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Abstract

The study of electrocardiogram (ECG) waveform amplitudes, timings and
patterns has been the subject of intense research, for it provides a deep insight
into the diagnostic features of the heart’s functionality. In some recent works, a
Bayesian filtering paradigm has been proposed for denoising and compression
of ECG signals. In this paper, it is shown that this framework may be
effectively used for ECG beat segmentation and extraction of fiducial points.
Analytic expressions for the determination of points and intervals are derived
and evaluated on various real ECG signals. Simulation results show that the
method can contribute to and enhance the clinical ECG beat segmentation
performance.

Keywords: correction algorithm, ECG dynamical model, extended Kalman
filter, fluctuating estimates, fiducial points extraction, segmentation

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Automatic analysis of the electrocardiogram (ECG) has been the subject of intense research
during the last three decades and is well known in the physiological measurement field. The
particular interest for ECG analysis comes from its role as an efficient noninvasive investigative
method which provides useful information for the detection, diagnosis and treatment of cardiac
diseases. The ECG signal has a time pseudo-periodicity allowing for the definition of an
elementary beat composed of specific waveforms PQRST, appearing pseudo-periodically in
time. Each individual heartbeat comprises a number of distinct cardiological stages, which in
turn give rise to a set of distinct features in the ECG waveform. These features represent either
depolarization (electrical discharging) or repolarization (electrical recharging) of the muscle
cells in particular regions of the heart. The standard features of the ECG waveform are the
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P wave, the QRS complex and the T wave. Additionally a small U wave is occasionally present,
which does not contain significant diagnostic information. The cardiac cycle begins with the
P wave (the start and end points of which are referred to as Pon and Poff), which corresponds to
the period of atrial depolarization in the heart. This is followed by the QRS complex, which is
generally the most recognizable feature of an ECG waveform, and corresponds to the period
of ventricular depolarization. The T wave follows the QRS complex and corresponds to the
period of ventricular repolarization. The end point of the T wave is referred to as Toff and
represents the end of the cardiac cycle (presuming the absence of a U wave). Moreover, the
timing between the onset and offset of particular features of the ECG, which is being referred
to as an interval, is of great importance since it provides a measure of the state of the heart and
can indicate the presence of certain cardiological conditions (Clifford et al 2006).

The general aim of any signal segmentation method is to ‘partition’ a given signal into
consecutive regions of interest. In the context of the ECG then, the role of segmentation is
to determine as accurately as possible the onset and offset boundaries, as well as the peak
locations, of the various waveform features, such that the ECG interval measurements may be
computed automatically and the study of waveform patterns will be facilitated. For instance,
one can easily show that the heart rate is estimated after detecting the QRS complex from a
beat sequence. In the same way, the time distance between two consecutive QRS complexes,
known as the RR interval, is used to detect premature beats. This analysis may be extended to
other conditions like the ST-segment deviation from a long period, necessary to early diagnosis
of ischemia. As a result, reliable ECG analysis depends directly on the ECG beat segmentation
results (Kadish 2001).

The focus of this paper is to segment a given ECG, which in turn requires the detection
of the fiducial points (FPs) and the peak locations related to the five main waveforms. FPs in
an ECG signal are the onset and offset of P and T waveforms, the locations of QRS complex
and the peak which is the extremum of the characteristic waves.

Efforts have been aimed at coping with the problem of extraction of characteristic points
in an ECG. Most works in this field employ heuristic rules to segment heartbeat automatically
from the ECG signal after performing a suitable preprocessing technique (Gritzali et al 1989,
Laguna et al 1994, Li et al 1995, Vullings et al 1998, Köhler et al 2002), and many authors
underline the advantages of the wavelet transform (Li et al 1995, Afonso et al 1999, Kadambe
et al 1999, Mahmoodabadi et al 2005, Krimi et al 2006). The multiscale decomposition
improves robustness, when the signal is corrupted by noise (Köhler et al 2002). On the other
hand, regarding the beat classification task, a large number of methods have already been
proposed. In general, the classification approaches are heuristic, namely decision trees and
fuzzy logic (Kors and Bemmel 1990), and statistics, namely discriminant analysis (Kors and
Bemmel 1990), hidden Markov models (Coast et al 1990), neural networks (Bortolan et al
1990, Hu et al 1997, Andreão et al 2002) and statistical rule-based systems (Elghazzawi and
Gehed 1996).

Recently, Bayesian filters such as the extended Kalman filter (EKF) were proposed for
ECG denoising (Sameni et al 2007). The state-space model (SSM) used in these approaches
was inspired from the work by McSharry et al (2003), which suggested the use of Gaussian
mixture models to generate realistic synthetic ECGs. It was later found that by simple
modifications, the ECG filtering framework developed by Sameni et al (2007) could be
used as a general framework for model-based ECG filtering (Sayadi et al 2007), simultaneous
denoising and compression (Sayadi and Shamsollahi 2008a) and filtering cardiac contaminants
(Sameni et al 2008).

