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Abstract
In this paper, we describe a Gaussian wave-based state space to model the
temporal dynamics of electrocardiogram (ECG) signals. It is shown that this
model may be effectively used for generating synthetic ECGs as well as separate
characteristic waves (CWs) such as the atrial and ventricular complexes. The
model uses separate state variables for each CW, i.e. P, QRS and T, and hence
is capable of generating individual synthetic CWs as well as realistic ECG
signals. The model is therefore useful for generating arrhythmias. Simulations
of sinus bradycardia, sinus tachycardia, ventricular flutter, atrial fibrillation
and ventricular tachycardia are presented. In addition, discrete versions of the
equations are presented for a model-based Bayesian framework for denoising.
This framework, together with an extended Kalman filter and extended Kalman
smoother, was used for denoising the ECG for both normal rhythms and
arrhythmias. For evaluating the denoising performance, the signal-to-noise
ratio (SNR) improvement of the filter outputs and clinical parameter stability
were studied. The results demonstrate superiority over a wide range of
input SNRs, achieving a maximum 12.7 dB improvement. Results indicate
that preventing clinically relevant distortion of the ECG is sensitive to the
number of model parameters. Models are presented which do not exhibit such
distortions. The approach presented in this paper may therefore serve as an
effective framework for synthetic ECG generation and model-based filtering of
noisy ECG recordings.

Keywords: denoising, electrocardiogram (ECG), ECG modeling, extended
Kalman filter (EKF), extended Kalman smoother (EKS)
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1. Introduction

The electrocardiogram (ECG) obtained by a noninvasive technique is a record of the bio-
potentials associated with the contractions of the heart muscle, which provides useful
information for the detection, diagnosis and treatment of cardiac diseases. However, ECG
signals are usually corrupted with unwanted interference, generally referred to as noise
or artifact. Since the interference is often in-band, time-coincident and morphologically
similar to cardiac activity, accurate extraction of information from an ECG requires effective
characterization of the constituent waveform morphologies. Any filtering technique must
preserve the important clinical features while providing high attenuation of noise. Accordingly,
several techniques have been proposed to extract the ECG components contaminated with
the background noise and allow the measurement of subtle features in the ECG signal.
The adaptive filter architecture is among the common approaches (Thakor and Zhu 1991).
Statistical techniques such as principal component analysis (Moody and Mark 1989),
independent component analysis (Barros et al 1998, and He et al 2006) and neural networks
(Clifford and Tarassenko 2001) have also been used to extract a noise-free signal from the
noisy ECG. Over the past several years, methods based on the wavelet transform (WT) have
also received a great deal of attention for the denoising of signals that possess multi-resolution
characteristics such as the ECG (Kestler et al 1998, Donoho 1995, Popescu et al 1998, Daqrouq
2005, Sayadi and Shamsollahi 2007).

In order to test the performance of a filtering system, there are generally two approaches.
The first is to use expert annotated data. Although this guarantees that the data are realistic,
it is hard to test at extremely low noise levels, or when the data are swamped by high noise.
To test in such circumstances, one must employ a realistic model of the ECG. Although
some excellent cellular models exist, such approaches are computationally intensive and
therefore difficult to employ for large-scale simulations. McSharry et al (2003) presented
an electrocardiographic dynamical model (EDM) for generating a synthetic ECG signal with
realistic PQRST morphology and heart rate dynamics. The aim of this model was to provide a
standard realistic ECG signal with known characteristics, which can be generated with specific
statistics thereby facilitating the performance evaluation of a given technique. Synthetic ECGs
can be generated with different sampling frequencies, morphologies, heart rates, heart rate
variabilities (HRVs) and different noise levels.

Many updates to this model and its applications have been made over the last 10 years
since its first creation in 2000. Initial updates included model-based filtering, compression and
feature extraction using a least-squares fit of observations to the model (Clifford et al 2005).
This approach was then applied to QT-interval analysis and beat segmentation (Clifford and
Villarroel 2006). The model has also been used to simulate fetal ECG (Sameni et al 2007a).
Recent updates have included the application of a hidden Markov model to account for beat-
type changes (Clifford et al 2008, 2010). Moreover, in a recent work, we have provided a
modified version of the EDM on a wave-related basis, which showed promising results for
PVC detection (Sayadi et al 2010).

Since the model formulation was in the form of a state space representation, Bayesian
estimation procedures could be applied to the model, if appropriate observations were found
and related to the state variables. In a pioneer work, Sameni et al proposed the use of an explicit
phase variable instead of the first two motion variables that indicates the angular location of the
P, Q, R, S and T waves. They obtained a compact set with two state variables, based on which
the ECG measurement and the constructed phase signal could be related to the state variables
of the state space equations. Bayesian model-based frameworks were also proposed where
the model was updated to explicitly use the three orthogonal dimensions and the equations
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were re-factored into a polar coordinate system to denoise the ECG by using a Kalman filter
to track and constrain the model parameters (Sameni et al 2006, 2007b). This model has also
been used to remove cardiac contaminants (Sameni et al 2008). In addition, this technique has
been modified using auto-regressive dynamics assignment to the model parameters (Sayadi
et al 2007) and applied to simultaneous denoising and compression (Sayadi and Shamsollahi
2008a), and ECG beat segmentation (Sayadi and Shamsollahi 2009).

In the previously proposed approaches towards Bayesian ECG analysis (Sameni et al
2007b, Sayadi and Shamsollahi 2008a, 2008b), occasional morphologic changes that only
appear in some of the ECG cycles have considerable effects on the filter performance. In
these cases, the phase error of the model can lead to large errors in the Gaussian parameters
since neither the model nor the measurements are reliable for the filter. For such occasional
morphologic changes, even temporal adaptation of the filter parameters is not helpful, as the
filter does not have sufficient time to adapt itself.

