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Abstract
Electrocardiogram (ECG) and magnetocardiogram (MCG) signals are among
the most considerable sources of noise for other biomedical signals. In some
recent works, a Bayesian filtering framework has been proposed for denoising
the ECG signals. In this paper, it is shown that this framework may be
effectively used for removing cardiac contaminants such as the ECG, MCG
and ballistocardiographic artifacts from different biomedical recordings such
as the electroencephalogram, electromyogram and also for canceling maternal
cardiac signals from fetal ECG/MCG. The proposed method is evaluated on
simulated and real signals.

Keywords: model-based filtering, ECG/MCG denoising, EEG denoising,
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(Some figures in this article are in colour only in the electronic version)

1. Introduction

The electrocardiogram (ECG) is among the strongest bioelectric signals generated in the human
body. It is therefore a considerable artifact when we are interested in recording other bioelectric
signals such as the electroencephalogram (EEG), electromyogram (EMG), electrogastrogram
(EGG), etc. In previous works, many approaches have been proposed for canceling or
decreasing such artifacts. However, due to the spatial, temporal and frequency domain overlap
of the ECG with other biopotentials, it is rather difficult to fully remove these artifacts. A
similar problem is encountered with the artifacts caused by the ballistocardiogram3 (BCG)
and the magnetocardiogram (MCG), which are temporally synchronous with the heartbeat.
3 The ballistocardiogram is a record of the body’s recoil caused by the cardiac contraction.
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In a recent work, Bayesian filters such as the extended Kalman filter (EKF), extended
Kalman smoother (EKS) and unscented Kalman filter (UKF) were proposed for ECG denoising
(Sameni et al 2007b). The state-space model used for these filters was inspired from the work
by McSharry et al (2003), which suggested the use of Gaussian mixtures to model realistic
synthetic ECGs. In Sameni et al (2007b), a modified version of this model was used to
represent the temporal dynamics of pure ECG, while the noisy ECG recorded from the body
surface were considered as noisy observations of the state variables of the dynamical model.

It was later found that by some modifications, the ECG filtering framework developed by
Sameni et al (2007b) could be used as a general framework for removing cardiac contaminants
(CC), such as the ECG, BCG and MCG, from other biomedical recordings. This idea has
been since implemented and tested over several databases from rather diverse applications, in
which conventional CC removal techniques had not led to satisfying results.

In this paper, the details of this general framework are presented, and simulated data are
used to quantify its performance. Moreover, several examples from real world applications
are presented, on which we have up to now evaluated the method. Due to the variety of
the presented applications, the implementation details are skipped and the reader is referred
to the Matlab R© source files and the accompanying technical reports that are available online
in the Open Source ECG Toolbox (OSET) (Sameni 2006). Note that the proposed method
is a filtering framework with several tunable parameters, which enables it to be adapted to
different applications. Some general rules are presented throughout the paper, by which the
filter parameters can be manipulated and tuned for different situations.

The paper is organized as follows. In section 2, the previously developed ECG filtering
framework is reviewed. The details of the proposed extension and a comparison with
conventional methods are presented in sections 3 and 4. In section 5, the results on simulated
and real data are presented, and the final section is devoted to some discussions and concluding
remarks.

2. Review of the Bayesian ECG filtering framework

In Sameni et al (2007b), a nonlinear state-space model was suggested for representing noisy
ECG signals recorded from the body surface. The process and observation equations of this
model are as follows:
Process equation:⎧⎪⎨

⎪⎩
θk+1 = (θk + ωδ)mod(2π)

sk+1 = −
N∑

i=1
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αiω

b2
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�θi exp
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−�θ2

i

2b2
i

)
+ sk + η; (1)

Observation equation:{
φk = θk + uk

yk = sk + vk,
(2)

where δ is the sampling period, �θi = (θk −θi)mod(2π), ω = 2πf, f is the beat-to-beat heart
rate and N is the number of Gaussian functions used for modeling the shape of the desired
ECG. In (1) and (2), θk and sk are assumed as the state variables, and ω, αi, θi, bi and η are
assumed as i.i.d. Gaussian random variables considered as process noises.

In the observation equation (2), φk and yk are, respectively, considered as the phase
observations and the noisy ECG measurements, and uk and vk are the corresponding
observation noises. The first observation signal, φk , is a synthetic saw-tooth shape signal
that is found by detecting the R-peaks of the noisy ECG and linearly assigning a phase
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between −π and π to the ECG samples between two successive R-peaks. This signal is, in
fact, a means of modeling the pseudo-periodic behavior of the cardiac dipole as it evolves
during the depolarization and repolarization stages of the cardiac cycle.