In this paper, we take advantage of the estimations provided by the modified framework
(Sayadi and Shamsollahi 2008a) to fully determine the locations of characteristic waveforms
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Figure 1. Single-beat and multiple-beat morphological features of a typical ECG signal.

and their corresponding FPs. We also present the details of this general framework for beat-
to-beat segmentation and interval representation. Moreover, several examples are presented
and the method is compared to some benchmark algorithms.

The paper is organized as follows. In section 2, the basic model-based idea for ECG beat
segmentation is presented. In section 3, the previously developed Bayesian framework for
estimating the required parameters for segmentation is reviewed. The details of the proposed
extension and analytic derivations using the EKF structure are presented in section 4. Section 5
is devoted to simulation results. Finally, discussion and concluding remarks are provided in
section 6.

2. Model-based ECG beat segmentation

According to the previous definition, ECG beat segmentation is the process of extracting
multiple points in the signal so that not only successive beats are separated but also the
waveforms embedded in every single beat are being distinguished. This definition clarifies
two types of morphological features in an ECG signal; single-beat and multiple-beat features.
The former points to those features that are extracted from a single beat on an ECG signal,
such as the amplitudes of P, Q, R, S and T, or the P, QRS and T duration. Meanwhile, the
latter refers to the features that are dependent to at least two successive beats, such as the RR
or TP interval. Typical morphologic features of ECG waveforms and the corresponding time
intervals are illustrated in figure 1. As can be seen, the majority of shown features depend
directly on determination of the locations of FPs and the peak points, which are generally
regarded as the segment symbols.

Simple investigation of figure 1 implies that we need to locate the beginning, the peak
and the end point of PQRST waveforms to obtain the shape features. The detection of the
QRS complex is the most important task, since it provides a more detailed examination of
ECG signal, including beat separation, the heart rate, the ST segment, etc. Most of the QRS
detectors are based on decision rules and thresholding of a filtered and transformed version
of the signal, which suffer from three problems: (1) variations of the QRS frequency band
for different subjects, (2) overlaps between the frequency content of QRS and noise and (3)
dependence of the threshold value on the signal (Köhler et al 2002).
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The same story is true for P and T waves. The P waves are usually a low-amplitude
feature that can often become subsumed by the baseline noise in a signal. The enormity of this
problem has led to a pervasive analysis of beat-to-beat intervals based upon the QRS complex
as a fiducial marker, including the syntactic method (Skordalakis 1986) and the hidden Markov
method (Coast et al 1990), which are complex and time-consuming, length transformation for
P and T detection (Gritzali et al 1989) and the application of wavelet transform for the T wave
detection (Krimi et al 2006).

A simple interpretation for the determination of the segment symbols is to model every
heartbeat as a combination of finite kernels, such as Gaussian kernels. In other words, if
we assume that every beat of an ECG signal can comprise finite Gaussian kernels, then the
parameters of these kernels can be related to the fiducial and peak points. However, the
exact relation between the kernel variables and the segment symbols are not derived so far.
Hence, as a pioneer work for the purpose of beat segmentation, we consider a combination
of five Gaussian kernels to represent a single ECG cycle, so that each kernel stands for one
of the PQRST waveforms. This idea originates from the synthetic model that was proposed
for generating artificial ECGs, which unifies the morphology and pulse timing in a single
nonlinear dynamic model (McSharry et al 2003). The model generates a three-dimensional
trajectory which consists of a circular limit cycle in the polar plane that is pushed up and down
as it approaches each of the wave centers, as shown in figure 2(a). The simplified discrete
version of the model is shown as⎧⎪⎪⎨

⎪⎪⎩
ϕk+1 = ϕk + ω · δ

sk+1 = sk −
∑

i∈{P,Q,R,S,T }
δ · αikω

b2
ik

· �θi[k] exp

(
−�θ2

ik

2b2
ik

)
+ η,

(1)

where δ is the sampling period, ω = 2π f, f is the beat-to-beat heart rate and �θik =
(ϕk − θik ) mod(2π). ϕ is a saw-tooth-shape signal that is expected to be zero at R-peaks,
and being linearly assigned a phase between −π and π to the ECG samples between two
successive R-peaks (figure 2(b)). αi, bi and θ i are the amplitude, angular spread and location
of the Gaussian functions, respectively, and η is a random additive white noise which represents
the baseline wander effects and models other additive sources of process noise. Concerning
the simplicity and flexibility of this model, it can be easily used as a base for ECG processing,
as demonstrated by Clifford et al (2005), where the use of the model to filter, compress and
classify the ECG was first proposed.