In this paper, in order to overcome such inaccuracies, we assume the presence of distinct
coupled components for the ECG signal, based on which a Gaussian wave-based dynamical
framework is developed. We study the proposed wave-based ECG dynamical model as
a generative model for producing synthetic ECG signals as well as separate characteristic
waveforms (CWs) such as the P-wave in isolation. In this way we simulate a series of
arrhythmias with the model. In addition we investigate the state space Bayesian filtering
approach (using our model with the EKF and EKS) and evaluate their performance on both
normal and ectopic beats.

The paper is organized as follows. Section 2 provides relevant background on the original
ECG dynamical model and presents the wave-based dynamical model. Section 3 presents
the details of the proposed method for synthetic ECG generation and Bayesian denoising.
Section 4 is devoted to simulation results. Finally, discussion and concluding remarks are
provided in section 5.

2. ECG dynamical model

In this section, the original ECG dynamical model proposed by McSharry et al (2003) is
reviewed briefly. The model is later used to introduce the wave-based dynamical model by
modifications in the ECG formation using the characteristic waves. In addition, the resultant
model is shown to be capable of generating separate CWs as well as the synthetic ECG.

2.1. Original dynamical model

McSharry et al (2003) proposed a realistic synthetic ECG generator using a set of state
equations that generates a three-dimensional (3D) trajectory in a 3D state space with
coordinates (x, y, z). The model consists of a circular limit cycle of unit radius in the (x, y)
plane around which the trajectory is pushed up and down as it approaches the turning points
in the ECG (P, Q, R, S and T). In fact, the characteristic waveforms of the ECG are described
by Gaussian-type events corresponding to negative and positive attractors/repellors in the
z-direction. Quasi-periodicity of the ECG is reflected by the movement of the trajectory
around the attracting limit cycle, while the inter-beat variation in the ECG is reproduced using
the motion of the trajectory in the z-direction. The original dynamical equations of motion
are given by a set of three ordinary differential equations in Cartesian coordinates:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ = γ x − ωy

ẏ = γy − ωx

ż = −
∑

i∈{P,Q,R,S,T }
ai�θi exp

(
−�θ2

i

2b2
i

)
− (z − z0),

(1)
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where γ = 1 −
√

x2 + y2, �θi = (θ − θi) mod 2π , θ = atan2(y, x) is the four quadrant
arctangent of the elements of x and y, ranging over [−π, π ], and ω is the angular velocity of
the trajectory as it moves around the limit cycle, and is related to the beat-to-beat heart rate as
ω = 2πf . As seen in (1), each of the P-, Q-, R-, S- and T-waves of the ECG waveform are
modeled with a Gaussian function located at specific angular positions θ i. The ai, bi and θ i

terms in (1) correspond to the amplitude, width and center parameters of the Gaussian terms
of this equation. Finally, the baseline wander of the ECG is modeled with the parameter
z0 that is assumed to be a relatively low amplitude sinusoidal component coupled with the
respiratory frequency (McSharry et al 2003). The z-coordinate of this trajectory, when plotted
versus time, gives the synthetic ECG. It can be seen that the ECG signal z is represented by
a sum of Gaussian functions, whose amplitudes, angular spreads and locations are controlled
by the Gaussian kernel parameters (ai, bi, θ i). Accordingly, different combinations of this set
of parameters result in different morphologies for the produced ECG signal.

2.2. Wave-based dynamical model

The EDM uses the limit cycle to reproduce the quasi-periodicity of the signal (HRV) and the
beat-to-beat variation in the average morphology (which in turn is defined by a set of Gaussian
kernel parameters). The model output is the combination of these kernels which mimics
a realistic ECG signal. A more flexible approach, particularly when applying the model
to filtering arrhythmias, is to consider each Gaussian separately. Based on this motivation,
we have recently introduced a wave-based ECG dynamical model (WEDM) by separating
different events of the ECG, which results in a dimensionality increase that facilitate separate
analysis of coupled events (Sayadi et al 2010).

Each individual heartbeat comprises a number of distinct cardiological stages, which
in turn give rise to a set of distinct features in the ECG pattern. These features represent
either depolarization (electrical discharging) or repolarization (electrical recharging) of the
muscle cells in particular regions of the heart. The cardiac cycle begins with the P-wave,
which corresponds to the period of atrial depolarization in the heart. This is followed by the
QRS complex, which corresponds to the period of ventricular depolarization, and is generally
the most recognizable feature of an ECG waveform. The T-wave follows the QRS complex
and corresponds to the period of ventricular repolarization. Additionally, a small U-wave
(following the T-wave) is occasionally present.

Assuming the presence of three distinct CWs, corresponding to the P-wave, QRS complex
and T-wave, the ECG signal is divided into three coupled components, each of which
corresponds to a specific portion of the heart cycle. Accordingly, the WEDM is given by
(Sayadi et al 2010)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = γ x − ωy

ẏ = γy − ωx

Ṗ = −
∑

i∈{P −,P +}
ai�θi exp

(
−�θ2

i

2b2
i

)
− (P − P0)

Ċ = −
∑

i∈{Q,R,S}
ai�θi exp

(
−�θ2

i

2b2
i

)
− (C − C0)

Ṫ = −
∑

i∈{T −,T +}
ai�θi exp

(
−�θ2

i

2b2
i

)
− (T − T0),

(2)
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where P, C and T represents the P-wave, the QRS complex and the T-wave, respectively. The
+/− superscripts indicate the two Gaussian waves which are used to deal with asymmetries
(Clifford et al 2005). Similar to McSharry et al (2003), P0, C0 and T0 are the baseline values
which are assumed to be coupled to the respiratory frequency fr using P0(t) = C0(t) = T0(t) =
Asin(2π frt) with A = 50 μV to account for the corresponding baseline wander of the specific
characteristic waveform.

3. Method

In this section, we review the procedure of RR-interval generation to account for the effect
of sympathovagal balance and to reflect it in the beat-to-beat changes of the cardiac cycle.
In addition, we incorporate optional parameters in the model to control the synthetic ECG
parameters such as observational uncertainty and the sampling frequency. Afterward, we
show the new form of the dynamic equations (2) in polar coordinates, according to which a
discrete state space representation is acquired to construct a Bayesian framework for denoising
applications.