By defining xk = [θk, sk]T as the state vector at the instant k and x̂k as the posterior estimate
of xk , the posterior error of the estimation is defined as ek = xk − x̂k with a covariance matrix
Pk = E

{
ekeT

k

}
. The matrix Pk is an essential part of standard Kalman filter equations and

is calculated and updated as the filter propagates in time. The eigenvalues of this matrix can
be used to form an error likelihood ellipsoid (also known as concentration ellipsoid (Van-
Trees 2001)) that represents the region of highest likelihood for the true state vector xk . This
likelihood ellipsoid provides a confidence region for the estimated signals.

The process noise and observation noise vectors of the proposed state-space model are,
respectively, defined as follows:

wk = [α1, . . . , αN, b1, . . . , bN , θ1, . . . , θN , ω, η]T ,

vk = [uk, vk]T .
(3)

All the entries of wk and vk are assumed as zero-mean random variables. The covariance
matrices of the process and observation noises are hence defined as Qk = E

{
wkwT

k

}
and

Rk = E
{
vkvT

k

}
, respectively. An advantage of the Kalman filtering framework is that all

the model uncertainties are considered in the entries of the covariance matrices Qk and Rk .
Therefore, we can incorporate the uncertainty of a specific parameter or state variable in (1)
and (2), by increasing or decreasing its corresponding entries in Qk or Rk (Sameni et al 2007b,
Gelb 1974, Simon 2006).

The dynamic model proposed in (1) is a nonlinear function of the state and process noise
vectors. Therefore, nonlinear extensions of the Kalman filter (KF), such as the EKF, EKS or
UKF, are required for estimating the state vector xk . In the following sections, for the sake of
brevity, we only present the EKS results that were shown to outperform the EKF and UKF in
a wide range of signal SNRs (Sameni et al 2007b). Further details concerning this model and
the linearized KF equations may be found in Sameni et al (2007b).

Another important issue in Kalman filtering concerns the stability of the filter. The
proof of EKF stability is a challenging and application-dependent phenomenon. In Reif et al
(1999), a set of sufficient conditions have been proposed, under which the estimation error of
the discrete EKF is exponentially bounded in mean square with probability 1.4 The required
conditions include nonlinear observability rank conditions of the dynamic model, sufficiently
small initial estimation errors and sufficiently small observation and process noises. It can
be shown that the dynamic model in (1), (2) satisfies the ranking conditions and the other
assumptions proposed by Reif et al (1999), for moderate ECG noises. However, the stability
bounds which are found by this way are rather conservative and the previous results presented
in Sameni et al (2007b), show that the filter is stable for a wide range of practical SNR
scenarios.

It should be noted that the dynamical model in (1), (2) is not limited to ECG signals. In
fact, as is seen in the later presented applications, by using an appropriate mixture of Gaussian
kernels, it is possible to filter any pseudo-periodic signal with this model.

3. Cardiac artifact removal

The Bayesian filtering framework may further be extended for removing cardiac artifacts
from other biomedical signals. For this, it is again supposed that the noisy recordings are

4 At the discrete time index k, the stochastic process ζk is said to be exponentially bounded in mean square, if real
numbers ρ, ϑ > 0 and 0 < κ < 1 exist such that E{‖ζk‖2} � ρ‖ζ0‖2ϑk + κ (Reif et al 1999).
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Figure 1. The overall denoising scheme. As shown in this figure the R-peaks of the contaminating
signals (CC) may either be detected from an arbitrary reference ECG or from the noisy biosignal
after the baseline wander (BW) removal.

yk = sk + vk , as defined in (2); but this time we are interested in the residual signal vk rather
than sk . In other words, sk represents the CC, while vk is the signal of interest. Therefore, we
can model the CC with the dynamic model in (1) and apply the KF to find an estimate of the
artifacts, namely ŝk . The background signal may then be found as follows:

v̂k = yk − ŝk, (4)

which is the innovation signal of the KF.
The overall filtering procedure is illustrated in figure 1 and may be summarized as follows:

(i) Baseline wander removal. For the reliable extraction of the average CC templates, the
baseline wander of the noisy records should be removed beforehand.

(ii) R-peak detection. These peaks are required for constructing the phase signal φk , which is
in terms needed for synchronizing the noisy ECG with the dynamic model in (1). They
are also used for extracting the mean CC by synchronous averaging over the heartbeats.
Depending on the power of the CC, as compared with the background signals and noise,
the R-peaks may be detectable from the noisy recordings or from any arbitrary ECG
channel synchronously recorded with the noisy dataset.

