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Utility of a Nonlinear Joint Dynamical Framework to
Model a Pair of Coupled Cardiovascular Signals

Omid Sayadi, Member, IEEE, and Mohammad Bagher Shamsollahi, Member, IEEE

Abstract—We have recently proposed a correlated model to pro-
vide a Gaussian mixture representation of the cardiovascular sig-
nals, with promising results in identifying rhythm disturbances.
The approach provides a transformation of the data into a set of
integrable Gaussians distributed over time. Looking into the model
from a new joint modeling perspective, it is capable of assembling a
filtered estimation, and can be used to derive temporal information
of the waveforms. In this paper, we present a step-by-step deriva-
tion of the joint model putting correlation assumptions together
to conclude a minimal joint description for a pair of ECG–ABP
signals. We then probe novel applications of this model, includ-
ing Kalman filter based denoising and fiducial point detection. In
particular, we use the joint model for denoising and employ the de-
noised signals for pulse transit time (PTT) estimation. We analyzed
more than 70 h of data from 76 patients from the MIMIC database
to illustrate the accuracy of the algorithm. We have found that this
method can be effectively used for robust joint ECG–ABP noise
suppression, with mean signal-to-noise ratio (SNR) improvement
up to 23.2 (12.0) dB and weighted diagnostic distortion measures
as low as 2.1 (3.3)% for artificial (real) noises, respectively. In ad-
dition, we have estimated the error distributions for QT interval,
systolic and diastolic blood pressure before and after filtering to
demonstrate the maximal preservation of morphological features
(ΔQT: mean ± std = 2.2 ± 6.1 ms; ΔSBP: mean ± std = 2.3 ±
1.9 mmHg; ΔDBP: mean ± std = 1.9 ± 1.4 mmHg). Finally, we
have been able to present a systematic approach for robust PTT
estimation (r = 0.98, p < 0.001, mean ± std of error = −0.26 ±
2.93 ms). These findings may have important implications for reli-
able monitoring and estimation of clinically important features in
clinical settings. In conclusion, the proposed framework opens the
door to the possibility of deploying a hybrid system that integrates
these algorithmic approaches for index estimation and filtering
scenarios with high output SNRs and low distortion.

Index Terms—Arterial blood pressure (ABP), electrocardio-
gram, extended Kalman filter, Gaussian mixture model (GMM),
joint dynamical model, pulse transit time (PTT).

I. INTRODUCTION

I T is known that cardiovascular (CV) signals contain parame-
ters of clinical significance and hold beat-to-beat variability

which reflects the interaction between the disturbances on CV
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variables and the regulating system’s response [1]. The pivotal
role of neural mechanisms in CV pathophysiology has been pos-
tulated over the past few decades. Studies have shown that differ-
ent physiological conditions and pathological disorders perturb
the CV signals [2]. In the light of pre-existing studies [3]–[7]
demonstrating the role of the autonomic nervous system (ANS)
in the pathogenesis of CV diseases, the joint study of ECG, and
specifically the heart rate variability (HRV), and arterial blood
pressure (ABP) may hold promise as a method to assess the
baroreceptor reflex sensitivity as a measure of the integrity of
the ANS [3]. For this reason, the regulatory mechanisms that
underlie CV beat-to-beat variability should be approached in a
joint dynamic manner within the framework of the sympatho-
vagal interactions that govern the instantaneous performance of
the CV system [4], [5].

To date, ECG analysis is most commonly used as the first
tool for initial screening and diagnosis of CV diseases in clin-
ical setting. As a noninvasive and low-cost method, ECG pro-
vides valuable clinical information regarding the rate, timing,
and regularity of the heart and, therefore, remains the benchmark
method for cardiac arrhythmia detection [8]. However, commer-
cial monitoring systems often include the capability to monitor
several pressure signals, heart rate (HR), and the statistics of
pressure waveforms, but few can reliably estimate components
such as pulse pressure variation, pulse transit time (PTT), or
signal quality measures [9].

Despite the success of statistic and dynamic modeling ap-
proaches toward ECG analysis, they have not been widely de-
ployed to other CV signals, due to the unavailability of dynamic
models for these signals. In a pioneering work, Clifford and
McSharry [10], [11] proposed an artificial model for generating
realistic ECG, ABP, and respiration signals using a Gaussian
mixture model (GMM). The model included a respiratory sig-
nal to modulate the ECG amplitude and the high frequency of
the pulse-to-pulse interval. A statistical model of CV signals
was also proposed which used mixtures of sinusoidal functions
to present some parameters of clinical interest relevant to ABP,
pulse oximetry, and intracranial pressure [12]. Because of the
statistical nature of the algorithm introduced in [12], neither the
morphology information nor the joint interdependences of CV
signals were taken into consideration in this model; therefore,
the method could only track meaningful components of the CV
signals based on an autoregressive formulation [12].