3.1. Synthetic ECG generation

As stated before, the wave-based dynamical model (2) generates the three CWs which are
separate in z dynamics, but are coupled in timing as well as in nature. The model has
seven events, i.e. {P−, P+, Q, R, S, T−, T+}, that act as push-pulls in the z-direction as the
corresponding trajectory passes around the unit limit cycle in the (x, y) plane. By contrasting
the dynamical model (2) with the mechanisms underlying the cardiac cycle, it is obvious that
the time required to complete one lap of the limit cycle is equal to a single-beat duration and
can be considered as the RR-interval of the synthetic ECG signal. On the other hand, the
RR sequence timing can be assumed equal to the PP and TT sequences since they all result
from a physiological subsequence. Hence, variations in the length of the intervals can be
incorporated by varying the same parameter, the angular velocity ω, to include the sequential
coupling of the CW occurrence. To simulate the quasi-periodicity of the synthetic cardiac
cycle, the time-dependent angular frequency of motion around the limit cycle is given by

ω(t) = 2π

R(t)
, (3)

where R(t) represents the time series generated by the RR-process, which introduces variations
in the instantaneous heart rate time series using the generated beat-to-beat RR-intervals (the
RR tachogram). Physiologically speaking, the heart rate may be increased by slow acting
sympathetic activity or decreased by fast acting parasympathetic (vagal) activity. The balance
between the effects of these two opposite acting branches of the autonomic nervous system
is referred to as the sympathovagal balance and is believed to be reflected in the beat-to-
beat changes of the cardiac cycle (Malik and Camm 1995). To incorporate the effect of the
sympathetic and parasympathetic modulation of the RR-intervals, we have applied the same
spectral estimation strategy as McSharry et al (2003). In fact, the RR-process is supposed
to generate RR-intervals which have a bimodal power spectrum consisting of the sum of two
Gaussian distributions, whose parameters are motivated by the typical power spectrum of a
real RR tachogram (Malik and Camm 1995). Having established the generation procedure for
the RR-process, we are able to the use the synthetic model (2) for realistic CW generation. To
solve the equations of motion (2) for generating synthetic CWs, they are integrated numerically
using a fourth-order Runge–Kutta method (Press et al 1992) with a fixed time step �t = 1/fs
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where fs is the sampling frequency of the generated discrete ECG waveform. In order to
simplify the dimensions and later relate the model parameters with real ECG recordings, the
ai terms in (2) will be replaced with

ai = αiω

b2
i

i ∈ {P −, P +,Q,R, S, T −, T +}, (4)

where the αi are the peak amplitudes of the Gaussian functions used for modeling each of
the ECG components (Sameni et al 2007b). This definition may be verified from (2), by
neglecting the baseline wander term (z − z0) and integrating the ż equation with respect to t.
The ECG generation is now straightforward. Since the solution of (2) gives the time-series
P(t), C(t) and T(t), the synthetic ECG is obtained by

ECG(t) = P(t) + C(t) + T (t). (5)

3.2. Bayesian filtering

A classical problem in estimation theory is the estimation of the hidden states of a system
with an underlying dynamic model that are observable through a set of measurements. The
well-known Kalman filter (KF) is one such method and under certain general constraints, it
can be proved to be the optimal filter in the minimum mean square error sense (Kay 1993).

In the previous subsection, it was shown that realistic ECG signals can be produced by
integrating a set of motion equations which modeled distinct CW of an ECG signal. However,
since the equation set (2) is a state space representation, it can be used for a Bayesian paradigm
construction. In the following, the proposed model (2) is used to model the temporal dynamics
of ECG signals in a Bayesian framework for ECG denoising. Following the proposal of
Sameni et al (2005), we benefit the polar representation of the dynamical equation (2). With
the proposed substitution (4), the new form of the dynamic equations in polar coordinates can
be expressed as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṙ = r(1 − r)

ϕ̇ = ω

Ṗ = −
∑

i∈{P −,P +}
αi = ω�θi

b2
i

exp

(
−�θ2

i

2b2
i

)
− (P − P0)

Ċ = −
∑

i∈{Q,R,S}
αi = ω�θi

b2
i

exp

(
−�θ2

i

2b2
i

)
− (C − C0)

Ṫ = −
∑

i∈{T −,T +}
αi = ω�θi

b2
i

exp

(
−�θ2

i

2b2
i

)
− (T − T0),

(6)

where r and ϕ are the radial and angular state variables in polar coordinates, respectively.
Similar to the polar version of McSharry et al’s model (McSharry et al 2003) introduced by
Sameni et al (2007a, 2007b), this new set of equations has some benefits compared with the
original equations (2). First, the radial behavior of the generated trajectory converges to the
limit cycle of r = 1 for any initial value of r � 1. However, the second to fifth equations of (6)
are independent of r, making the first equation redundant. Therefore, this first equation may
be excluded as it does not affect the synthetic CWs (the P, C and T state variables). This leads
to a simpler representation with straightforward interpretation. Secondly, the phase parameter
ϕ is an explicit state variable that indicates the angular location of different events, which is
further used for the implementation of Bayesian ECG filters. In order to construct the discrete
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state space model used in Bayesian filters, we use a variant of (6) in its discrete form. The
discrete state space representation in polar coordinates is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕk+1 = (ϕk + ωδ) mod(2π)

Pk+1 = Pk −
∑

i∈{P −,P +}
δαik

ω�θik

b2
ik

exp

(
−�θ2

ik

2b2
ik

)
+ ηPk

Ck+1 = Ck −
∑

i∈{Q,R,S}
δαik

ω�θik

b2
ik

exp

(
−�θ2

ik

2b2
ik

)
+ ηCk

Tk+1 = Tk −
∑

i∈{T −,T +}
δαik

ω�θik

b2
ik

exp

(
−�θ2

ik

2b2
ik

)
+ ηTk,

(7)

where δ is the sampling period, ϕ is the wrapped phase in polar coordinates and �θik =
(ϕk − θik ) mod 2π . Moreover, the inaccuracies of the dynamic model including the baseline
wander and the respiration modulation are replaced by perturbation terms ηP, ηC and ηT, which
are random additive noises.

