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Abstract—In this paper, we propose a Jacobi-like Deflationary
ICA algorithm, named JDICA. More particularly, while a projec-
tion-based deflation scheme inspired by Delfosse and Loubaton’s
ICA technique ( ) is used, a Jacobi-like optimization strategy
is proposed in order to maximize a fourth order cumulant-based
contrast built from whitened observations. Experimental results
obtained from simulated epileptic EEG data mixed with a real
muscular activity and from the comparison in terms of perfor-
mance and numerical complexity with the FastICA, RobustICA
and algorithms, show that the proposed algorithm offers
the best trade-off between performance and numerical complexity
when a low number of electrodes is available.

Index Terms—Deflation, denoising, ElectroEncephaloGraphy,
higher order statistics, independent component analysis, interictal
epileptic data, Jacobi-like optimization.

I. INTRODUCTION

I NDEPENDENT COMPONENT ANALYSIS (ICA) [8],
[9] is a very useful tool in signal processing especially to

process biomedical signals such as ElectroEncephaloGraphic
(EEG) data [1]–[5]. The ICA problem consists of retrieving
unobserved realizations of a -dimensional random vector

from observed realizations of an -dimen-
sional random vector that can linearly be
modeled as follows:

(1)

where represents an -dimensional noise independent of .
The fundamental assumption of ICA is that the unknown
random variables (called sources) are statistically indepen-
dent, i.e. their joint Probability Density Function (PDF) can be
factorized as the product of their marginal PDFs.
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ICA algorithms can be divided into two groups: i) “joint” or
“symmetric” approaches jointly extract the independent compo-
nents ii) “deflationary” techniques estimate sources one by one.
Joint algorithms seem to converge to the expected solution in
practice, but no theoretical result is available. On the other hand,
the convergence of most of deflationary algorithms have been
proved analytically [4], [6], [10]. In addition, in deflationary al-
gorithms, a penalty term can be added to the contrast function [7]
to force the algorithm to extract the sources of interest during the
early steps. Besides when the number of all sources largely en-
compasses the number of sources of interest, the computational
complexity of the deflationary algorithms is greatly reduced.
In this paper, we propose an efficient Jacobi-like Deflationary

ICA algorithm, called JDICA, based on second and Fourth Order
(FO) statistics. The deflation procedure of our algorithm is in-
spired by [4]. The gradient-based ICA algorithm (called
throughout this paper) proposed in [4], estimates the sources
one by one using a smart projection-based deflation scheme.
According to its gradient-based structure, the step size must be
precisely chosen to guarantee acceptable results, especially with
noisy data. A multi-initialization procedure can even be neces-
sary in some practical contexts. In order to overcome these draw-
backs, we propose a Jacobi-like algorithm to maximize the con-
trast function computed from the FO cumulants of the whitened
observations.
We have examined the effectiveness of JDICA in denoising

of simulated interictal epileptic data when a low number of
electrodes is available as for children. The comparison in terms
of performance and numerical complexity with classical defla-
tionary ICA algorithms, namely FastICA [6], RobustICA [10]
and shows that JDICA offers a better accuracy than
and a lower numerical complexity thanFastICAandRobustICA.

II. METHODOLOGY

We assume that we have some realizations of the real-valued
random vector (1). Since JDICA, like a large group of ICA
algorithms, needs a prewhitening step [4] without loss of gen-
erality, we assume that vector denotes the prewhitened obser-
vation random vector and matrix is a
real-valued orthogonal mixing matrix. The aim of our method is
then to estimate the columns of and the corresponding
sources such that . More particularly, vector can be
identified by maximizing the following contrast function:

(2)

with respect to where is the FO marginal cumulant
of . The advantage of defining such a contrast func-
tion is that the arguments of the local maxima of on the unit
sphere are the vectors [4]. This property ensures
our maximization (2) to converge to one column of the matrix
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. Consequently one of the sources is extracted. Thus a projec-
tion deflation procedure is applied to subtract the contribution of
the extracted source from the mixture. These two steps require
a particular parametrization of the elements of the unit sphere
which is given by:
Lemma 1: Each unit norm column vector whose last

component is strictly positive can be represented as the last
column of an orthogonal matrix given by:

(3)

where the real-valued elements of
correspond to tangents of uniquely defined angles belonging to
] [and is a Givens rotation of size
derived from an identity matrix for which the -th, -th,

-th, -th components are replaced with ,
, and , respectively.

