including RR signal and other features. Higher orders for AR models may result in better 
detection performance although they make the algorithm more complex.

Appendix A

A.1.  EKF matrices derivation
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where I3 is the 3-dimension identity matrix.
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A.2.  Common functions in SKF and EKF
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During the last stage, moment matching is performed for reduction of the mixture compo-
nents to N Gaussians by the following relations

Collapsing: reducing the number of Gaussian kernels.
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