Having considered four equations in (7) as the state space representation for the ECG
signal, the process equations of a Bayesian framework are formed. Relating the ECG signal
as an observation to the state variables in the left side of state space model (7) is now
straightforward since the CWs are summed up to form the record. In addition, a saw-tooth-
shape signal that is expected to be zero at R-peaks, and being linearly assigned a phase between
−π and π to the intermediate samples is also formed as the other observation. The observed
noisy phase φk and noisy amplitude zk of the ECG are given by{

φk = ϕk + u1k

zk = Pk + Ck + Tk + u2k ,

(8)

where u1k
and u2k

are the observation noises of the ECG in the phase and spatial domains,
respectively. The estimation of the states of the nonlinear model (7) that are observable
through a set of measurements (8) is possible through an extended Kalman filter. Our proposed
framework is built upon an EKF structure for its simplicity and improved numerical stability
over other Bayesian filters (Gelb 1974). In order to use the KF formalism for this system, it is
necessary to derive a linear approximation of (7) near a desired reference point, to obtain the
following linear approximate model:{

xk+1 = f (xk, wk, k) ≈ f (x̂k, ŵk, k) + Ak(xk − x̂k) + Bk(wk − ŵk)

y
k

= g(xk, vk, k) ≈ g(x̂k, v̂k, k) + Mk(xk − x̂k) + Nk(vk − v̂k),
(9)

where f is the state evolution function and g represents the relationship between the state
vector and the observations. The state variables vector, xk , the observation vector, y

k
, the

process noise vector, wk , and the observation noise vector, vk , are defined as follows:

xk = [ϕk Pk Ck Tk]′

y
k

= [φk zk]′

wk = [αik , bik , θik , ω, ηPk
, ηCk

, ηTk
]′, i ∈ {P −, P +,Q,R, S, T −, T +}

vk = [
u1k

u2k

]′
,

(10)

where the prime indicates the transpose operator. The EKF algorithm is implemented using the
time propagation and the measurement propagation equations to estimate the state variables
(Kay 1993). The key idea for the implementation of the EKF is to linearize the nonlinear
dynamical model in the vicinity of the previous estimated point and to recursively calculate
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the state covariance matrices from the linearized equations, while the KF time propagation is
performed via the original nonlinear equation (Haykin 2001).

The parameters of linearized model for time and measurement propagation in the EKF
structure can be obtained using the equation set (7), (8) and the coefficients of the linear
approximate model (9). To simplify the equations of the linearized model, we define the
following terms for i ∈ {P−, P +, Q, R, S, T−, T+}:

λ1
i = αi

bi

, λ2
i = �θi

bi

,

λ3
i = ω

bi

, λ4
i = −δ exp

(
−�θ2

i

2b2
i

)

ℵi = [
λ234

i 2λ1234
i

(
0.5

(
λ2

i

)2 − 1
)

λ134
i

((
λ2

i

)2 − 1
)]

1×3,

(11)

where λabcd = λaλbλcλd . According to this terminology, the linearization of (7) and (8) with
respect to the process components yields the following linear approximate coefficients:

Ak = ∂f (x, ŵk, k)

∂x

∣∣∣∣∣x=x̂k

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0∑
i∈{P −,P +}

λ134
i

(
1 − (

λ2
i

)2)
1 0 0

∑
i∈{Q,R,S}

λ134
i

(
1 − (

λ2
i

)2)
0 1 0

∑
i∈{T −,T +}

λ134
i

(
1 − (

λ2
i

)2)
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

4×4

Bk = ∂f (x̂k, w, k)

∂w

∣∣∣∣∣w=ŵk

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

021×1 δ 0 0 0

ℵP − ℵP + 015×1

∑
i∈{P −,P +}

λ124
i 1 0 0

06×1 ℵQ ℵR ℵS 06×1

∑
i∈{Q,R,S}

λ124
i 0 1 0

015×1 ℵT − ℵT +

∑
i∈{T −,T +}

λ124
i 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

4×25

Mk = ∂g(x, v̂k, k)

∂x

∣∣∣∣∣x=x̂k

=
[

1 0 0 0
0 1 1 1

]
, Nk = ∂g(x̂k, v, k)

∂v

∣∣∣∣∣v=v̂k

=
[

1 0
0 1

]
.

(12)

To improve the filtering performance, it is also possible to use the information of future
observations in the estimation procedure. This idea leads to the extended Kalman smoother
(EKS). The EKS uses the future observations to give better estimates of the current state.
The EKS algorithm basically consists of a forward EKF stage followed by a backward
recursive smoothing stage. Due to this non-causal nature, the EKS is expected to have a
better performance compared with the EKF. Depending on the smoothing strategy, smoothing
algorithms are usually classified into fixed lag or fixed interval smoothers (Gelb 1974). In this
paper, the fixed interval EKS is used since the filtering procedure is carried out offline on the
entirety of each ECG signal. For real-time applications of the proposed EKS methods, the
fixed lag smoother is usually more appropriate.

The proposed nonlinear Bayesian framework estimates its variables using the state
dynamical equations (7) and the noisy phase and noisy ECG observations. Having derived the
state equations (7), the observation equations (8) and the linearized state equations of the ECG
dynamic model (12), the implementation of the EKF and EKS is now possible. The filtering
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ϕ̂

Ĉ

P̂
Denoised ECG

T̂

Extended

Kalman

Filter /

Smoother

Phase 
Calculation

ECG

Figure 1. General block diagram of the proposed algorithm for ECG denoising.

procedure provides the estimations corresponding to the CWs of the input ECG signal, which
are summed up to obtain the denoised signal:

ẑk = P̂k + Ĉk + T̂k =
4∑

i=2

x̂ik . (13)

The denoising block diagram is shown in figure 1, in which the phase calculation block is
simply an R-peak location detector, followed by linear assigning of a phase value between −π

and π to the intermediate samples (Sameni et al 2007b). In fact the ECG signal along with
the phase signal forms the observation vector for the EKF structure. The initialization process
is then run on this vector, to find the initial value for the state vector, the covariance matrices
of the process noise and the measurement noise. Finally, the estimations of the state variables
are obtained using the KF formulation.