Prior to the derivation of analytic formulas for the extraction of segment symbols, it is
necessary to be more familiar with the characteristic parameters of a Gaussian kernel (GK).
A general GK is written in the following form:

yGK = A exp

(
− (xGK − μ)2

σ 2

)
, (2)

where A, μ and σ determine the amplitude, center and spread of the function y, respectively.
It can be assumed that the ECG waveform peaks correspond to the center parameters of
Gaussian functions, where the trajectory reaches to its local maxima/minima. This way, the
θ i parameter, which stands for μ, determines the PQRST peak locations as follows:

Ppeak = θP , Qpeak = θQ, Rpeak = θR,

Speak = θS, Tpeak = θT .
(3)

The center positions for a typical synthetic trajectory are shown in figure 2(a) with small filled
circles. In order to find the onset and offset of the waveforms, we have taken advantage of
the spread parameter. Hence, to determine the onset and offset of P and T waves, we have
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Figure 2. (a) Typical trajectory generated by the ECG dynamical model (1) in the 3D space given
by (x, y, z). The small circles show the center positions of the P, Q, R, S and T events on the limit
cycle of unit radius. (b) Typical generated ECG and the corresponding phase signal.

(b)(a)

Figure 3. (a) Five Gaussian functions with arrows indicating the kernels’ effect intervals. (b) Real
ECG signal and the sum of five Gaussian kernels.

used the approximately 99% confidence bound considering the spread parameters, bi, for the
termination of the two Gaussian functions representing these waves. In other words, when
any of the two Gaussian functions representing P and T waves in the dynamical model extends
to three times its spread (equal to 99% confidence bound), it is considered as the onset point.
The same is true for the offset point. Similarly to detect the QRS peaks, we have used the
remaining three Gaussian center locations to extract these peaks. To clarify this, refer to
figure 3 which declares the above description.

Consequently, the bi parameter, which corresponds to the σ parameter of a GK, specifies
the deviation from the peak position θ i. This deviation gives the onset and offset points of the
PQRST kernels, provided that we assume symmetry for each ECG characteristic waveform.
Accordingly, the onset and offset points are given as

Pon = θP − 3bP , Poff = θP + 3bP , QRSon = θQ − 3bQ,

QRSoff = θS + 3bs, Ton = θT − 3bT , Toff = θT + 3bT .
(4)

Having shown the relevance of the Gaussian kernels to the onset and offset points, it is possible
to derive analytic expressions for the locations of FPs, based on the estimated state variables.
However, when using five Gaussian kernels, the asymmetric properties of some waveforms,
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and specially the T wave, may cause errors in determining the wave duration. In other words,
more accurate reconstruction is possible if we vary the number of Gaussian functions, as
proposed by Clifford et al (2005), where asymmetries in waveforms or extra waves (such as
the U wave) can be modeled by adding two Gaussians for each asymmetric turning point.
Particularly, when six Gaussians are used, the characteristic waveforms are reconstructed
almost perfectly, with minimal distortion in the diagnostic information during compression
(Sayadi and Shamsollahi 2008a). According to the asymmetric shape of the T wave, for
assigning the Gaussians to the PQRST waveforms, two Gaussians are recommended for the T
wave, called T+ and T− (Clifford et al 2005). This way, distortionless representation of the T
wave and especially the ST segment is possible (Sayadi and Shamsollahi 2008a). For the sake
of better sensitivity, we insist on using five Gaussians. However, a correction algorithm based
on the behavior of the auto-regressive hidden-state variables will be proposed to overcome the
errors corresponding to the asymmetric waves.

3. Bayesian framework for estimating the GK parameters

Based on the Gaussian mixture model concept, a mathematical representation for the clean
ECG signal can be obtained by integrating the last equation of the continuous form of ECG
dynamical model (EDM) introduced in (1) with respect to t (McSharry et al 2003). This way,
the ECG signal is formulated as a sum of five Gaussians as

z(αi, bi, θi) =
∑

i∈{P,Q,R,S,T }
αi exp

(−�θ2
i

/
2b2

i

)
. (5)

The proposal to use the EDM as a basis for estimating the parameters of the mixture model
was previously introduced using an optimization scheme to find the least-squares error fit for
the input ECG (Clifford et al 2005). This fit was mathematically optimal in the LSE sense
but did not use any dynamical adaptable information about the input ECG. In the previous
approach, the nonlinear optimization has to be performed within each cycle of the signal.
Also, initial values of the parameters of the model are required. These initials together with
the system dynamics enable us to find an optimal fit for the proceeding cycles through the
solution (5). This optimization-based approach was recently adopted for FP extraction from
baseline wandered ECG records (Sayadi and Shamsollahi 2008c).

On the other hand, the Bayesian filtering framework showed promising results in ECG
denoising (Sameni et al 2007) and compression (Sayadi and Shamsollahi 2008a). Accordingly,
because the modified framework estimates the parameters of the Gaussian kernels of the EDM
(Sayadi and Shamsollahi 2008a), this idea comes to mind that we can extend the SSM for
detecting the FPs of an ECG signal. The current approach is also based on the EDM. However,
the Bayesian filters use the dynamical set of equations in the construction of an adaptive filter
which not only uses the ECG as an observation but also depends on the state dynamics.
Furthermore, the EKF-based algorithm does not need to have the initial parameters for every
cycle of the input signal. Hence, it seems to be an efficient idea for providing the estimations
of GK parameters. In the current study, we have chosen the Bayesian framework, instead
of the LSE optimization, to find the estimations of the GK parameters. In this section, we
review the modified Bayesian framework proposed by Sayadi and Shamsollahi (2008a) and
its application to the estimation of GK parameters.