Proof derives from [4, lemma 2.2] by expressing and
as a function of . This parametrization differs

from that of [4] and allows us both to reformulate the contrast (2)
as a rational function and to consider other optimization strate-
gies such as a Jacobi-like procedure.
To extract the first source, we then propose to compute a ma-

trix such that its last column, , maximizes the con-
trast function (2) with respect to . Our Jacobi-like optimization
procedure consists of decomposing as a product of
elementary Givens rotations and of sequentially iden-
tifying the corresponding parameters . The -di-
mensional optimization problem is thus replaced with se-
quential mono-dimensional optimization problems. In practice,
several sweeps of the parameters are necessary to achieve
convergence. More precisely, let us consider the -th mono-di-
mensional maximization problem of a sweep of our Jacobi-like
procedure. It consists in computing matrix defined by

such that its last column, ,
maximizes the contrast function (2), where is the product
of all the elementary Givens rotations estimated previously.
Denoting the last column of by

, the last column of can be written as:

(4)

where:

(5)

(6)

It appears that only the -th and -th components of
depend on . Then, we set the derivative of the contrast function
with respect to equal to zero to find the appropriate value:

(7)

which results in simply vanishing .
Now using the multi-linearity property of cumulants, it is

shown that can be written as follows:

(8)

where the coefficients are defined in appendix. Consequently,
by computing the derivative of (8), we obtain:

(9)

where the coefficients and are given in appendix. Equa-
tion (9) can be simplified to an 8-th degree polynomial equation
as follows:

(10)

By rooting (10), 8 solutions are obtained. Then we calcu-
late the contrast function (2) for all real-valued roots and we
choose the root which maximizes it. Eventually, we calcu-
late the matrices and . This procedure
is performed iteratively for all and for sev-
eral sweeps until convergence. At this stage, the first column
of the estimated mixing matrix is given by the last update of

and the first source is estimated by .
After estimating the first source, we remove its contribution

from the observations by projecting the observations onto the
subspace orthogonal to that spanned by by computing

where is a projection matrix built by
stacking vertically the first rows of the last update of

. Now to estimate the other sources, the same pro-
cedure should be done by using equations (4) to (10). The only
difference is that the vector of observations should be replaced
by the observation of reduced dimension in
order to extract the -th source.
Note that the estimation of FO cumulants is not required at

each iteration of our Jacobi-like procedure. The FO cumu-
lants of vector can be estimated at the begin-
ning of the procedure and sorted in a matrix, ,
called quadricovariance [1]. The FO cumulants
of vector can then be derived using the following formula

where:

(11)

with the Kronecker product operator.

III. NUMERICAL COMPLEXITY

In this section, we analyze the numerical complexity of the
proposed algorithm in terms of real-valued floating point opera-
tions (flops). A flop corresponds to a multiplication followed by
an addition, but in practice only the number of multiplications
is computed. In the following computations, , and are
the number of sources, the number of observation channels and
the number of time samples, respectively.

is equal to the number of free entries in a fourth
order cumulant tensor of dimension enjoying all symmetries.

, is the number of flops
required to perform spatial whitening. is the complexity re-
quired to compute the roots of a real 8-th degree polynomial by
using the companion matrix technique (we may take
flops). As a result the proposed ICA algorithm requires

flops to extract all sources.
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Fig. 1. Average Error as a function of flops obtained by varying the number of
estimated sources with dB.