(iii) CC template extraction. Using the R-peaks, the ensemble average (EA) and standard
deviation of the CC are extracted through synchronous averaging. Several methods have
been proposed in the literature for synchronous averaging. One of the most effective
approaches in this area is the robust weighted averaging method (Leski 2002), which
outperforms conventional EA extraction methods and is useful for noisy nonstationary
mixtures.

(iv) Model fitting. As proposed by Sameni et al (2007b) and Clifford et al (2005), by using
a nonlinear least square estimation, the parameters of the Gaussian kernel defined in (1)
are found, such that the model will best fit the mean CC waveform.

(v) Covariance matrix calculations. The standard deviation of the average CC is used to find
the entries of the covariance matrices of the dynamic model noise Qk , and measurement
noise Rk .

(vi) Filtering. Having extracted all the required parameters, the CC may be estimated by the
KF framework and the desired background signal is found from (4).

Note further that for online applications or denoising long nonstationary datasets, all
of the dynamic model parameters and the covariance matrices may be updated in time by
recalculating them from the most recent cardiac beats.

A rather general algorithm for selecting the filter parameters was presented by Sameni
et al (2007b). Some other rules-of-thumb are summarized in table 1, by which the original
filter parameters can be adapted to different situations.
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Table 1. Rules chart for the manipulation of the filter parameters.

Situation Comments

Strong baseline wanders Remove before Kalman filtering
Low SNR (strong CC) Decrease the corresponding Rk entries
High SNR (weak CC) Increase the corresponding Rk entries;

additional ECG reference may be required
for R-wave detection

Desired signal with highly colored spectrum Remove the baseline wander as much as
possible

Desired signal highly nonstationary Allow the filter to adaptively change Rk

using the KF innovation signal
Irregular CC (high inter-beat variations of CC) Increase the corresponding Qk entries
Desired signal highly non-Gaussian Better performance may be achieved

using UKF
Batch offline processing EKS outperforms EKF
Online processing Use EKF or fixed-lag EKS with a single

heartbeat delay for parameter estimation

4. Bayesian filtering versus conventional techniques

Cardiac signal processing is a highly developed and competitive area that might raise suspicions
about the effectiveness of the proposed method. However, we can argue that this method is in
fact a generalization of conventional denoising techniques.

In fact, from a filtering point of view, Kalman filters can be assumed as adaptive filters that
continuously move the location of the poles and zeros of their transfer functions, according to
the signal/noise content of the input signal and the prior model of the signal dynamics. This
feature allows the filter to adapt with different spectral shapes and temporal nonstationarities.
The method is therefore more general than the other frequency domain filters such as FIR, IIR
and Wiener filters that use a fixed pole–zero configuration in their transfer function.

A similar argument holds about wavelet denoising (WD) (Kestler et al 1998), as it performs
a sort of ‘blind thresholding’ between the signal and noise, without using the temporal structure
and pseudo-periodicity of the cardiac contaminants. The proposed method may nevertheless
be linked with the known WD techniques, by applying the Bayesian filter in the wavelet
domain rather than the original time domain.

As explained in the previous section, since the ensemble average (EA) of the CC is required
for training the KF parameters, the proposed method is also comparable with conventional EA
removal techniques that simply remove the EA of the contaminating signals from the noisy
recordings (Allen et al 1998). The proposed method is again more general in the sense that
it adaptively changes its ensemble average template, accounting for the inter-beat variations
of the CC. In fact, in the extreme case that the desired signal is very clean (with low cardiac
contamination), since the KF is seeking for the CC that is highly defected by the background
signal, the observation signal of the KF is not ‘trusted’, and the filter will follow its dynamic
model that was trained by the EA of the CC. Mathematically speaking, in this case, the entries
of the observation noise covariance matrix Rk are large and the Kalman gain is small (Kay
1981). The proposed method therefore reduces to simple EA subtraction. On the other hand,
for extremely noisy signals (with high cardiac contamination), the Rk entries will be rather
small and the filter will ‘trust’ the observations for CC estimation. Therefore, the filter fully
tracks the CC within the input signal.
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Hence, the Bayesian approach theoretically outperforms many of the conventional
techniques, in the same manner that model-based parametric methods typically outperform
nonparametric methods, as long as their underlying model is consistent (Candy 2005).
However, due to the breadth of the possible applications, it is not possible to prove this claim in
the general case, and case-by-case quantitative studies are required for different applications.
In the following, we present the results of the proposed method on simulated data and typical
results that were achieved in several diverse applications, for which, conventional denoising
methods did not yield to satisfying results.