The concept of modeling coupled CV signals in a joint
framework depends on the ability to formulate their timing and
morphology, as well as their spatiotemporal relations. The afore-
mentioned coupling which is present in any subset of the elec-
tromechanical cardiac signals occurs in the casual direction from
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the SA node, reflecting the correlation of the pressure signals
with the HRV (mechanical path), while the coupling on the
reverse casual direction is due to the baroreceptor response
(baroreflex path). In either case, the electrical activity can be
characterized as to be correlated to the pulsatile mechanical
pressure signals, since they all originate from the same source.
We have recently proposed a novel multidimensional generic
model to provide adaptive estimations of the CV signals [13].
The estimations were used for polar phase analysis as well as
instantaneous quality characterization for determining cardiac
abnormalities. Furthermore, we have recently demonstrated the
feasibility to model the temporal dynamics of coupled CV sig-
nals for realistic signal generation [14]. Following pioneering
works of [15] and [16], in which the use of hidden Markov
model (HMM) to sequence a series of GMM-based beat types
were introduced, we proposed the use of a joint GMM represen-
tation together with an ergodic HMM for generating synthesized
coupled CV signals with different beat types [14].

In this paper, we extend the joint modeling concept intro-
duced in [14] to present a state-space model to be applied to
coupled Bayesian estimation procedures. We provide a step-by-
step model formulation and study the relation between temporal
dependences and space dimension, in details. Our specific aims
are summarized as follows.

1) Aim1: to validate a minimal order joint framework for
Kalman filtering of a pair of CV signals (ECG and ABP).

2) Aim2: to propose a model-based algorithmic approach for
robust estimation of PTT using the denoised estimations.

Unlike our recent work [13] where an N -dimensional joint
model was introduced to obtain fidelity signals for abnormal-
ity verification, the model introduced in this paper is used for
extended Kalman filter (EKF)-based joint tracking and tem-
poral information estimation, which are two new applications
of the joint framework. This paper is organized as follows. In
Section II, we present the methods to construct the joint model,
and explain its applications to denoising and PTT estimation.
Study results are provided in Section III. Finally, discussion and
conclusion are provided in Section IV.

II. METHODS

In this section, the joint dynamical state-space model is in-
troduced and our proposed algorithms for denoising and PTT
estimation are explained in detail.

A. Model Design

As an early attempt toward dynamic modeling of the car-
diac signals, McSharry et al. [17] introduced the electrographic
dynamical model where a set of time-varying differential mo-
tion equations was used to generate a synthetic ECG signal. A
semiperiodic circular limit cycle was used to account for the
quasi-periodicity with an arbitrary number of basic functions at
different turning points to reproduce the PQRST characteristic
waveforms based on a GMM representation with amplitude αi ,

angular spread bi , and angular difference Δθi , given by

GMM(αi, bi ,Δθi, k) =
∑

i∈{P,Q,R,S,T }

αik

b2
ik

Δθi exp
(
−

Δθ2
ik

2b2
ik

)

(1)
where θi describes the angular PQRST peak locations and
Δθik

= (ϕk − θik
) mod (2π) with ϕ being the wrapped phase

variable [18]. The polar equations of motion, discretized by
sampling period, are given by two ordinary difference [19]

{
ϕk+1 = (ϕk + ωkδ)mod(2π)

sk+1 = sk − ωkδ GMM (αi, bi ,Δθi, k) + ηk

(2)

where ω is the beat-to-beat angular frequency of the RR inter-
val, which is linearly related to the phase ϕ. The magnitudinal
component of the dynamical system s represents the ECG sig-
nal with baseline perturbation η. Equation (2) can be viewed
as a state-space formulation with state variables ϕ and s. As
suggested in [19], an artificial phase φ may be assigned to the
ECG observations to form the following observation equation:

{
φk = ϕk + u1k

zk = sk + u2k

(3)

where φ and z are the phase observation and the ECG measure-
ment, respectively, and u1 and u2 are observation noises of the
ECG in the phase and spatial domains.

An immediate extension of this model would be a realistic
sketch for the dynamics of a coupled pair of CV signals that can
track changes over time. The advantage of such an approach
is that it can assemble a filtered version of the signals, and
the filter outputs can be used to derive temporal information
of the waveforms. Furthermore, the quality of the estimations
can be used to obtain a confidence measure to identify rhythm
changes [13], [20]. Without loss of generality, we assume ABP
as the second paired CV signal to construct the model; however,
the same approach may be applied to any other bandlimited CV
signals with a quasi-periodic pattern originating from cardiac
pulsation.

In order to procreate a joint formulation, we must translate
the variables of interest into meaningful state variables, design
appropriate state evolution function f and observation relation
g to express the relationship between the observed signals y

k
and states xk in the form of

{
xk+1 = f(xk , wk , k)

y
k

= g(xk , vk , k)
(4)

and establish efficient relations between the parameters of the
model to incorporate known physiologic variables. The details
of this concept will be addressed next.