IV. PERFORMANCE ANALYSIS ON SIMULATED DATA

A. Data Generation

The simulated epileptic EEG was generated using a realistic
model developped in our team [3].We built a mesh of the cortical
surface from a 3DMRI T1 image of a subject (BrainVisa, SHFJ,
Orsay, France). This mesh is composed of 40500 triangles of
mean surface . A current dipole is placed at the barycenter
of each triangle and oriented orthogonally to the triangle surface,
leading to a field of current dipoles. From this mesh, dis-
tributed sources, called “patches”, generating interictal spikes,
are defined. Each patch is composed of 100 dipole sources to
which we assigned hyper-synchronous spike-like activities gen-
erated from amodel of neuronal populations [3]. From this setup
and considering 12 electrodes, namely Fp1, Fp2, C3, C4, T3,
T4, O1, O2, F7, F8, T5 and T6, the forward problem was then
calculated using a realistic head model made of three nested ho-
mogeneous volumes shaping the brain, the skull and the scalp
(ASA, ANT, Enschede, Netherlands). The aforementioned elec-
trodes are commonly used to record EEG in pediatric patients.
The epileptic activity at the level of these electrodes, namely
the signal of interest, was then obtained by solving the forward
problem using a realistic head model and the Boundary Element
Method (BEM). In this paper, we considered a single patch lo-
calized in the left superior temporal gyrus and 50 Monte Carlo
simulations were generated. In addition a 12-dimensional signal
of non-interest extracted from real 12-channel EEG and com-
posed of muscle activity, background EEG and instrument noise
was added to each trial with a specified Signal-to-Noise Ratio
(SNR).

B. Results

We compared the performance of the proposed JDICA algo-
rithm with three deflationary ICA algorithms, namely FastICA,
RobustICA, . Note that, unlike the three other algorithms,
RobustICA does not require any prewhitening. The performance
was computed as a function of computational complexity using
the Normalized Mean-Squared Error (NMSE) as defined in [1].
In our experiment, the data length is fixed to 5120 samples and
the SNR value is dB. By varying the number of estimated
sources in the range of 2 to 12, we make vary the computa-
tional complexity of each algorithm. Fig. 1 shows then the av-
erage Error as a function of flops at the output of the four al-
gorithms. This figure illustrates that the JDICA algorithm offers
the best compromise between performance and numerical com-
plexity when a low number of electrodes is used even if Robus-
tICA converges faster. It implies that one iteration of RobustICA
requires more flops than one sweep of JDICA.

Fig. 2. Denoising of real interictal spikes data (a) a noise-free interictal spikes,
(b) an epoch including spikes hidden in muscle activity and (c) EEG denoised
by JDICA. The source localization results at the output of 4-ExSo-MUSIC are
depicted at the bottom of each column.

V. APPLICATION TO REAL DATA
In this section we evaluate JDICA in the case of real data.

The JDICA algorithm was applied to denoise interictal spikes
obtained from a patient suffering from drug-resistant partial
epilepsy. Scalp-EEG data were acquired from 12 electrodes at
a sampling frequency of 256 Hz. These data were reviewed
in order to isolate an epoch of clean data containing interictal
spikes (Fig. 2(a)) and an epoch of noisy EEG containing spikes
hidden by muscle activity of high amplitude (Fig. 2(b)).
The same procedure as for simulated data was applied to re-

construct the denoised EEG signals by using JDICA (Fig. 2(c)).
Since we do not know the ground truth to evaluate the perfor-
mance of the proposed method, a source localization process
was performed on the original clean signal (considered as a ref-
erence), on the noisy data, as well as on data denoised by JDICA.
The recent 4-ExSo-MUSIC algorithm [2] was used to achieve
source localization. As shown in Fig. 2, the epileptic spikes max-
imal at temporal and frontotemporal electrodes (T4, F8) on clean
data are retrieved at the same electrodes on denoised data. In
addition, the muscle activity visible on noisy data is strongly
reduced by the JDICA procedure at F8 and T4 and almost en-
tirely removed at other channels. Source localization (bottom of
Fig. 2) of clean (2a) and of denoised spikes (2c) is similar (right
anterior temporal) and consistent with the patient pathology. For
noisy data, the spike source is incorrectly localized.

VI. CONCLUSION
In this paper, we proposed a new deflationary ICA algorithm

based on a Jacobi-like optimization procedure to separate inde-
pendent sources. We examined the effectiveness of the proposed
algorithm in denoising of simulated pediatric epileptic data. The
comparison in terms of performance and numerical complexity
with the FastICA, RobustICA and algorithms shows that
the proposed algorithm offers the best trade-off between perfor-
mance and numerical complexity when a low number of elec-
trodes is available, such as in pediatric patients. We also exam-
ined the feasibility of JDICA in the case of real interictal data
and showed that the JDICA algorithm is able to properly denoise
real data as well as simulated ones. As a part of our future work,
we will examine the proposed algorithm with higher number of
electrodes which may lead to different results.
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