5. Applications

In this section, the performance of the proposed method is studied on simulated and real
data. For simulated data, the SNR improvement5 is used as a measure of performance. For
real data, it is not possible to calculate the SNR improvement. However, in order to have a
quantitative measure of performance, we propose to compare the amount of ‘periodicity’ of
the signal before and after the CC removal. Here, the idea is that an artifact-free signal should
not contain any waveform that is synchronous with the ECG signal. Based on this idea, we
first find the ECG R-peaks and the phase φk , as explained in section 2. Then, by using φk , each
sample of the signal is compared with its dual sample, which is a sample in the successive
ECG beat having the same phase value. We can define τk as the time distance between the
sample k and its dual sample, which is formally defined as follows:

τk = min{τ |φk+τ = φk, τ > 0}. (5)

Using this definition, the following correlation coefficient is proposed as an overall periodicity
measure (PM) for a signal xk:

PM = |corrcoef(xk, xk+τk
)| = |E{xkxk+τk

}|
|E{

x2
k

}
E

{
x2

k+τk

}|1/2
, (6)

where E{·} represents averaging over the time index k. From this definition 0 � PM � 1,
where PM = 0 indicates an aperiodic signal, and PM = 1 indicates a fully periodic one. An
effective CC filter should be able to remove any component that is temporally synchronous
with the heartbeat and the samples xk and xk+τk

should become uncorrelated; resulting in a
PM close to zero. It should of course be noted that the reduction of PM is a necessary but
not a sufficient measure of the filtering performance. In fact, the PM might be reduced, e.g.
by an increase of the overall noise, without an improvement of the signal quality. Therefore,
other evidence such as the visual inspection of the resultant waveforms or a comparison of the
signal spectra before and after filtering is always required besides this measure.

5.1. Simulated data

The application domain of the proposed method is rather vast, ranging from low amplitude
EEG to nonstationary EMG. In these applications, the signal SNR and spectral color of the
target signal are very different. Therefore, in order to show the applicability of the proposed
method in these applications, we can use spectrally colored signals to simulate arbitrary signals
representing the EEG or EMG. Then by diluting this target signal with ECGs (or simulated
ECGs) in different strengths, noisy signals are achieved that may be used for performance
studies. For illustration, in figure 2(a), a 30 s segment of an arbitrary signal with a frequency
range of below 25 Hz and a 1/f spectral shape is depicted. This signal was diluted with

5 The SNR improvement is the output SNR, in decibels (dB), minus the input SNR, in dB.
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Figure 2. Results of the EKS on a mixture of simulated signal plus ECG artifacts. The (a) original,
(b) noisy and (c) denoised signals can be seen in this figure. The SNR of the noisy signal was
improved from 7.6 dB to 15.1 dB using the EKS.

a rather clean ECG, such that its SNR reduced to 7.6 dB. The resultant signal, depicted in
figure 2(b), was then denoised by the EKS. The denoised signal can be seen in figure 2(c). In
this example, the output SNR was increased to 15.1 dB using the proposed method. The PM
factors of the original, noisy and denoised signals were 0.095, 0.179 and 0.074, respectively.

For a consistent quantitative study, Monte Carlo simulations were carried out with different
input signals and by sweeping the SNR and spectral color of the target signal over the entire
range of their practical values. There are different ways of generating spectrally colored
signals (Kay 1981) and realistic biosignals (Sameni et al 2007a). For the current study, we
adopt the method previously reported by Sameni et al (2007b), i.e., we model the signal
color by a single parameter representing the slope of a spectral density function that decreases
monotonically with frequency:

S(f ) ∝ 1

f β
, (7)

where f is the frequency and β is the noise color parameter. White noise (β = 0), pink noise
(β = 1) or flicker noise and brown noise (β = 2) or the random walk process, are three of the
most commonly referenced noises.
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Figure 3. SNR improvement results achieved on simulated data in different input SNRs and
different spectral colors.

In practice, in order to generate colored noise following (7), samples of white noise are
generated and transferred into the frequency domain using the discrete Fourier transform
(DFT). Then, by altering the frequency components of the DFT according to (7), and
transferring the reshaped DFT back to the time domain, typical samples of spectrally colored
signals are realized. This procedure was used to simulate the target signals of interest.

On the other hand, for simulating the cardiac artifacts, the MIT-BIH Normal Sinus Rhythm
Database (Goldberger et al 2000, The MIT-BIH Normal Sinus Rhythm Database 1991) was
used. This database has a sampling rate of 128 Hz. From this database, 20 low-noise
segments of 30 s ECG without considerable artifacts were visually selected from different
channels. Next, normalized portions of these segments were added to the simulated target
signals to achieve simulated signals in different SNRs. These signals were next filtered by the
proposed method. In high SNRs, in which the ECG peaks were not detectable from the noisy
signal, the required R-peak detection was performed on the original ECG. This is equivalent
to using an arbitrary reference ECG channel in figure 1.