Sameni et al (2007) suggested a nonlinear SSM for representing noisy ECG signals.
The idea that long-term ECGs can be described by a series of states described by a given
power-spectral density with similar parameters over the short term motivated us to propose
autoregressive (AR) dynamics to obtain the modified EDM (Sayadi et al 2007, Sayadi and
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Shamsollahi 2008a). In this model, the parameters of the Gaussian functions are considered
as hidden-state variables with first order AR dynamics and no corresponding observations.
This modified model is summarized as follows (Sayadi and Shamsollahi 2008a):

Process equation:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕk+1 = ϕk + ω · δ

sk+1 = sk −
N∑

i=1

δ · αikω

b2
ik

· �θi[k] exp

(
−�θ2

ik

2b2
ik

)
+ η

α1k+1 = α1k
+ u1k

...

b1k+1 = b1k
+ uN+1k

...

θ1k+1 = θ1k
+ u2N+1k

...

θNk+1 = θNk
+ u3Nk

.

(6)

Observation equation:{
φk = ϕk + vk

yk = sk + wk,
(7)

where N is the number of Gaussian kernels. In (6) and (7), ϕ, s, αi, bi and θi (i = 1, . . . , N)

are assumed as the state variables, and ω, η and uj (j = 1, . . . , 3N) are assumed as i.i.d
Gaussian random variables considered as process noises. In the observation equation (7), φ

and y are the phase observations and the noisy ECG measurements, respectively, and v and w

are the corresponding observation noises. The process noise and observation noise vectors of
the proposed SSM are defined as follows:

W = [ω, η, u1, . . . , u3N ]T ,

V = [v,w]T .
(8)

All entries of W and V are assumed as zero-mean random variables, with corresponding
covariance matrices Qk = E

{
WkW

T
k

}
and Rk = E

{
VkV

T
k

}
, which incorporate any uncertainty

of the SSM (Gelb 1974, Simon 2006).
By defining x = [ϕ, s, α1, . . . , αN, b1, . . . , bN , θ1, . . . , θN ]T as the state vector, and x̂ as

the posterior estimate of x, the posterior error of the estimation at the time instant k is defined
as ek = xk − x̂k with a covariance matrix Pk = E

{
eke

T
k

}
. The matrix Pk is an essential part of

the standard Kalman filter (KF) and is calculated and updated as the filter propagates in time.
The modified dynamic model proposed in (6) is a nonlinear function of the state and

process noise vectors. Therefore, nonlinear extensions of the KF are required for estimating
the state vector x. Our proposed framework is built upon an EKF structure. Although there are
several Bayesian filters such as the extended Kalman smoother (EKS) and unscented Kalman
filter (UKF), in this research, we have chosen the EKF for its simplicity and more numerical
stability. However, the overall filtering performance is expected to be better with EKS or UKF
(Sameni et al 2007).

In order to implement the EKF, the time propagation and the measurement propagation
equations are summarized as follows (Kay 1981):
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x̂−

k+1 = f (x̂+
k , w, k)|w=0

P −
k+1 = AkP

+
k AT

k + FkQkF
T
k ,⎧⎪⎨

⎪⎩
x̂+

k = x̂−
k + Kk[y

k
− g(x̂−

k , v, k)|v=0]

Kk = P −
k CT

k [CkP
−
k CT

k + GkRkG
T
k ]−1

P +
k = P −

k − KkCkP
−
k ,

(9)

where

Ak = ∂f (x, ŵk, k)

∂x

∣∣∣∣
x=x̂k

Fk = ∂f (x̂k, w, k)

∂w

∣∣∣∣
w=ŵk

Ck = ∂g(x, v̂k, k)

∂x

∣∣∣∣
x=x̂k

Gk = ∂g(x̂k, v, k)

∂v

∣∣∣∣
v=v̂k

.

(10)

In the above EKF formulation, f and g stand for the process functions (6) and observation
functions (7), respectively. Suppose that the EKF is applied to an ECG signal, based on the
modified dynamical system (6). The provided estimations are a set of (3 × N + 2) state
variables, whose estimate is in the form of a time series. The time series include the following.

(i) Estimation of the phase signal (ϕ̂). This estimation is expected to resemble a saw-tooth-
shape signal with phase assignments between −π and π to the ECG samples between
two successive R-peaks.

(ii) Estimation of the ECG signal (ŝ). This estimation is provided by summation of N Gaussian
kernels, as shown in (1). Each Gaussian function has three parameters; amplitude (αi),
center (θ i) and spread (bi), which control the fitness of the kernels to the waveforms of
the ECG signal.

(iii) Estimation of the amplitudes of Gaussian kernels (α̂i). These N hidden-state variables
determines the amount of offset needed to push the circular limit cycle, up and down, as
it approaches each Gaussian center. In particular, for N = 5, the amplitude estimations
correspond directly to the amplitudes of five main ECG waveforms, i.e. P, Q, R, S and
T. For a monotonic ECG, in which successive beats follow a similar morphology, it is
expected that the amplitudes of the waveforms remain almost unchanged during successive
cycles (Sayadi and Shamsollahi 2008a).