4. Simulation results

The proposed algorithms were implemented in MATLAB R©. The same RR-process generator
as in McSharry et al (2003) was used for generating synthesized ECG signals with user-defined
parameters (McSharry and Clifford 2003). Standard ECG databases from Physiobank, the
Physionet signal archives (Goldberger et al 2000), were used to study the performance of
the proposed denoising method. The initialization procedure described by Sameni et al
(2007b) and Sayadi and Shamsollahi (2008a) is employed for KF initialization. Qualitative
and quantitative results are presented next.

4.1. Synthetic ECG generation

The described model gives the opportunity to have control on various signal parameters, such
as the CW amplitude, spread and angular location, sampling frequency, mean and standard
deviation of heart rate, noise amplitude, respiratory modulation frequency, and the ratio of
the power contained in the low-frequency and high-frequency components of the tachogram
spectrum. Figure 2 shows typical CW trajectories generated by the dynamical model (7) in
the 3D space given by (x, y, z), with the limit cycle of unit radius included. Also, the distinct
synthesized CWs are shown as a function of time, each of which is coupled with other CWs on
a sequential time occurrence. The synthetic realistic ECG can be obtained by simply adding
these three components, as shown in figure 2(c). The RR tachogram and the corresponding
bimodal power spectrum are shown in figure 2(d) and (e) respectively, generated with mean
heart rate 60 beats min−1 and standard deviation 5 beats min−1.

As can be seen, the synthetic ECG mimics the morphology of a real ECG signal. In
addition, the RR-interval tachogram has a realistic spectral content. In other words, the
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Figure 2. Wave-based synthetic ECG generation. (a) CW trajectories in the Cartesian coordinates,
(b) synthetic CWs as functions of time, (c) realistic synthesized ECG, (d) RR-interval tachogram of
the generated ECG using the proposed RR-process, (e) bimodal power spectrum of the generated
RR-intervals, including the Mayer and RSA waves, (f) RR-interval tachogram of a typical real
ECG signal, (g) power spectrum of the real RR-intervals shown in (f) obtained from the typical
ECG record, and (h) realistic synthesized ECG using the real RR-interval tachogram.

dominant peak in the high-frequency band of the spectrum (≈0.25 Hz) is as the result of
parasympathetic oscillations called respiratory sinus arrhythmia (RSA), while the second
peak which is often found in the low-frequency band (≈0.1 Hz) is due to baroreflex regulation
which creates the so-called Mayer waves in the blood pressure signal (De Boer et al 1987).
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Figure 3. ECG synthesis for common pathological morphologies: (a) sinus bradycardia, (b) sinus
tachycardia, (c) ventricular flutter, (d) atrial fibrillation and (e) ventricular tachycardia.

In order to have a more similar spectral contents to real HRV spectra, it is possible to
use real heart rate variability signals acquired from real ECG signals, instead of generating
artificial RR tachograms using the proposed RR-process (section 3.1). Although this approach
results in more realistic synthetic signals, the model is perhaps less useful for evaluating signal
processing methods when used in this way. This is because standard pre-defined parameters
such as those used in the RR-process generation cannot be accurately specified. Figure 2(h)
shows a typical generated ECG signal using this approach, in which the RR tachogram
(figure 2(f)) is obtained to mimic a real HRV spectrum (figure 2(g)).

Since the model has several parameters, it is possible to control the morphological features
of the synthetic ECG. Accordingly, it is possible to introduce abnormal morphological changes
with time using a parameter to control the position and the form of the events. This extension
has also been tested to incorporate several pathological conditions. Figure 3 shows the
results of generating synthetic normal and abnormal ECGs including two normal states (sinus
bradycardia and sinus tachycardia) and three abnormalities (atrial fibrillation, ventricular
flutter and ventricular tachycardia). The depictions are the model outputs for different set
of input parameters. Visual analysis of different sections of typical ECGs—both normal and
abnormal subjects—was used to suggest suitable times, amplitude and spread values for the
events. The corresponding values of Gaussian kernel parameters are shown in table 1. Table 2
lists the parameters of the RR-process used in the simulation, including the mean and the
standard deviation of heart rate, normalized low frequency which corresponds to the Mayer
waves, respiratory rate and LF/HF ratio.

4.2. Bayesian filtering

According to (13), the estimations of the second to fourth state variables obtained by the
proposed EKF model with four state variables (EKF4) was summed up to form the denoised
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Table 1. The values of (αi, bi, θ i) triplex parameters of the Gaussian kernels used in the wave-based
synthetic ECG model for the generation of realistic signals shown in figure 3.

Pathological cases

Gaussian Sinus Sinus Ventricular Atrial Ventricular
kernels bradycardia tachycardia flutter fibrillation tachycardia

P − (0.7, 0.2, −3π/8) (0.7, 0.2, −3π/7) (0, 0.1, −π/6) (0.7, 0.12, −5π/7) (1, 0.2, −10π/13)
P + (0.8, 0.1, −π/3) (0.8, 0.1, −3π/8) (0, 0.1, −2π/3) (0.9, 0.13, −π/2) (1, 0.1, −2π/3)
Q (−1, 0.1, −π/13) (−7, 0.1, −π/13) (0, 0.1, −π/12) (0.6, 0.12, −π/4) (−12, 0.2, −π/3)
R (20, 0.1, 0) (20, 0.1, 0) (20, 0.6, −π/2) (18, 0.1, 0) (1, 0.3, 0)
S (−9.5, 0.1, π/15) (−9.5, 0.1, π/17) (−20, 0.6, π/2) (−0.1, 0.05, π/30) (3, 0.4, 2π/11)
T − (0.27, 0.4, 2π/5) (0.27, 0.4, π/2) (0, 0.1, 3π/8) (0.62, 0.15, π/4) (5, 0.5, π/2)
T + (0.15, 0.55, 4π/7) (0.15, 0.55, 4π/7) (0, 0.1, 5π/8) (0.55, 0.17, 7π/11) (3, 0.45, 20π/23)

Table 2. Parameters of the RR-process used in the wave-based synthetic ECG model for the
generation of realistic signals shown in figure 3. The parameters are the mean heart rate (HRmean),
the standard deviation of the heart rate (HRSD), the mean normalized low frequency (lfmaen), the
standard deviation of the normalized low frequency (lfSD), the mean respiratory rate (hfmean), the
standard deviation of the respiratory rate (hfSD) and the low frequency to high frequency ration
(LF/HF).