1) Combination Idea With Dimension Preservation: ECG
signal is generated by electrical depolarization and repolariza-
tion of atria and ventricles, while ABP signal reflects mechani-
cal interactions of contracting cardiac muscles with a vascular
bed, and is characterized by a lower frequency content than
the ECG. Although ECG and ABP are generated by differ-
ent mechanisms, however, they are strictly coupled signals and
the temporal morphological dynamics can be characterized us-
ing the same generic model with different parameters. Hence,
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a straightforward extension of (2) would be to use the same
set of dynamical equations with different GMM parameters for
each individual CV signal. This approach designates two sets of
equations with distinct parameters to each signal, and is capa-
ble of describing the process equations of paired signals in the
form of a general diagonal state-space model with the following
components:

xk = [ϕECG
k sECG

k ϕABP
k sABP

k ]′

y
k

= [φECG
k zECG

k φABP
k zABP

k ]′

wk = [αECG
ik

, bECG
ik

, θECG
ik

, ωECG
k , ηECG

k , αABP
ik

,

bABP
ik

, θABP
ik

, ωABP
k , ηABP

k ]′

vk = [uECG
1k

uECG
2k

uABP
1k

uABP
2k

]′ (5)

where wk is the process noise vector with covariance matrix Q =
E{(wk − w̄k )(wk − w̄k )′} and vk is the measurement noise
vector with covariance matrix R = E{(vk − v̄k )(vk − v̄k )′}.
The diagonal model has redundancy; therefore, we need to es-
tablish the correlation between the parameters of the model.
This relationship can be endowed either with respect to the spa-
tiotemporal locations of specific points in the signals, or even
by considering the intrinsic consequential dependences of the
signals. To devise a minimal order joint model, we present the
following cases.

a) Equal angular frequency: The assumption of equal an-
gular frequency for both ECG and ABP signals is valid if
the HR affects the tachograms of these signals, equally [21].
This is generally true due to the same time-point-based modula-
tions of the pulse wave velocity and of the cardiac contractility.
Assuming ωECG = ωABP , the state-space equations remain
unchanged, while the process noise vector reduces to wk =
[αECG

ik
, bECG

ik
, θECG

ik
, ηECG

k , αABP
ik

, bABP
ik

, θABP
ik

, ηABP
k , ωk ]′.

b) Identical Gaussian kernel locations: Mathematically
speaking, it is possible to model an individual CV signal using
a finite number of Gaussian kernels. In fact, a GMM represen-
tation can effectively model the ECG signal, and if applied with
different amplitudes and spreads but with the same locations
(θECG

i = θABP
i , i ∈ {P,Q,R, S, T}), it can also provide a good

fit for an ABP signal. This assumption keeps the state-
space equations unchanged, while the process noise vec-
tor reduces to wk = [αECG

ik
, bECG

ik
, ωECG

k , ηECG
k , αABP

ik
, bABP

ik
,

ωABP
k , ηABP

k , θik
]′. However, since the angular locations of both

the ECG and ABP Gaussian kernels are process noise compo-
nents (5), their corresponding values would not be estimated
during the filtering procedure. Accordingly, we can keep the
process noise vector unchanged, and instead assume the same
covariance values for all angular locations.

2) Combination Idea With Dimension Reduction: The pre-
viously described approach toward joint modeling was based on
relating the process noise parameters which imposed no changes
to the state variables and hence preserved the space dimension.
However, a more accurate approach is to find relations between
the state variables to obtain a coupled state-space model with
reduced dimension.

Fig. 1. Representative example of real paired ECG (solid black) and ABP
(solid gray) records, with the corresponding artificial wrapped phase signals
(φECG : dashed, φABP : dotted). The first R peaks for ECG and ABP signals
are shown with a filled circle. RR interval for the ECG signal as well as the
temporal lag (for both ΔR and Δφ) is shown with double-sided arrows.

Each heartbeat is initiated by a rhythmic pacemaker within
the heart and is conducted throughout the organ to produce a
coordinated contraction. The effect of the electrical impulse is
first seen on the ECG signal, and after a specific delay, is ob-
served in the ABP signal [2], [5]. Accordingly, the timing of
these signals could be controlled by a single cycle (referenced
to ECG and delayed for ABP). On the other hand, and as per
stationary and often sedated conditions of patients in a clini-
cal setting, the HRs remain quasi-periodic signals with slowly
varying amplitudes, morphologies, and even fundamental fre-
quencies. This opens the door to the possibility of modeling
the pseudo-periodic behavior of the cardiac dipole as it evolves
during the cardiac cycle [19], [22].

To embed the periodicity information of both coupled signals
into a single phase variable, we proposed a phase relationship
between the corresponding state variables of the ECG and ABP
signals [14]. We had visually observed that the RR tachogram
of ABP signal is a shifted variant of its ECG counterpart, due to
the physiological delay in the occurrences of RECG and RABP .
Hence, it is possible to translate the shift between RECG and
RABP into a dynamic lag which relates the corresponding phase
parameters of ECG and ABP signals. This idea is demonstrated
in Fig. 1 where the phase delay, Δφ, is equal to the angular
distance between the R peaks of the signals, ΔR. The reason
is because each phase observation signal is referenced to its
corresponding R peak. Accordingly, the phase variables can
effectively be related as

ϕABP
k = ϕECG

k − ΔθRk
(6)

where ΔθRk
= θABP

Rk
− θECG

Rk
(see Fig. 1). It is worth noting that

ΔR is an adaptive term which dynamically changes over time
due the HRV [23]. Since the artificial wrapped phase signals are
referenced to the corresponding R peak, θECG

Rk
may therefore

point to a zero crossing for the ECG phase signal [19], as shown
in Fig. 1. Substituting θECG

Rk
= 0 in (6) yields the following

fundamental inter-dependence

ϕABP
k = ϕECG

k − θABP
Rk

(7)

Equation (7) provides one possible explanation for the de-
layed patterns of coupled ECG–ABP pairs, based on which the
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timing and rates of the signal components are controlled by
one phase variable and the second phase variable becomes re-
dundant. However, the second and fourth state variables which
accounts for the morphology changes of the signals remain
unchanged. Although the phase interaction (7) does not cover
the full range of correlations between CV signals, it is sufficient
to define a minimal joint representation to relate the time cycle
of the pulsatile events in ECG and ABP.