(iv) Estimation of the center of Gaussian kernels (θ̂i). These estimations determine the local
maximum or the minimum of the trajectory, with respect to the wrapped phase �θ i.
Although there exist negligible variations in different beats, the centers are expected to
appear in same locations on the wrapped limit cycle, during successive heartbeats.

(v) Estimation of the spread of Gaussian kernels (b̂i). These estimations determine the width
of each Gaussian function and correspond to the temporal spread of each kernel around
its center. Again, it is expected that the width of each kernel remains almost unchanged.
This is implied from the auto-regressive dynamics introduced in (6).

Accordingly, the first- and second- state variables give the phase and ECG signal
estimations. Other state variables give estimations of the parameters of N Gaussian functions.
In order to obtain the segment symbols, it is now reasonable to assign the parameters of these
kernels to the temporal locations of the FPs, according to (3) and (4).

4. The correction algorithm

To investigate the functionality of the proposed EKF structure in correcting the determination of
the FPs, first, we should study the role of autoregressive equations. The dynamical state-space
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model (6) implies that the 3rd to (3N + 2)th state variables are the parameters of N Gaussian
kernels. In order to ensure a valid set of equations, and because the Gaussian parameters are
expected to have little variations from one beat to another beat in monotonic ECG signals,
only one term is added to the previously estimated value to obtain current estimation at instant
k + 1. In other words, we expect that the recent sample can be regressed on the past value of
itself. This concept can be narrated in a simpler manner, in order to relate the EKF framework
to the beat segmentation problem.

Suppose a general first-order auto-regressive model, namely AR[1], is shown as follows:

zk+1 = γ zk + uk, (11)

where γ is the model coefficient and u is a zero mean white process noise. If we want to
estimate the best model for a given time series, then the AR coefficient γ can be estimated from
the autocorrelation sequence by solving the Yule–Walker equations. Based on this concept, it
is expected that the hidden state variables show a quasi-constant behavior. Since the hidden
variables are the parameters of the Gaussian kernels of the EDM, they are estimated in such
a way to result in the best fit to the Gaussian mixture model dynamics. This way, the filter
encounters two types of observation samples.

(i) In-kernel samples. Parts of the observation signal y that form any of the P, Q, R, S and
T waveforms are called in-kernel for the ith Gaussian kernel, if they correspond to αi, bi

and θ i variables.
(ii) Out-kernel samples. Parts of the observation signal y that do not belong to PQRST, or

parts that are in kernel of the ith Gaussian function, but correspond to αj, bj and θj (j �= i)

are called out-kernel.

For example, consider the case that the ECG signal is modeled with five kernels. The
samples of P waves in the ECG signal are in-kernel for the first Gaussian function, that relates
the observation to α1, b1 and θ1, and out-kernel for the remaining Gaussian functions, that
is αj, bj and θj (j �= 1). Similarly, the samples of Q waves are in-kernel for the second
Gaussian function, while out-kernel for the first, third, fourth and fifth Gaussian functions.
This classification is the key through behavior analysis of estimated variables.

When the filter encounters an in-kernel sample, it tries to find the best estimate of the
hidden variables according to the AR[1] dynamics. On the other hand, the corresponding ECG
waveform has not end up in this sample. Hence, the estimate uses the previous observation
samples and is not capable of performing a reliable estimation for the mentioned sample. The
unreliable estimation continues, unless the waveform ends up, corresponding to the beginning
of the introduction of the first out-kernel sample to the filter. At this location, the filter provides
a reliable estimation, leading to a quasi-constant behavior.

According to the above description, it is reasonable to expect a fluctuation in the estimated
time series of the in-kernel samples, while a quasi-constant behavior is expected for the out-
kernel samples. On the other hand, in-kernel samples point to the duration of each waveform.
Thus, the fluctuating parts of the estimations provided by the EKF structure show an estimation
of the waveform bounds (Sayadi and Shamsollahi 2008b).

Combining the approach discussed in section 3.1 with the correction algorithm, which is
based on the fluctuations in the estimated Gaussian parameters, the following formula is given
to determine the onset and offset points of the ECG waveforms:

Pon = min
(
θP − 3bP , f on

P

)
Poff = max

(
θP + 3bP , f off

P

)
QRSon = min

(
θQ − 3bQ, f on

Q

)
QRSoff = max

(
θS + 3bs, f

off
S

)
Ton = min

(
θT − 3bT , f on

T

)
Toff = max

(
θT + 3bT , f off

T

)
,

(12)
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Figure 4. General block diagram for the proposed segmentation algorithm.

Table 1. Rule chart for the extraction of ECG morphological features using the Gaussian kernel
parameters.