Pathological RR-process parameters

morphologies HRmean HRSD lfmaen lfSD hfmean hfSD LF/HF

Sinus bradycardia 40 2 0.1 0.01 0.25 0.01 0.4
Sinus tachycardia 140 10 0.1 0.01 0.25 0.01 0.6
Ventricular flutter 300 20 0.1 0.01 0.25 0.01 0.5
Atrial fibrillation 60 5 0.1 0.01 0.25 0.01 0.5
Ventricular tachycardia 100 5 0.1 0.01 0.3 0.01 0.5

ECG signal. The same story holds for the EKS model with four state variables (EKS4). The
MIT-BIH Normal Sinus Rhythm Database (Goldberger et al 2000, MIT-BIH Normal Sinus
Rhythm Database 1991) and The MIT-BIH Noise Stress Test Database (Goldberger et al
2000, MIT-BIH Noise Stress Test Database 1984) were used to study the performance of the
proposed denoising method. Figure 4 shows typical EKF4 estimations, i.e. the CW estimates,
which are summed up to form the denoised ECG.

The effect of different types of noises including white and real noises on the performance
of the proposed method is investigated in figure 5. Comparing these results visually, it can be
seen that the proposed method has admirably tracked the original signal in a rather low input
signal-to-noise ratio (SNR) scenario. Moreover, The EKS demonstrates a smoother result,
compared to that of EKF. In particular, it can be seen that the denoised signal follows the clean
ECG morphology when artificial white noise is added (figure 5(a)). Likewise, for the real
EMG noises, the denoised signal is free from any EMG artifacts (figure 5(b)). Motion artifact
is generally considered the most troublesome since it can mimic the appearance of ectopic
beats, it causes undesired notches on the ST segment and cannot be removed easily by simple
band pass filters, unlike other types. Figure 5(c) indicates that EKF4 is also able to remove
motion artifact, while preserving diagnostic morphological information of the signal. Note
that because there are underlying dynamics for the ECG signal which constrain the filtering,
motion artifact cannot force the denoised signal to follow distorted waveforms. To clarify this,
see figure 5(c), where the denoised signal shows a different pattern to that of the noisy signal.
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Figure 4. Input noisy observations and the output denoised state variables of EKF4 for a typical
ECG signal. (a) Noisy input phase (dashed) and ECG (solid) observations, (b) CW estimations,
(c) denoised phase signal (dashed) and the ECG signal (solid).

Specifically, the T-wave end points, the PQ intervals and the ST segments in the denoised
signal do not follow the corresponding distorted portions of the noisy signal.

To appreciate the merits of the proposed methods over the previously Bayesian model
with two state variables, i.e. EKF2 and EKS2 (Sameni et al 2007b), we have depicted the
results of extended Kalman smoothing with EKS2 and EKS4 in figure 6. The mean ECG,
the standard deviation and the least-squares fit are also provided. One can easily find the ST
elevation distortions and the baseline perturbation distortions of EKS2. In addition, when the
initialization is not reliable or it does not account for out-kernel waves such as U-wave, EKS4
outperforms EKS2 (see the U-wave distortions in figure 6(b) and the T-wave distortions in
figure 6(d) for EKS2). For evaluating the performance of the proposed method, we have used
the SNR improvement measure given by

imp[dB] = 10 log

(∑
i

|xn(i) − x(i)|2
/ ∑

i

|xd(i) − x(i)|2
)

, (14)

where x denotes the clean ECG, xd is the denoised signal and xn represents the noisy ECG.
In order to investigate the performance of our algorithm and to compare it to different

benchmark methods, we have implemented all Kalman-based ECG filtering schemes including
the proposed EKF4 and EKS4 methods, the EKF2 and EKS2 algorithms (Sameni et al 2007b),
and EKF17 which is a parameter-based Bayesian framework with auto-regressive dynamics
(Sayadi and Shamsollahi 2008a). Also, the conventional wavelet transform (WT) has been
tested on the database. The reported results are based on the Coiflets3 mother wavelet with
six levels of decomposition using the Stein’s Unbiased Risk Estimate (SURE) shrinkage rule,
together with a single-level rescaling and a soft thresholding strategy, as was tested by Sameni
et al (2007b). For performance evaluation, Sameni et al (2007b) used 190 ECG segments from
the first 13 records of the MIT-BIH Normal Sinus Rhythm Database (Goldberger et al 2000,
MIT-BIH Normal Sinus Rhythm Database 1991). We have used the same records; however,
to ensure the consistency of the results, the full-length of the records were used for simulation.
The whole procedure was repeated 50 times over the first 60 min of the selected records, each
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Figure 5. Typical filtering results of the proposed wave-based approach for different types of input
noises using EKF4 and EKS4. The MIT-BIH Normal Sinus Rhythm Database (Goldberger et al
2000, MIT-BIH Normal Sinus Rhythm Database 1991) is used for evaluation. (a) Record 118e24
with an additive white Gaussian noise of −2 dB. (b) Record 118e18 with calibrated amount of
real EMG noise (input SNR of 4 dB for the noisy portion). (c) Record 118e06 with real motion
artifacts (input SNR of 6 dB).

time using the same initial parameters but with a different set of random white Gaussian noise
at the input. The SNRs were generally calculated over the second half of the filtered segments,
to ensure that the transient effects of the filters would not influence the SNR calculations. For
a quantitative comparison, the mean and standard deviation (SD) of the SNR improvements
versus different input SNRs are depicted in figure 7.