In accordance with the proposed idea in Section II-A1b, it
is possible to assign the same covariance values to the angular
locations of the GMM kernels, i.e., θECG

i and θABP
i . By sub-

stituting (7) in the diagonal model and excluding the redundant
ABP phase variable, the correlated joint dynamical state-space
representation with reduced number of state variables and noise
parameters is given by

Process equation:

⎧
⎪⎨

⎪⎩

ϕECG
k+1 = (ϕECG

k + ωkδ)mod(2π)

sECG
k+1 =sECG

k − ωkδ GMM (αECG
i , bECG

i , ΔθECG
i , k) + ηECG

k

sABP
k+1 =sABP

k − ωkδ GMM (αABP
i , bABP

i , ΔθABP
i , k) + ηABP

k
(8)

Observation equation:
⎧
⎪⎨

⎪⎩

φECG
k = ϕECG

k + uECG
1k

zECG
k = sECG

k + uECG
2k

zABP
k = sABP

k + uABP
2k

(9)

where

ΔθECG
ik

= (ϕECG
k − θECG

ik
) mod (2π)

ΔθABP
ik

= (ϕABP
k − θABP

ik
) mod (2π).

(10)

In order to exclude the redundant ABP phase variable, we
use the correlative interdependence of ECG–ABP pairs intro-
duced in (7). Substituting (7) into (10) simplifies the angular
differences to

ΔθECG
ik

= (ϕECG
k − θECG

ik
) mod (2π)

ΔθABP
ik

= (ϕECG
k − θABP

ik
− θABP

Rk
) mod (2π).

(11)

The proposed joint state-space model, (8) and (9), may be
described as a discrete map, where the quasi-periodic evolution
of the cardiac cycle is reflected by the movement of the trajec-
tories around the attracting limit cycle in phase plane, while the
interbeat variation is reproduced using its motion in terms of
GMM parameters. These two basic components, i.e., amplitude
and phase, are the essential variables of a dynamic state space to
describe the temporal characteristics of correlated CV signals.
The vector components of the new model are redefined as

xk = [ϕECG
k sECG

k sABP
k ]′

y
k

= [φECG
k zECG

k zABP
k ]′

wk = [αECG
ik

, bECG
ik

, θECG
ik

, αABP
ik

, bABP
ik

, θABP
ik

,

ηECG
k , ηABP

k , ωk ]′

vk = [uECG
1k

uECG
2k

uABP
2k

]′. (12)

B. Denoising

The CV records of the biopotentials associated with the con-
tractions of the heart muscle provide useful information for the
detection, diagnosis, and treatment of cardiac and CV diseases.
However, these signals are usually corrupted with unwanted in-
terference, generally referred to as noise or artifact. Since the
interference is often inband, time-coincident, or similar to car-
diac activity, accurate information extraction requires effective
characterization of the constituent waveform morphologies [24].
In general, the correct choice of the filtering technique depends
not only on the temporal and spectral characteristics of the noise
and signal, but also on the application. Having proposed a state-
space formulation and as an attempt to estimate the hidden state
of this system using the set of observation time series, the state-
space model-based Bayesian filtering approach and in particular,
the Kalman filter may therefore serve as an efficient denoising
technique. We use the EKF as an extension of the traditional
Kalman filter that can be applied to a nonlinear model (8) [25].
In order to employ the EKF, the nonlinear equations of motion
must be linearized with respect to the state variables and the
noise variables [26]. By defining
⎧
⎪⎨

⎪⎩

ϕECG
k+1 =F0(ϕECG

k , ωk , k)

sECG
k+1 =F1(sECG

k , ϕECG
k , ωk , αECG

i , bECG
i , θECG

i , ηECG
k , k)

sABP
k+1 =F2(sABP

k , ϕECG
k , ωk , αABP

i , bABP
i , θABP

i , ηABP
k , k)

(13)
the linearized model with respect to the process components
may be expressed as

∂F0

∂ω
= δ

∂F1

∂ηECG
i

=
∂F2

∂ηABP
i

= 1

∂F0

∂αj
i

=
∂F0

∂bj
i

=
∂F0

∂θj
i

=
∂F0

∂ηj
i

= 0 j ∈ {ECG,ABP}

∂F�

∂ω
= −δ GMM (αj

i , b
j
i ,Δθj

i , k)

∂F�

∂αj
i

= −δ ωk
Δθj

i

(bj
i )2

exp

(
−1

2
(
Δθj

i

bj
i

)2

)

∂F�

∂bj
i

= 2δ ωk
αj

i Δθj
i

(bj
i )3

(
1 − 1

2
(
Δθj

i

bj
i

)2

)
exp

(
−1

2
(
Δθj

i

bj
i

)2

)

∂F�

∂θj
i

= δ ωk
αj

i

(bj
i )2

⎛

⎝1 −
(

Δθj
i

bj
i

)2
⎞

⎠ exp

⎛

⎝−1
2

(
Δθj

i

bj
i

)2
⎞

⎠

(14)

where � = 1 for j = ECG and � = 2 for j = ABP. The lineariza-
tion of (8) with respect to the state variables yields

∂F0

∂sECG
k

=
∂F0

∂sABP
k

= 0
∂F0

∂ϕECG
k

=
∂F1

∂sECG
k

=
∂F2

∂sABP
k

= 1

∂F�

∂ϕj
k

= −δωk GMM

⎛

⎝αj
i

⎛

⎝1 −
(

Δθj
i

bj
i

)2
⎞

⎠ , bj
i ,Δθj

i , k

⎞

⎠ .