Feature Relevance to the fiducial points Extraction formula

Pamp Amplitude of the ECG signal at Ppeak αp

QRS−
amp Minimum amplitude of the ECG signal at Qpeak, Rpeak, Speak min(αQ, αR, αS)

QRS+
amp Maximum amplitude of the ECG signal at Qpeak, Rpeak, Speak max(αQ, αR, αS)

Tamp Amplitude of the ECG signal at Ppeak αT

Pdur Difference between the onset and offset of the P wave Poff − Pon

QRSdur Difference between the onset of the Q wave and offset of the S wave Soff − Qon

Tdur Difference between the onset and offset of the T wave Toff − Ton

RRint Difference between the peak locations of two successive R waves R′
peak − Rpeak

QT
p

int Difference between peak locations of the Q wave and T wave Tpeak − Qpeak

QTint Difference between the peak location of the Q wave and offset of T wave Toff − Qpeak

TPint Difference between the peak locations of the T wave and next P wave P ′
peak − Tpeak

where f on
i and f off

i stand for the onset and offset of the fluctuating part of waveform i, which
are detected based on the zero-crossings of slope changes in the estimated signal. Here, the
slope signal is constructed using the first or the second derivative, or equivalently one can use
the slope signal introduced by Lee et al (2005) as

slopek = 2gk+2 + gk+1 − gk−1 − 2gk−2, (13)

where g is the Gaussian kernel parameters αi, bi and θi . The overall beat segmentation
algorithm is illustrated in figure 4. It is worthy to note that all of the morphological features
can be written in the form of these notations, which are summarized in table 1.

5. Simulation results

The proposed algorithm was implemented in MATLAB R©. The MIT-BIH Normal Sinus
Rhythm Database (Goldberger et al 2000, MIT-BIH Normal Sinus Rhythm Database 1991)
was used to study the performance of the proposed method. This database has a sampling
rate of 128 Hz. From this database, 80 low-noise segments of 30 s ECG without considerable
artifacts were visually selected from different channels. The manual detection was used to
provide a known reference for the exploration, so these ECGs were first annotated completely
by experienced cardiologists from Tehran Heart Center (THC).
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Figure 5. Typical estimated state variables for an ECG signal. (a) Input signal, (b) phase and ECG
estimations, (c) θP, (d) slope of θP, (e) θQ, (f) slope of θQ, (g) αR, (h) slope of αR, (i) bS, (j) slope
of bS, (k) bT and (l) slope of bT.

Figure 5 shows an ECG signal, typical state variable estimates and the corresponding
slope signals. It can be seen that the fluctuations correspond to the in-kernel samples, which
determine the duration of each waveform by zero-crossing detection of the slope signals.
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Table 2. Performance evaluation of the proposed method for segment symbol extraction using
sensitivity (Sn), specificity (Sp) and positive predictivity (+P). The number of true recognitions (true
positive, TP, and true negative, TN, detections) together with the number of false recognitions (false
positive, FP, and false negative, FN, detections) are provided with/without using the correction
algorithm.

Record number
Correction

Measure algorithm 16265 16272 16273 16420 16483 Total

TP No 6683 4669 5055 6540 5903 28 850
Yes 7744 5104 6160 7392 8096 34 496

TN No 82 357 54 218 65 501 78 593 86 012 366 681
Yes 82 357 54 218 65 501 78 593 86 012 366 681

FP No 1087 438 1116 852 2212 5705
Yes 26 3 11 0 19 59

FN No 0 0 0 0 0 0
Yes 0 0 0 0 0 0

Sn (%) No 100 100 100 100 100 100
Yes 100 100 100 100 100 100

Sp (%) No 97.97 99.20 98.32 98.93 97.49 98.47
Yes 99.96 99.94 99.82 100 99.76 99.83

+P (%) No 86.01 91.42 81.92 88.47 72.74 83.49
Yes 99.97 99.99 99.98 100 99.98 99.98

Prior to the implementation of the proposed method, it is necessary to select the initial
value for the state vector as well as the selection of the covariance matrices of the process
and the measurement noise, which will influence the trajectory of the estimated vectors. The
interested reader is referred to Sameni et al (2007), where an efficient automated selection
procedure for any given ECG was used. In this study, we have used the same procedure as
Sayadi and Shamsollahi (2008a) for the initialization of the modified EKF structure.

In order to evaluate the performance of the proposed beat segmentation technique, we
have used the following parameters to evaluate our method: number of true positive detections
(TP), number of false positive detections (FP), number of true negative detections (TN) and
number of false negative detections (FN). Obviously, TP and TN show the correct points’
recognition by the algorithm. Hence, it is expected that TP equals the number of all FPs, and
TN equals the number of all non-FPs. According to the above terminology, sensitivity (Sn),
specificity (Sp) and positive predictivity (+P) criteria are defined as

Sn = T P

T P + FN
, (14)

Sp = T N

T N + FP
, (15)

+P = T P

T P + FP
. (16)

Performance evaluation results are provided for all of the 80 ECG segments, chosen from
five channel recordings of approximately 8 min long. Table 2 shows the results for two
different approaches: the FP detection using equation (4) where no correction algorithm is
being applied, and using equation (12) which is based on the correction algorithm.