The overall simulation procedure was repeated 10 times for each of the 20 ECG segments,
in different SNRs and with different spectrally colored target signals. The input SNR was
swept in the range of −20 dB to 20 dB, in 5 dB steps, and the signal spectral parameter β was
swept in the range of 0 (white noise) to 2.5 (beyond brown noise), in 0.2 steps. This range
of parameters is believed to be sufficient for simulating practical scenarios (cf (Malmivuo and
Plonsey 1995) for some typical spectral curves).

The SNR improvement achieved by the proposed filtering procedure was finally averaged
over the 200 results (20 ECG segments × 10 trials). The result of this study is depicted in
figure 3. This result shows an SNR improvement surface, continuously changing according
to the input SNR and spectral color. It is seen that the SNR improvement is generally better
in low SNRs than in high SNRs. This was already expected, since in high-input SNRs there
is not very much of CC to be removed by the filter. The SNR improvement also generally
increases as the signal spectrum becomes more colored. This is partially due to the fact that
a high spectral color corresponds to a high β value in (7), representing a narrow-band signal.
According to the filtering scheme in figure 1, such components are not affected by the KF, as
they are bypassed by the BW removal block. However, in figure 3, it is interesting to see that in
input SNRs above 5 dB, a minimum SNR improvement is achieved for β ≈ 1, i.e. for a target
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Figure 4. Periodicity measures (PM) achieved on simulated data in different input SNRs and
different spectral colors, (a) before and (b) after denoising. The decrease of PM is used as a
necessary, but not sufficient, measure of the filtering performance.

signal having a pink spectrum. This can be explained by considering the KF as an adaptive
filter that adaptively changes its input–output transfer function in the frequency domain, to
separate the signal from noise. This separation becomes more difficult, when the target signal
and the CC have similar spectral shapes. Therefore, the minimum performance around β = 1
indicates that the CC used in our Monte Carlo simulations were spectrally closer (on average)
to a pink spectrum than the other spectral shapes. Therefore, the filtering of the CC has been
most difficult for β ≈ 1, leading to smaller SNR improvements at the filter output.

Practical target signals do not usually have a monotonically decreasing spectrum.
However, from the Monte Carlo simulations in figure 3, the approximate performance of
the proposed method may be roughly predicted for different applications, depending on the
SNR and spectral color of the target signal.

The PM, defined in (6), was also calculated for the baseline wander removed simulated
data, before and after the filtering procedure. As explained before, an effective CC removal
should decrease PM (although not being a sufficient measure of performance). This can be
seen in the results shown in figure 4. Note, however, that from figure 4(a) it is seen that in
high-input SNRs and low spectral colors (target signal close to white noise), the input PM is
already rather low and the filter does not decrease it more. Nevertheless, the output PM is
always less than the input PM.

It should also be noted that the results of figures 3 and 4 are underestimates of the actual
performance, since for these simulations the KF parameters were all selected in an automated
way from the noisy signals, while in real applications (especially in offline processing) we can
always fine-tune the parameters for the specific signal.

5.2. EEG denoising

The effective removal of cardiac artifacts, such as the ECG, MCG and the BCG artifacts from
EEG and MEG recordings, remains a challenging issue. The conventional method of CC
cancellation is to subtract the ensemble average (EA) of the CC, either directly or adaptively
from the noisy brain recordings (Strobach et al 1994, Allen et al 1998, 2000). However,
EA subtraction is not enough because it does not account for inter-beat variations of the
cardiac waveforms. More effective means of EEG denoising are KF-based approaches that
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use additional channels such as the electrooculogram (EOG) (In et al 2006), or a motion
channel attached to the temporal artery (Bonmassar et al 2002), for recording the BCG and
motion artifacts. In these works, the CC of the EEG has been approximated by a linear
mixture of the EOG or an artery channel, and the weights of the mixture have been estimated
by a KF. The drawback of these approaches is that they require additional EOG or reference
artery channels. Moreover, due to the three-dimensional propagation of the cardiac potentials,
the CC recorded from different leads can not be reconstructed from a linear mixture of a
single reference channel, unless the reference channel is recorded from a location close to
the distorted channel, or alternatively, multiple reference channels are used. Both of these
methods are practically limiting and do not fully remove the artifacts. A comparative study
of the different methods may be found in Grouiller et al (2007). Other methods, based
on wavelet transforms and nonlinear noise reduction (Wan et al 2006), and independent
component analysis (Srivastava et al 2005, Mantini et al 2007), have also been proposed.