It can be seen that the EKS4 demonstrates the best average performance, and the EKF4
performs marginally better than the EKF2, is much similar to EKF17, but still underperforms
the EKS2 approach. Furthermore, the superiority of EKS4 is obvious, especially in lower
input SNRs, where the clean ECG is lost in noise.

Mathematically, white noise is defined to have a flat spectral density function over all
frequencies. However, real-noise sources have non-flat spectral densities that decrease in
power at higher frequencies, making the spectrum colored and the noise samples correlated in
time. To have a better insight into the performance of the proposed Bayesian filter, artificial
colored Gaussian noise with different variances was generated. For the current study, we have
modeled the noise color by a single parameter representing the slope of a spectral density
function that decreases monotonically with frequency:

S(f ) ∝ 1

f c
, (15)
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Figure 6. Qualitative comparison of filtering performances for EKS2 and EKS4 using a normal
(record 106) and an abnormal (record 104) ECG from the MIT-BIH Arrhythmia Database
(Goldberger et al 2000, MIT-BIH Arrhythmia Database). (a) Average and standard deviation-bar
of 20 ECG cycles of the normal ECG. The vertical lines are initial seeds for LSE fit, (b) filtering
results for the input normal ECG of 5 dB (top), EKS2 output with 8.94 dB improvement (middle)
and EKS4 output with 10.26 dB improvement (bottom). (c) Average and standard deviation bar
of 20 ECG cycles of the abnormal ECG. (d) Filtering results for the input abnormal ECG of
3.8 dB (top), EKS2 output with 7.03 dB improvement (middle) and EKS4 output with 9.89 dB
improvement (bottom). The baseline perturbation distortions and the peaks distortions for EKS2
are clearly seen.
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Figure 7. The mean (left) and variance (right) of the filter output SNR improvements for white
noise versus different input SNRs averaged over 50 repetitions for different filtering methods,
including WT, EKF2, EKS2, EKF17, EKF4 and EKS4.
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Figure 8. The mean SNR improvements versus different input SNRs averaged over 50 repetitions
for different filtering methods, including WT, EKF2, EKS2, EKF17, EKF4 and EKS4 for (a) pink
noise, (b) brown noise and (c) real EMG noise.

where f is the frequency and c is the slope, a measure of noise color. White noise (c = 0),
pink or flicker noise (c = 1), and brown noise or the random walk process (c = 2), are three
of the most commonly referenced noises (Kay 1981).

Besides colored noises, calibrated amount of real noises were added to the ECG segments,
and the noisy signals were presented to the benchmark and the proposed filters. The results of
the noise color and real noise study are depicted in figure 8 for the mean SNR improvement
as a function of the input SNR for all filtering methods. As can be seen, the filter performance
increases as the input SNR ranges from 24 dB to −6 dB, while the slope of increase is larger
for the proposed wave-based algorithms, i.e. EKF4 and EKS4. As with the previous results,
it is seen that the EKS4 outperforms the results with all other techniques.

In the presented approach, due to the phase wrapping of the RR interval to 2π , normal inter-
beat variations of the RR-interval or consistent RR-interval abnormalities such as bradycardia
or tachycardia do not considerably affect the filter performance. However, for morphological
abnormalities that only appear in some of the ECG cycles, such as the Premature Ventricular
Contraction (PVC), the phase error of the model can lead to large errors in the Gaussian
functions’ locations. In particular, for low input SNRs, where neither the model nor the
measurements are reliable for the filter, the filtering performance is not expected to be
satisfactory. However, the benefit of the Gaussian mixture representation is that the effect of
each Gaussian term vanishes very quickly (in less than the ECG period), meaning that the
errors are not propagated to the following ECG cycles. In addition, the wave-based structure
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Figure 9. Typical filtering results of an ECG signal with a spontaneous PVC rhythm using EKF2,
EKS2, EKF4 and EKS4. Record 119 from the MIT-BIH Arrhythmia Database (Goldberger et al
2000, MIT-BIH Arrhythmia Database) is used for simulation (dotted line). The denoised signals
are shown with solid lines.

enables the model to have less error propagations due to the separation of Gaussian kernels.
Figure 9 shows typical filtering results of an ECG signal with a spontaneous PVC rhythm.
It can be seen that EKF4 and specially EKS4 provide a more accurate representation of the
signal and track the rhythm change with less error in kernel assignments than EKF2 and EKS2.
It should be mentioned that by monitoring the state estimates’ covariance matrices and the
variations of the innovation signals, it is possible to detect such unexpected abnormalities and
hence, change the Kalman parameters to rely more on the observed cycle than the underlying
dynamics (Sayadi et al 2010).

It is also worth noting that the model presented in this paper can also be used for fiducial
point detection since the θ i in equation (2), which are traced from beat to beat, determine the
locations or each CW. Clifford and Villarroel (2006) showed how the onset and offset of the
CWs can be found, even for composite Gaussians, using a set number of standard deviations
from the central time location of the θ i. However, since ECG segmentation is not within the
scope of the current study, we just show simple examples of two interval extractions based on
peak detection results. Thus, to assess the accuracy of the EKF we investigate the segmentation
results of the proposed model-based algorithm with real clinical parameters; histograms of
deviations between the markings of the automatic algorithm compared to the ‘gold standard’
of manually measured PR intervals and TP intervals for the 13 patients are presented in
figure 10.