(15)
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Having formed the nonlinear formulation (8) with the de-
rived linearized model (14) and (15), the time propagation and
the measurement propagation equations of the joint EKF (JEKF)
may be applied to obtain the state estimations ŝECG and ŝABP ,
which are regarded as the denoised version of the input sig-
nals [26], [27]. To improve the filtering performance, it is also
possible to use the information of future observations in the es-
timation procedure to give better estimates of the current state,
resulting in a joint extended Kalman smoother (JEKS). Fur-
ther details regarding the model-based Kalman filtering may be
found in [13], [19], and [20].

C. CV Signal Segmentation and PTT Estimation

Since we have a joint model, a related application domain
would be to extract the concurrent feature location and segmen-
tation of ECG-ABP signals using the EKF estimations.

As an extension of previous works on ECG segmentation
[28]–[31], Gaussian descriptors may be used to locate the char-
acteristic points of paired ECG–ABP records, since they explic-
itly describe the amplitude ai , width bi , and location θi of each
point in the ECG and ABP waveforms. However, this would
require defining a new model with additional state variables.
To utilize the previously introduced minimal order model (see
Section II-A1), we propose an alternate approach to employ the
JEKF estimation for point detection. The following application
example demonstrates how well the JEKF can track the param-
eters of interest, such as PTT, using the denoised estimations.

As a popular arterial stiffness marker, PTT is inversely re-
lated to the pulse wave velocity down the artery which is known
to be influenced by ABP, HR, arterial compliance, and hence
age [32]. PTT has potential clinical use in measurement of res-
piratory effort, as well as detection of microarousals [33]. Since
the 1990s, it has been used to measure sympathetic activation
during upper airway obstruction in sleep [33]. Over the past few
years, there seems general consensus in the notion that PTT re-
flects sympathetic tone. Some studies reported that PTT changes
with anesthetic depth [34], [35], while some others suggest that
PTT reflects autonomic tone and may function as a surrogate
marker of ABP [35], [36]. Furthermore, PTT has shown to
respond to nociceptive stimulation independently of HR [35].
Most recently, PTT has been used as a marker of changes in
sympathetic vasoconstriction and a quick predictor of axillary
brachial plexus block [37].

It is generally accepted that as ABP falls, tension in the arterial
wall falls and the PTT increases, and vice versa. The systolic
(peak) ABP has therefore been linearly coupled to the mean
HR, and hence inversely to the PTT [38]. PTT is proportional
to the time between the peak of the QRS complex of the ECG
signal and the start of the reflected dominant wave in ABP signal
(points RECG and QABP in Fig. 1). Following [10], we define

PTT = 2π/(θABP
Q − θECG

R ). (16)

One way to have an estimate of the angular locations θ̂ABP
Q

and θ̂ECG
R is to use our previously developed concept [30] to

incorporate autoregressive dynamics for the process noise com-
ponents. Alternatively, we propose to use the phase information

of the correlated ECG–ABP pair, as provided by the estimated
phase signal ϕ̂ECG

K . Since RECG is assumed to be located at
θR = 0 during the phase signal construction, the preceding
waves (P and Q) and the proceeding waves (S and T) will occur
in the range of [−π, 0] and [0, +π], respectively. Consequently,
RECG will be located by zero crossing detection of the esti-
mated phase signal ϕ̂ECG

k . Moreover, the location of QABP will
be determined by a max-min search of the ABP wrapped-phase
in the range of [−π, 0]. However, since the ABP phase is related
to the ECG phase according to (7), it is possible to perform a
max-min search for the estimated ECG wrapped-phase ϕ̂ECG

k ,
in the range of [0, +π], and assign the first detected point to the
QABP . The proposed PTT estimation procedure is summarized
in Fig. 2. It should also be noted that to have an explicit model
of PTT, elaborate explicit delays should have been built into the
system to account for the electromechanical delay between the
occurrence of R-wave on ECG and the opening of the aortic
valve. This delay, often referred to as the left ventricular iso-
metric contraction time, may be considered by incorporating the
pre-ejection period and the ejection time [10].

III. RESULTS

In this section, the versatility and utility of our proposed
framework for the joint processing of ECG–ABP pair are
demonstrated. The Kalman estimator is used for noise suppres-
sion and correlated features extraction. The proposed algorithm
was implemented in MATLAB and was tested on a 2.67-GHz
Core i7 machine. For performance evaluation, we have used
the MIMIC database [39], [40], which is a collection of mul-
tiparameter recordings of ICU patients and the MIT-BIH noise
stress test database [40], [41].