With this background, the method explained in previous sections was used for removing
CC from EEG signals recorded during an fMRI experiment. In this case, the CC of the EEG
can be considered as a mixture of ECG and BCG signals. The presented method may be
considered as an extension of the work presented in Strobach et al (1994), In et al (2006) and
Bonmassar et al (2002). The privilege of the proposed method over these previous approaches
is that the overall shape of the contaminating ECG plus BCG is extracted from the noisy EEG
channel itself, without the need of any reference BCG channels or lead projections. Next, by
using the extracted waveform, the artifacts are removed by an EKF or EKS. Note that in the
proposed method, a single ECG channel is also required for R-peak detection, which can be
simultaneously recorded from any arbitrary ECG lead.

This idea was tested on a dataset consisting of an EEG channel recorded from the standard
AF8 lead of an awake subject in rest condition with closed eyes, during an fMRI experiment6.
An arbitrary ECG channel was also simultaneously recorded from the subject. The sampling
rate of the dataset was 250 Hz. Visually inspecting the data, the EEG appeared to have
considerable artifacts that were temporally synchronous with the ECG beats. These artifacts
are clearly seen in the EEG channel depicted in figure 6(b). In order to remove the CC,
the single ECG channel was used to localize the artifacts within the EEG recordings. For
this, the baseline wander of the raw data was removed and the R-peaks of the ECG were
detected from the ECG channel. In this example a two-stage median filter, with 200 ms and
600 ms window lengths, was used for the baseline wander removal. Next, by using the R-peak
information, the baseline-removed EEG channels were synchronously averaged over the ECG
period and the average and standard deviation of the ECG beat template were extracted. This
gave the average shape of the CC (ECG plus BCG) that were contaminated over the EEG.
The resultant mean and standard deviation bars can be seen in figure 5, for the reference ECG
channel and the EEG before and after filtering. As we see, the CC of the EEG in figure 5(b)
seems to be smoothed by the fMRI magnetic field and do not resemble the reference ECG in
figure 5(a). This means that conventional adaptive noise cancellation ideas that remove linear
mixtures of three orthogonal ECG leads from the EEG channels are not applicable to these
data. Next, using the average CC template, the parameters of the Gaussian mixtures required
for the EKS were extracted according to the steps described in section 2. Finally, by applying
the EKS to the noisy EEG recording, the CC was estimated from the background EEG. The
noise-free EEG signal was achieved by subtracting the estimated CC from the original noisy
recording. In figure 6, a typical segment of the resultant EEG is plotted versus the original

6 The EEG recordings used in this section have been provided by Dr Christophe Phillips from the Cyclotron Research
Centre, Liège, Belgium.
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Figure 5. The average and standard deviation bars of the (a) ECG, (b) EEG before denoising and
(c) EEG after denoising, by synchronous averaging of the data using the ECG R-peaks.

AF8 channel. As can be seen, the EKS has effectively removed the CC from the EEG channel.
The periodicity measure defined in (6) was 0.42 for the original AF8 channel, 0.07 using
the conventional EA subtraction method and 0.04 after applying the proposed method. Even
though the PM values of conventional EA subtraction and the proposed method are rather
close, the proposed method was found to be more robust to inter-beat deviations of the cardiac
signals.

The spectral density function of the original and denoised EEG signals are depicted in
figure 7. As is seen, the filtering procedure has changed the spectrum in the theta and alpha
bands, which are important frequency bands of the EEG spectrum. This implies that spectral
analysis of the EEG without CC removal can be rather misleading.

Another example is presented in figure 8, for an EEG segment of the MIT-BIH
Polysomnographic Database, recorded during sleep from the C4–A1 channel, with a sampling
rate of 250 Hz (MIT-BIH Polysomnographic database 1999). From this figure, we can again
note that the CC peaks that were synchronous with the ECG R-peaks have been effectively
removed, while the non-ECG contents and the alpha rhythms have been preserved. The PM
of the noisy and denoised signals were 0.15 and 0.001, respectively. The noisy and denoised
signal spectra are also compared in figure 9, where we can see that the signal spectrum has been
considerably changed after the CC removal, especially in the beta band and higher frequencies.