It can be seen that the correction algorithm improves the point extraction results greatly.
Specifically, for records with asymmetric waveforms, the fluctuation parts of the estimations
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Table 3. Performance evaluation of benchmark methods for ECG components detection and
comparison to the proposed model-based method.

Benchmark methodsa Proposed method

Components Sn (%) Sp (%) +P (%) Sn (%) Sp (%) +P (%)

P wave 90.24 91.08 84.18 100 98.76 99.11
QRS complex 98.79 99.91 99.90 100 99.93 99.96
T wave 95.32 98.80 99.25 100 99.06 99.39

a Benchmark methods include Gritzali et al (1989) for P and T wave detection, and Li et al (1995)
for QRS detection.

provided by the EKF play the major role in min–max operations (12). Hence, the enhancement
is much more obvious for these cases. Particularly, the decrease in the FP detections yields
very satisfactory positive predictivity ratios (99.98%) compared to the results using (4) where
no correction algorithm is applied (83.49%).

As mentioned before, we have restricted the EDM to model a single ECG cycle as
the summation of five Gaussian kernels. Although N = 5 is not sufficient to incorporate
the diagnostic specifications and the asymmetric properties of ECG signals, particularly in
compression applications (Sayadi and Shamsollahi 2008a), but it is beneficial for having no
FN detections. In other words, the model with five Gaussian functions is limited to give 15
kernel parameters, which are estimated through the EKF structure. These parameters specify
the GMM for any cycles of the signal, which match to PQRST waveforms. Hence, no extra
false points are detected. Accordingly, the sensitivity of the method for all of the records is
always 100%, independent of applying the correction algorithm. This is beneficial especially
for ECGs containing ambiguous waves. Furthermore, the specificity and positive predictivity
results are well within the acceptable range. It can be seen that none of the analyzed cases
result in specificity less than 99.66% and positive predictivity of 99.97%.

There are few works which focus on determining all the FPs of an ECG. The majority
of these include feature extraction approaches for classification, or compression evaluation.
Here, we can obtain all of the features relating to locations (6) and (8) or time intervals, listed
in table 1. However, to investigate the validity of the results, we have compared the model-
based algorithm to some of the benchmark methods for ECG characteristic wave extraction.
Numerical evaluation results are reported in table 3. It can be seen from table 3 that our
proposed method provides a higher specificity and positive predictivity, while preserving the
zero false-negative detection. Additionally, for all components, the results of our algorithm is
comparable to and usually superior to the other methods being tested, which shows the ability
of the proposed framework to detect the P and T waves and the QRS complex. Hence, the
model-based algorithm extracts the characteristic components of the signal more accurately.

As a graphical representation, it is time to show typical locations of the FPs on some ECG
signals. Figure 6 shows the results of applying the proposed segmentation algorithm on two
different ECG records. As can be seen, the distinguished precise FPs indicated by circles are
clearly at their exact locations, compared to the manual detection results. To appreciate the
merits of the proposed algorithm, and to show the consistency of the results to the manual
detections, we have shown the distinguished FPs by an expert, as well as the detections of
the proposed algorithm and some benchmark methods, all in figure 7. The ECG record
contains low amplitude P waves with inverted T waves. A simple visual comparison shows
the capability of the Bayesian framework, compared to the benchmark methods, especially for
detecting the onset and offset of P waves which pertain to be biphasic, and also asymmetric T
waves.
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(a)

(b)

Figure 6. Segmentation results for two typical ECG signals. (a) Fiducial points for record no.
16420, (b) fiducial points for record no. 16273.

In order to investigate the segmentation results of the proposed model-based algorithm
statistically, histograms of deviations between the markings of the automatic algorithm
compared to the ‘gold standard’ of manually measured P wave duration, QRS duration,
QT intervals and TP intervals are presented in figure 8.

The deviations of the method are much better compared to the results obtained with
recent benchmark methods (Meyer et al (2006) for QRS duration, Portet (2008) for P wave
duration, Christov and Simova (2007) for QT interval). The figures demonstrate that the
deviations behave like a normal distribution for those detections which rely on peak points,
i.e. QRSdur and TPint, which are calculated using (4). Moreover, for these cases, the error is
not considerable (mostly below 10 ms). However, the segmentation results for Pdur and QTint

are very similar to log-normal distributions, which is as the result of the asymmetric detection
properties of (12). Similar to the previous cases, the deviations are well in the acceptable
range (below 50 ms), even facing common difficulties such as the noise accompanying the
ECGs, the low magnitude of the T wave, T having bidirectional waveform, fussing U waves,
etc. It can definitely be said that the proposed automated method possess acceptable accuracy
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Figure 7. Segmentation results for a typical ECG signal, including the onset and offset of P, QRS
and T waves. The vertical lines show the manual detection results by expert. The upper plot shows
the results of the proposed algorithm, and the lower plot shows the results of benchmark-automated
methods (Gritzali et al 1989, for P and T waves detection, and Li et al 1995, for QRS detection).