A. Kalman-Based Joint Filtering of ECG and ABP Signals

Fig. 3 presents a qualitative demonstration of model-based
noise reduction in the presence of different types of artifacts
including white and real noises. We see that the joint EKF
estimations have admirably tracked the clean signal morphol-
ogy, even in rather low input signal-to-noise ratio (SNR). In
Fig. 3(a), we show the potential success of JEKF to eliminate
artificial white noise, while preserving the morphology of both
signals. In clinical settings, the electrical activity due to muscle
contractions (with frequencies ranging between dc and 10 kHz
with an average amplitude of 10% of full-scale deflection) as
well as patient–electrode motion artifacts are the most common
contaminations to CV recordings, which cannot be removed
easily by simple bandpass filters [24], [42]. In Fig. 3(b) and (c),
we show that the proposed JEKF scheme is also able to sup-
press these two types of artifacts, while preserving diagnostic
morphological information of the signals. In fact, the underly-
ing dynamics for the ECG–ABP signals constrain the filtering
to be within an envelope of the adaptive template morphology,
avoiding muscle and motion artifact to affect the denoised signal
(see the difference in T wave offsets, PQ, QT, and ST intervals).

For quantitative performance evaluation, we have imple-
mented the proposed JEKF and JEKS methods, together with
the following benchmark algorithms.
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Fig. 2. General block diagram of the proposed denoising and PTT estimation algorithm based on the joint EKF structure: (a) using the ABP phase signal (when
switches are closed (b) without using the ABP phase signal (when switches are closed).

Fig. 3. Demonstration of model-based noise reduction for different types of
input noises using JEKF. (a) Record 211 with an additive white Gaussian noise
of −2 dB. (b) Record mgh003 with calibrated amount of real EMG noise (input
SNR of 1 dB for the noisy portion). (c) Record 39 with real motion artifacts
(input SNR of 6.7 dB). (solid: clean signal, dashed: denoised signal, gray: noisy
signal). Note that the amplitudes on the y-axis are scaled and shifted.

1) WT: The conventional wavelet transform with the best
previously reported configuration (6) levels of decom-
position using Coiflets3 mother wavelet and deploying
the Stein’s unbiased risk estimate shrinkage rule, together
with a single-level rescaling and a soft thresholding strat-
egy, as was tested by Sameni et al. [19].

2) EKF2: The EKF with two state variables (2) and separate
conventional dynamic models for ECG and ABP [19].

3) EKS2: The extended Kalman smoother with two state
variables (2) and separate conventional dynamic models
for ECG and ABP [19].

4) EKF17: The parameter-based EKF with 17 state variables,
including the two state variables (2) and 15 autoregressive
dynamics for Gaussian parameters [43], [44].

The MIMIC database [39] was used for performance eval-
uation. From the total 121 subjects, we selected those with at
least one surface ECG lead, together with a recorded ABP sig-
nal. We then exclude the cardiogenic shock patients, narrowing
down the subjects to 76 individuals, for which the last 1 h
recordings were visually inspected by an experienced cardiol-
ogist to extract clean data segments. Real ECG artifacts were
chosen from the noise stress test database [41] and realistic
ABP noises were simulated using both the high-frequency com-
ponents of the ECG motion artifacts and Brownian motion, as
proposed in [45]. Calibrated amount of real noises, white noise,
and colored noises (pink and brown) were added to the coupled
ECG-ABP segments, and the noisy signals were presented to
the mentioned filters. To ensure the consistency of the results,
for every method, the whole procedure was repeated 50 times;
each time using a different set of random noise at the input,
and the signal-to-noise ratios of the denoised signals were cal-
culated over the second half of the filtered segments, to make
sure that the transient effects of the filters would not influence
the SNR calculations. We estimate the SNR improvement for
ECG signal (to measure amplitude errors) and also over ST seg-
ment (to quantify ST level distortion). Additionally, to verify
how well the clinical features (location, duration, amplitudes,
and shapes) of the signals are preserved after filtering, we have
estimated the weighted diagnostic distortion (WDD) [46] with
the same features and penalty matrices as described in [46]
and a similar diagonal matrix of weights to the one defined
in [43]. In Table I, we report the WDD as well as the mean
paired SNR improvement for ECG and ABP for different input
SNRs and for all filtering methods. The results show that the
filter performance increases as the input SNR decreases from
+ 6 dB to −6 dB, while the magnitude and slope of increase
is larger for the proposed joint algorithms. We observed that
the ST improvement for JEKF and JEKS is in the same range
with the signal improvement, describing the ability of the filter
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TABLE I
PERFORMANCE COMPARISON (SNR IMPROVEMENT, WDD, AND RUN TIME) OF BENCHMARK METHODS TO THE PROPOSED JOINT MODEL-BASED METHOD FOR

COUPLED ECG–ABP FILTERING

to preserve low amplitude components. We also noticed that
the joint methods provide a lower distortion rate (JEKF max
distortion: 4.8% for real noises and 3.5% for artificial noises;
JEKS max distortion: 4.1% for real noises and 3.2% for artificial
noises), making JEKF and JEKS superior to the other methods
being tested. Furthermore, the time complexity evaluation of the
algorithms (the actual run time for a 1 min signal) reveals that
the joint model structure has the second least run time, because
of its joint relations and the reduced dimension.