5.3. Fetal ECG extraction

The fetal ECG recorded from the maternal abdomen, and more recently the MCG, are the two
common noninvasive means of fetal cardiac signal recording. However, these recordings are
heavily contaminated with maternal ECG or MCG, which, depending on the gestational age and
electrode locations, can be up to 10–30 times stronger than the fetal components. A classical
method of maternal ECG removal is the adaptive noise canceller and its extensions (Widrow
et al 1975), which do not fully remove the maternal artifacts. A more effective means of
removing these contaminants is to use blind or semi-blind source separation techniques such as
ICA (De Lathauwer et al 2000, Sameni et al 2006). In this case, the maternal and fetal ECGs are
assumed to form two independent subspaces and ICA (or more generally independent subspace
analysis (Cardoso 1998)) tends to separate these two subspaces. However, these methods
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Figure 6. Results of the proposed method on a segment of EEG signals recorded during an fMRI
experiment. (a) Reference ECG channel, (b) noisy AF8 EEG channel and (c) AF8 channel after
ECG removal.

require multiple channels, and in the presence of noise or with special lead configurations,
the subspaces of the fetal and maternal cardiac signals are not fully separated by linear ICA,
which results into fetal signals that are still contaminated by the maternal components.

The proposed Bayesian filtering framework can therefore be rather effective for removing
the maternal artifacts. Following the filtering procedure mentioned in section 2, the EKS may
be set up to find the best estimate of the maternal signals from each of the ECG or MCG
channels. In this case, the fetal components and other noises and artifacts are considered
as noise for the maternal signals. The EA of the maternal ECG may be extracted from the
R-peaks of the maternal ECG within a single channel recording, or from an arbitrary maternal
ECG or MCG reference channel. Next, by removing the estimated maternal signals from the
original recordings, the fetal signals plus noises, other than the maternal ECG, are achieved.
Depending on the SNR of the recordings, the fetal components may be directly detectable from
the residual signals, or a post-processing such as a secondary KF trained over the fECG/fMCG
or a wavelet denoiser might be required to extract them from the remaining background noise.
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Figure 7. The spectral estimate of the original and denoised EEG signals, from the fMRI
experiment data. The difference of the two spectra is plotted at the bottom.

To illustrate, an ECG signal recorded from the maternal abdomen is depicted in
figure 10(a). This signal has been taken from the DaISy database (De Moor 1997), having
eight channels and a sampling rate of 250 Hz. The proposed method was applied to the first
channel of this dataset for removing the maternal ECG. The residual signal containing the
fetal ECG and background noise is seen in figure 10(b).

As a benchmark approach, the ICA denoising approach proposed in Jung et al (2000),
was also applied to the DaISy dataset. For this, the eight channels were decomposed into
eight independent components by using the JADE ICA algorithm (Cardoso 2005). Four of the
extracted components clearly corresponded to the maternal ECG, two components to the fetal
ECG, and the other two were mainly noise with some minor traces of the fetal R-waves. In
order to cancel the effect of maternal ECG, the first four components were set to zero and the
rest of the channels were remixed together to achieve the maternal ECG-free signals. One of
the denoised ECG channels (corresponding to the same channel used by the KF approach in
figure 10(b)), is depicted in figure 10(c). From this figure it can be seen that the single channel
KF outperforms ICA denoising which used the information within all the eight channels.
Quantitatively, the PM of the original noisy signal, the ICA denoised signal and the KF
denoised signal were 0.84, 0.23 and 0.09, respectively.

In some related studies, it was also experienced that depending on the configuration of the
maternal abdominal array and the fetal gestational age and position, it sometimes happens that
the maternal and fetal subspaces are not separable by any linear transform, including ICA and
its extensions. However, even in these cases the proposed method, which performs a nonlinear
filtering, is able to remove the maternal signals from the fetal recordings.

5.4. Fetal MCG extraction

The next example consists of MCG signals recorded by a SQUID Biomagnetometer system,
from a pregnant woman with a sampling rate of 1000 Hz using a filtering bandpass between
0.3 Hz and 500 Hz.7 The pregnant woman was positioned supine, i.e., with a slight twist to
either side, to prevent compression of the inferior vena cava by the pregnant uterus. The

7 The MCG recordings used in this section have been provided by Dr Dirk Hoyer from the Biomagnetic Center of
the Department of Neurology, Friedrich Schiller University, Jena, Germany.
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Figure 8. Results of the proposed method on a segment of EEG signals from the MIT-BIH
Polysomnographic Database. (a) Reference ECG channel, (b) noisy C4–A1 EEG channel and
(c) C4–A1 channel after ECG removal.

dewar was positioned with its curvature above the fetal heart after sonographic localization as
close to the maternal abdominal wall without contact as possible (Grimm et al 2003). The
dataset are however highly contaminated with maternal MCG. The results of removing the
maternal CC from a typical segment of these signals using the proposed method are depicted in
figure 11. The PM before and after maternal MCG cancellation were 0.55 and 0.02,
respectively.