(a) (b)

(c) (d)

Figure 8. Histograms of deviations between the markings of the proposed automatic algorithm
compared to the ‘gold standard’ of manually measured indices including (a) QRS duration, (b) TP
interval, (c) P wave duration and (d) QT interval.
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for clinical evaluations. Furthermore, combining the tracking properties of the EKF structure
with the model-based idea, accuracy close to the experts’ measurements can be obtained.

Another important issue is the limited range of deviations and their relation to the sampling
frequency of the records. Figure 8 implies that the deviation lies in the interval of [−10, 12]
ms for peak detections and [−50, 38] ms for interval extraction. Since the sampling frequency
is 128 Hz, the former corresponds to 1 or 2 sample difference, and the latter corresponds to
maximum 7 samples deviation from the manually located points. However, it was shown that
for higher sampling frequencies (such as 360 Hz), the error is expected to be fewer than the
above results (Sayadi and Shamsollahi 2008b).

6. Discussion and conclusion

In this paper, a model-based Bayesian framework was presented and validated for ECG beat
segmentation. The method is based on a modified EKF algorithm that incorporates the
parameters of the ECG dynamical model. By introducing a simple AR model for each of
the 15 dynamic parameters of the Gaussians, the new EKF structure was constructed. The
proposed set of equations aims at integrating into the ECG model a mechanism that estimates
the new hidden-state variables without having any corresponding observations, which was
later used for analytic FP extraction. The designed filter was applied to various ECG signals,
and the results demonstrate the filter’s capability in filtering and tracking the parameters of a
GMM for the ECG signal.

The EKF structure not only estimates the clean ECG as a Kalman state variable, but also
estimates the Gaussians parameters of the model. Therefore, a formula was derived to match
the parameters of Gaussian kernels to the locations of the FPs. This presents the greatest
potential of the presented mathematical model-based framework, with which the morphology
is tracked efficiently. We also derived rules to locate the peaks of characteristic waves, based
on the estimated state variables. Moreover, investigation of the AR dynamics paved the way
toward the fluctuation concept, which was further used to correct the FP analytic derivation.

From a filtering point of view, KFs can be assumed as adaptive filters that continuously
move the location of the poles and zeros of their transfer functions, according to the signal or
noise content of the input observations and the prior model of the signal dynamics. This way,
we can be sure of the reliability of the estimations, resulting in precise FP extraction and beat
segmentation. Moreover, this feature allows the filter to adapt with different spectral shapes
and temporal non-stationarities, since the variance of the observation noise in (2) represents
the degree of reliability of a single observation, as well as the degree of adaptively tracking
the input noisy measurement. However, in the context of FP extraction, the reliability on the
measurements is not of any interest.

The method was validated using several ECG recordings, including lead II and V2, in
which the PQRST waveforms are dominant. Although the dynamical model is able to adapt
to various morphologies of other leads, attentions should be paid to the definitions of the FPs
for non-standard ECGs, such as those records in which some waveforms are occasionally
missing and the QRS complex is not in the standard form. It is worth noting that the initial
value for the state vector as well as the selection of the covariance matrices of the process
and the measurement noise will highly influence the trajectory of the estimated vectors. The
dependence of the results on these initials is the major drawback of the proposed method.

Performance evaluation results showed that the developed method provides a reliable and
accurate detection of the FPs, providing a mean specificity of 99.83% and a mean positive
predictivity of 99.98%, which is well within the acceptable range. In addition, by selecting
five Gaussian kernels, the false negative ratio was reduced to zero, which resulted in sensitivity
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of 100% for all cases. Moreover, in comparison to other proposed methods for components
detection, the model-based approach has a superior performance, for there is no decision
rules based on comparison against thresholds. It was also shown that the proposed method
is applicable to reliable P wave and T wave detection. Particularly, the performance of the
system is expected to be improved with the increase in the sampling frequency. However, for
low-resolution recordings, the deviations remain in an acceptable range.

Due to the recursive structure of the KF, the proposed method is also computationally
efficient and of special interest for real-time applications. Generally, the computation time
of this method is linearly proportional to the signal length in samples. For the currently
developed MATLAB R© source codes, the computation time is already close to real time.
However, these codes may be further optimized and converted into low-level languages for
use in pre-processing units of clinical monitoring systems.

In addition, through simple modifications, the method would be robust to PQRST
variations, which incorporates several pathological conditions. Moreover, the adaptive nature
of the KF framework results in efficient signal tracking, which is beneficial in generalization
of the method for signals with unknown or ambiguous waves.

For the sake of brevity, the presented results were only based on the EKF. However, other
types of Bayesian filters such as the UKF and the particle filter (PF) can be used in the same
manner for highly nonlinear and non-Gaussian noise scenarios (Haykin 2001).

Future works include incorporating baseline fluctuations in the EDM to reduce the
distortions and cause the algorithm to be more reliable. In addition, different dynamical
models may be proposed to represent the new state variables’ behavior. Also, it is possible
not to use a constant value for the AR coefficient but to find an adaptive value during different
cycles.
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