The figures demonstrate that the deviations behave like a normal distribution. Moreover,
for the PR interval which is defined as the difference between peak locations of P-wave and
QRS complex, the error is not considerable (mostly below 8 ms). However, the asymmetric
properties of T-wave and the way the corresponding two Gaussian kernels are related to
the peak location result in more deviations, but still well in the acceptable range (below
36 ms), even for common difficulties such as standard ECG noise, P- and T-wave splitting,
low amplitude T-waves and R-on-T or T-U fusion. Note that the TP interval is a pretty good
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Figure 10. Histograms of deviations between the markings of the proposed automatic algorithm
compared to the ‘gold standard’ of manually measured indices including (a) PR interval and
(b) TP interval.

proxy for the QT interval and that the 95% region is ±5 ms, which is better than inter-observer
differences in annotating QT intervals (Moody et al 2006) and conforms to the EACAR3

guidelines. Based on this, it can definitely be said that the proposed automated method
possess acceptable accuracy for clinical evaluations. Furthermore, combining the tracking
properties of the EKF structure with the model-based idea, accuracy close to the experts’
measurements can be obtained.

Another important issue is the limited range of deviations and their relation to the sampling
frequency of the records. Figure 10 implies that the deviation lies in the interval of [−8, 8]
ms for PR interval and [−36, 25] ms for TP interval extraction. Since the sampling frequency
is 128 Hz, the former corresponds to 1 or 2 sample difference, and the latter corresponds to
maximum five sample deviation from the manually located points. However, it was shown
that for higher sampling frequencies (such as 360 Hz), the error is expected to be fewer than
the above results (Sayadi and Shamsollahi 2008b).

5. Discussion and conclusions

A wave-based dynamical set of motion equations was described and validated for synthetic
ECG and CW generation, according to which a Bayesian framework was proposed for real
ECG filtering. The model is based on a four-dimensional state space that incorporates the
characteristic waves of the ECG into a dynamical model. By separating the Gaussian functions,
and using two kernels for asymmetric P- and T-waves, a state space model was constructed.
The proposed set of equations aims at integrating into the ECG model, a mechanism that
estimates an ECG signal as a combination of finite characteristic waveforms, each of which
represents a particular physiological state of the heart.

The model is capable of replicating many of the important features of the human ECG,
including the morphological features and the spectral characteristics. In fact, many of the
morphological changes observed in the real ECGs manifest as a consequence of the geometrical
structure of the model. The model parameters control the specifications of the synthesized
ECG, and in particular the average morphology can be controlled by specifying the positions
of the P, Q, R, S, and T events and the magnitude of their effect on the ECG. Having access

3 The Expert Working Group (Efficacy) of the International Conference on Harmonization of Technical Requirements
for Registration of Pharmaceuticals for Human Use (ICH) (Branch 2005).
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to a realistic ECG provides a benchmark for testing biomedical signal processing techniques.
Accordingly, it is important to know how they perform for different noise levels and sampling
frequencies. In addition, separation of different characteristic waveforms enables us to have
control on separate physiological states, which are coupled together via the angular frequency
parameter.

On the other hand, the state space model provides a means of KF-based tracking the
behavior of the CWs, throughout the filtering procedure. From a filtering point of view,
KFs can be thought of as adaptive filters that continuously move the location of the poles
and zeros of their transfer functions, according to the signal or noise content of the input
observations and the prior model of the signal dynamics. The filter structure is based upon a
unique dynamical model, which is adapted to the observations according to the propagation
equations. Moreover, this feature allows the filter to adapt with different spectral shapes
and temporal nonstationarities since the variance of the observation noise represents the
degree of reliability of a single observation, as well as the degree of adaptively tracking the
input noisy measurement. Based on this concept, we used the state variables estimations to
obtain a denoised version of the input signal. The underlying dynamics (7) together with
the KF structural covariance matrices guarantee the preservation of the signal morphology
throughout the filtering procedure. The designed filter was applied to standard ECG databases.
Compared to benchmark denoising schemes, the proposed EKF4 and EKS4 provide a larger
SNR improvement, especially in lower input SNRs, where the original signal is lost in noise.

The use of adaptive Gaussian filters had been previously reported (Hodson et al 1981,
Talmon et al 1986), where the frequency response of a convolutive Gaussian filter was adapted
to the estimates of the local properties of the signal in order to minimize the distortion of
the undisturbed signal by the filter. The major drawback of these methods is the template
waveform construction which results in a complex method with increased processing time
(Talmon et al 1986). However, the EKF-based technique does not depend on a template and
instead uses a dynamic state space representation for adaptive signal tracking. Moreover,
unlike the digital filters that depend on the phase alignment and bandwidth control (De Pinto
1991), the Kalman filters do not need any spectral adjustments.

Another point of interest is the low variance of SNR improvements for EKF4 and EKS4,
which ensures the consistency of results as compared to other methods. Furthermore, the new
modifications in the EKF structure results in fewer peak distortions and baseline perturbations
tracking. This is true not only for white noise cases, but also for colored and real noises. In
particular, the filter is more consistent while encountering spontaneous arrhythmias than the
previously published methods. Hence, the proposed method can serve as a basis for the design
of a robust ECG filter, with applications for low SNR ECGs.

As an advantage, the model in its current form can be effectively used for ECG
segmentation and fiducial points extraction. In fact, since the wave-based model provides
separate estimation of the characteristic waves, the point extraction procedure can be much
easier than point localization on the ECG signal. Furthermore, similar analytic expressions
to Sayadi and Shamsollahi (2009) can be used for feature extraction from the characteristic
waves of the ECG recordings.

In summary, the main contributions of this work are (1) the introduction of a wave-
based state space formulation for generating different types of pathologic ECG waveforms,
(2) the derivation of a linearized model and the establishment of linear observation relations,
(3) the proposal of a Kalman-based filtering scheme that could provide robust estimations
of the input noisy measurements and (4) the determination of ECG fiducial points based on
the wave-based structure. Future works include incorporating non-Gaussian dynamics into
the model to have a physiological correspondence for the asymmetric CWs. In addition,
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through modification of the RR-process, and especially by assigning nonlinear phases to the
intermediate samples between R peaks, the time consequence of the CWs would be controlled,
to produce pathological conditions such as QT prolongation and escape beats. Moreover, it
is possible to use the methodology proposed by Clifford et al (2010) and employ a first-order
Markov chain to incorporate the transitions from normal to arrhythmia. Probability transitions
can be learned from real data or modeled by coupling to heart rate and sympathovagal balance.
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