In order to systematically analyze the effect of a filter on
the ECG and ABP signals in terms of useful clinical metrics,
we estimated the QT interval for ECG, and the systolic blood
pressure (SBP) and diastolic blood pressure (DBP) for ABP over
all input SNRs. In order to investigate the accuracy of the joint
filtering method with real clinical parameters, 30 patient records
were extracted from the MIMIC database, yielding more than
2 h of data with approximately 8500 beats. Due to the significant
changes in ABP signals and pressure ranges, we did not use the
following categories of patients: sepsis, bleeding, coma, angina,
cardio shock, cardiac heart failure, and post operation. From
the remaining 21 patients (some subjects have contributed more
than one recording), we extracted variable length ECG–ABP
signals of about 10 min from the last part of each recording,
to ensure that the patient has been in ICU for more than 24 h
and the measurements reflect the stable phase of the patient
monitoring. The signals were presented to all filtering methods
and the outputs of the filters were analyzed for the determination
of QT, SBP, and DBP indices. For implementing the QT interval
extraction, we have used the QRS detection algorithm [47] and
T wave detection method of [48]. The SBP and DBP were
estimated using a simple max/min search during each cardiac
cycle.

Box plots for ΔQT, ΔSBP, and ΔDBP for all methods are
shown in Fig. 4, where the delta represents the difference be-
tween clean and filtered signals. It can be observed that the joint

Fig. 4. Performance comparison of different filtering schemes for (a) ΔQT
interval and (b) ΔSBP (light gray) and ΔDBP (dark gray) measurements
(Δ is defined as the difference between the clean and filtered signals). Box
plot representation of the error distributions is shown for all filtering methods.
In each figure, the box indicates the median value with 90–10% percentiles,
error bars show 95–5% percentiles, and max/min values are shown by circles.

methods (JEKF and JEKS) have the best performance in QT
detection (ΔQT: mean ± std = 2.2 ± 6.1 ms, median < 3 ms,
90–10% percentile < 12 ms, 95–5% percentile < 30 ms), as
well as in the estimation of blood pressure components (ΔSBP:
mean ± std = 2.3 ± 1.9 mmHg, median < 2 mmHg, 90–10%
percentile < 4 mmHg, 95–5% percentile < 5 mmHg, ΔDBP:
mean ± std = 1.9 ± 1.4 mmHg, median < 2 mmHg, 90–10%
percentile < 3 mmHg, 95–5% percentile < 5 mmHg). More-
over, compared to other filtering methods, the variations of the
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Fig. 5. PTT estimation evaluation. (a) Estimated PTT using DaT method
(shown with “+”) and JEKF method (shown with “.”) vs. the manual PTT
determined by the cardiologist. The least square error regression lines are also
shown (JEKF: solid; DaT: dashed). (b) Histograms of deviations between the
markings of the proposed JEKF algorithm compared to the manually measured
PTT indices. (c) Histograms of deviations between the markings of the DaT
technique compared to the manually measured PTT indices. The 95% and 99%
confidence intervals are shown with vertical dashed lines.

measured indices after joint filtering remains in a small error
bound, yielding smaller confidence intervals for the error dis-
tributions. This illustrates the ability of the joint framework for
removing artifacts while preserving important diagnostic fea-
tures and relevant clinical information of the filtered data.

B. CV Signal Segmentation and PTT Estimation

To test the proposed algorithm for PTT estimation, we have
used the same ECG–ABP segments that were used to evaluate
the QT and blood pressure estimates (see Section III-A). For
performance comparison, we have also examined the traditional
derivative and threshold method (DaT) [49]–[52]. To assess the
accuracy of estimations with real clinical PTT parameter, we
asked two experienced cardiologists from Tehran Heart Center
to annotate our data. The first annotator provided complete an-
notations for all patients/beats. However, the second annotator
delineated only the first few beats from each patient. For the
beats that we had both annotators’ delineation, interobserver
standard deviation was less than 4 ms.

In Fig. 5(a), we plot the estimated PTTs versus manual PTTs
for both methods. We also show the least square error linear re-
gression for the scattered data. We observe a high degree of cor-
relation between the PTT estimations from JEKF and real PTT
(r = 0.98, p < 0.001, regression line: Y = 0.998X + 1.71 ×
10−8), while PTTs measured by the DaT algorithm show a sig-
nificant difference compared to the manual standard (r = 0.76,
p < 0.001, regression line: Y = 0.628X + 20.77). To assess the
accuracy of the PTT estimation, in Fig. 5(b) and (c), we present
the histogram of deviations between the markings of the JEKF
algorithm (panel b) and the DaT method (panel c) compared
to the manually measured PTT by the experienced cardiolo-
gist. It can be seen that the JEKF structure provides a reliable
PTT estimation by first, providing a noise free set of observa-
tion signals and second, measuring the PTT based on Gaussian
descriptors, and therefore gives PTT values very close to real in-
dices (ΔPTTJEKF : mean ± std =−0.26 ± 2.93 ms; ΔPTTDaT :

mean ± std = −1.32 ± 8.84 ms). The results demonstrate that
JEKF deviations have a normal distribution and the error is not
considerable (99-percentile: 5.92 ms, 95-percentile: 4.57 ms).
Note that the 95% region is less than 6 ms, which is better
than interobserver differences in annotating QT intervals [53].
Moreover, the error bounds are smaller than the previously re-
ported 9–10 ms variation of PTT in normal subjects [33], [54].
Our results suggest that the proposed automated method has
an acceptable accuracy close to the experts’ measurements for
clinical evaluations.