5.5. EMG signal denoising

Another tested application of the proposed method was the removal of ECG contaminants
from diaphragmatic EMG signals recorded from an intraoesophageal electrode8. In this
application we were interested in the extraction of diaphragmatic EMG bursts synchronous
with the respiration. The exact detection of the beginning and ending points of the EMG
burst are widely used in respiratory studies. However, the recorded EMG are usually highly

8 The EMG recordings used in this section have been provided by Dr Vincent Vigneron from the Laboratory of
Informatique, Biologie Intégrative et Systèmes Complexes (IBISC), CNRS FRE 2873, Evry, France.
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Figure 9. The spectra of the original and denoised EEG signals, from the MIT-BIH
Polysomnographic Database. The difference of the two spectra is plotted at the bottom.

contaminated with ECG. The conventional method for removing such artifacts is to detect
the QRS-segments of the ECG and to remove their EA or to directly set them to zero. This
however removes considerable portions of the EMG signal and causes spurs in the EMG
spectrum.

For this example, the procedure was similar to the previous examples. Since the CC was
strong, the R-peaks of the ECG were directly estimated from the noisy recording, from which
the ECG EA was calculated. Next, the dynamic model parameters were selected according
to the EA of the ECG artifacts and the EKS was applied to the noisy recordings. After
estimating the ECG and removing it from the original recordings, the residual signal contains
the desired diaphragmatic EMG. For this application, due to the nonstationary nature of EMG
bursts, the adaptive modification of the measurement noise variance proposed by Sameni
et al (2007b) was used. This procedure is based on the monitoring of the KF innovation
signal, allowing the filter to adapt the KF measurement noise variance Rk , according to the
noise contents of the signal, such that the innovation signal becomes spectrally white9.

An example of an EMG burst signal denoised with this approach is depicted in figure 12.
In this example, the PM before and after ECG cancellation were 0.68 and 0.002, respectively.
The resultant signal may be further used for EMG burst analysis and depending on the quality
of the recorded signals, additional post-filtering may be required to reject the out-of-band
noise.

6. Discussion and conclusion

In this paper, a model-based Bayesian filtering framework was presented for removing cardiac
contaminants from various biomedical signals. It was shown that the method is applicable to
as few as single channel recordings with an arbitrary reference ECG/MCG channel for R-peak
detection.

In summary, the proposed method can be considered as a filter that gives the best minimum
mean square estimate of the CC based on a priori knowledge of the pseudo-periodic nature of

9 Note that in the KF context, the whiteness of the innovation signal implies that all the information concerning the
estimated process, up to the second-order statistics, has been extracted from the observation signal.
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Figure 10. Results of the proposed method and a classical ICA denoising method on a segment
of maternal abdominal signals containing maternal and fetal ECGs. (a) Original noisy abdominal
channel, (b) residual fetal ECG using the proposed method and (c) residual fetal ECG using ICA.

the ECG, MCG or the BCG. This method is hence using the temporal and frequency domain
information about the CC. Nevertheless, when multichannel recordings are available, one
can use the additional information provided by the spatial diversity of the sensors, which is
the essence of spatial filtering methods used in blind source separation. From this point of
view, the proposed filtering framework and source separation techniques, such as ICA, may
be jointly used to discriminate the CC simultaneously in time, frequency and space. For
example, for the fetal ECG extraction problem presented in section 5.3, a simple realization
of this idea would be to decompose the multichannel recordings into statistically independent
components, apply the KF to the extracted components and to recompose the components to
achieve the denoised multichannel recordings. This extension can especially be useful for the
cases, in which the maternal and fetal QRS complexes overlap with each other and the single
channel KF approach may fail to extract the fetal components.
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Figure 11. Results of the proposed method on MCG recordings containing maternal and fetal
MCGs. (a) Original channel containing maternal MCG and (b) residual fetal MCG.
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Figure 12. Results of the proposed method on EMG recordings highly contaminated with ECG.
(a) Original noisy EMG channel and (b) residual EMG bursts.

For the sake of brevity, the presented results were only based on the EKS. However, other
types of Bayesian filters such as the UKF and the particle filter (PF) can be used in the same
manner for highly nonlinear and non-Gaussian noise scenarios (Haykin 2001).

Due to the recursive structure of the KF, the proposed method is also computationally
efficient and of special interest for real-time applications. Generally, the computation time of
this method is linearly proportional to the signal length in samples. For the currently developed
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Matlab R© source codes (available from Sameni (2006)) the computation time is already
close to real-time on a 3 GHz CPU for signals with a sampling rate of up to 1 kHz (except
for the CC template fitting step of the algorithm that is carried out by the user through an
interactive graphical user interface, which allows the user to adjust the number and locations of
the Gaussian kernels). However, these Matlab R© codes may be further optimized and converted
into low-level languages for use in pre-processing units of clinical monitoring systems.
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