IV. DISCUSSION AND CONCLUSION

In the light of extensive studies [10], [11], [13]–[20], [22],
[28]–[31], [43], [44], [55] toward model-based ECG processing
demonstrating an association between temporal characteristics
of heart cycle and the spatial morphological variations, the accu-
rate modeling of the cardiac electromechanical dynamism may
hold promise as an approach to facilitate data analysis and infor-
mation extraction. This study aims to investigate the utility of
a minimal order joint model-to-model phase and co-occurrence
information of a coupled pair of ECG–ABP signals, with ap-
plications to filtering and segmentation. The advantage of joint
modeling is that it can provide a means of joint filtering, and the
temporal information of the waveforms could be derived using
the filtered signals. Additionally, due to the dynamic nature of
the model, the filter can adapt with different spectral shapes
and temporal nonstationarities. Therefore, we hypothesized that
1) the model should be able to provide a robust filtering of noisy
observations, with performances compared to or better than the
current benchmark method, and 2) the Kalman filter estima-
tions may be used to determine time-point-based features such
as PTT.

The designed filter was applied to standard multiparameter
databases. Compared to benchmark denoising methods, the pro-
posed JEKF and JEKS provides a larger SNR improvement, es-
pecially in lower input SNRs, where the original signal is lost in
noise (8.40 dB ≤ SNR improvement ≤ 23.19 dB). In addition,
we showed that the ST improvement for the joint methods is
in the same range with the signal improvement, illustrating the
ability of the joint filter to preserve low amplitude components.
Furthermore, assessment of the filtering performance using clin-
ically relevant features showed that the method has a minimum
effect on diagnostic features of the signals (ΔQT: mean ± std =
2.2 ± 6.1 ms; ΔSBP: mean ± std = 2.3 ± 1.9 mmHg; ΔDBP:
mean ± std = 1.9 ± 1.4 mmHg). Finally, the model was shown
to provide a robust PTT estimation (r = 0.98, p < 0.001, mean
± std of error = −0.26 ± 2.93 ms).

This study is the first to provide a comprehensive and sys-
tematic approach into exploring the ability to model a pair of
CV signals to provide robust estimations and determine corre-
lated transmission time using the KF outputs. Specifically, the
main contributions of this work are 1) the proposal of a minima
order Kalman-based joint filtering algorithm to provide robust
estimations of the input noisy measurements of coupled CV sig-
nals at once; and 2) PTT estimation from coupled ECG–ABP
signals using the EKF estimations. It should be noted that the
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phase-derived interaction introduced in this study is a first at-
tempt to define a minimal joint representation to relate the time
cycle of the whole pulsatile events in ECG and ABP, and would
be sufficient to achieve the specific aims of this study. However,
a more elegant approach is to consider more comprehensive in-
teractions where the occurrence of each event in ECG may be
correlated to the onset or offset of another event in ABP signal.
This requires a more elaborate analysis of the electromechanical
modulations between CV signals.

Since the proposed framework is based upon dynamical
GMMs, the model is versatile enough to be applied to a wide
variety of bandlimited quasi-periodic signals that spontaneously
originate from the cardiac pulsation, either reflecting the elec-
trical conduction of the heart (such as body surface ECG or in-
tracardiac electrograms) or the modulated mechanical response
to the propagation of this activity (such as CV pressure sig-
nals including ABP, CVP, PAP, PPG, and optical reflectance or
transmittance signals commonly used in pulse oximetry).

Our proposed framework is built upon EKF and EKS struc-
tures for their simplicity and improved numerical stability over
other Bayesian filters. However, other generalizations of the KF
recursions such as the sigma-point KF [56], [57] and particle
filters [58], [59] can be used in the same manner for highly
nonlinear and non-Gaussian noise scenarios. It should be noted
that the use of additive noise terms ηECG and ηABP that account
for the effects of the mismatch with a true pair of ECG–ABP
signals gives more flexibility to the Kalman filter, and prevents
it from converging to undesired limit cycles [60].

The current framework implementation uses the estimated
phase signal to find the zero crossing for PTT estimation;
however, it is possible to incorporate the variables of the
Gaussian inside the state vectors and assign autoregressive
dynamics to the Gaussian parameters, as investigated in [43], to
obtain direct estimations from the KF. This requires introducing
a more complex model with more state variables and new
process noise components, which leads to a new model with
increased dimensions.

From an arrhythmia detection perspective, it is possible to use
the methodology proposed in [13] and employ the signal fidelity
to determine rhythm disturbances. This may have important clin-
ical implications to the detection of erroneous hypertensive or
hypotensive episodes, and to identifying the electromechani-
cal modulation of CV signals during abnormal events such as
tachyarrhythmic events or pulseless electrical activity [13].

In conclusion, we presented a minimal order joint model
and validated its utility to address important clinical problems,
including filtering and correlated feature extraction. Our results
demonstrate that the proposed algorithm provides high fidelity
estimations of coupled CV signals, with which accurate PTT
estimations may be obtained.
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