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In this paper, an enhanced local mean-field model that is suitable for simulating the electroencephalogram
�EEG� in different depths of anesthesia is presented. The main building elements of the model �e.g., excitatory
and inhibitory populations� are taken from Steyn-Ross et al. �M. L. Steyn-Ross et al., Phys. Rev. E 64, 011917
�2001�, D. A. Steyn-Ross et al., Phys. Rev. E 64, 011918 �2001�� and Bojak and Liley �I. Bojak and D. T.
Liley, Phys. Rev. E 71, 041902 �2005�� mean-field models and a new slow ionic mechanism is included in the
main model. Generally, in mean-field models, some sigmoid-shape functions determine firing rates of neural
populations according to their mean membrane potentials. In the enhanced model, the sigmoid function cor-
responding to excitatory population is redefined to be also a function of the slow ionic mechanism. This
modification adapts the firing rate of neural populations to slow ionic activities of the brain. When an anes-
thetic drug is administered, the slow mechanism may induce neural cells to alternate between two levels of
activity referred to as up and down states. Basically, the frequency of up-down switching is in the delta band
�0–4 Hz� and this is the main reason behind high amplitude, low frequency fluctuations of EEG signals in
anesthesia. Our analyses show that the enhanced model may have different working states driven by anesthetic
drug concentration. The model is settled in the up state in the waking period, it may switch to up and down
states in moderate anesthesia while in deep anesthesia it remains in the down state.
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I. INTRODUCTION

In the last decade, there have been many efforts to build
monitors dedicated to the estimation of the depth of anesthe-
sia using electroencephalogram �EEG� recording �1�. How-
ever, until now there is no universal monitor able to provide
reliable results in all cases �i.e., drugs, patient dependencies,
etc.�. Better understanding of underlying neuronal mecha-
nisms of the EEG may improve the performance of monitor-
ing methods. Therefore, a physiological-based model that ex-
plains the evolution of the EEG signal in different depths of
anesthesia may bring new insights into the monitoring of the
depth of anesthesia. Mean-field �MF� models �2,3� are good
candidates for this purpose. They have neurophysiological
and neuroanatomical foundations and are based on the con-
cept of neural population, which handles thousands of simi-
lar neurons in a single structure. They are able to reproduce
EEG-like signals with a low computation cost by solving a
set of coupled differential equations.

One of the best MF models, which can reproduce various
EEG rhythms, is the Liley model �4,5�. Steyn-Ross et al.
�6–8� and Bojak et al. �9� have employed the Liley model in
different ways to describe how and why the dominant
rhythm of the EEG changes from beta and alpha rhythms to
delta rhythm by administration of anesthetic drugs. They dif-

ferently express certain parameters of the Liley model as
functions of anesthetic drug concentration and reproduce
EEG signals in various drug concentrations. Although these
models describe the reason why anesthesia slows down EEG
rhythms, they have some limitations that must be addressed
gradually by better understanding of brain functioning under
anesthesia.

It has been shown that there is a good compatibility be-
tween fluctuations of high amplitude delta waves and inter-
nal states of cortical cells �10,11�. During anesthesia, neural
cells alternate almost synchronously between firing and rest
modes that are referred to as up and down states, respec-
tively. Because of synchronization of neurons, neural popu-
lations have two different firing modes. This means that
populations switch to up and down states during anesthesia.
In previous MF models, it is assumed that neural populations
always fluctuate about single equilibrium points.

The main purpose of this study is to show how MF mod-
els may be enhanced by including a slow modulating mecha-
nism that is responsible for switching the state of the model
to up and down. Many mechanisms have been presented as
responsible mechanisms for generating the up and down
states �12–14�; however, it is still unclear which mechanisms
play the most important roles, and how they can be repre-
sented using the mean-field paradigm. Since we are mostly
interested in introducing the general concepts of up and
down states and their switching in neural populations, an
enhanced MF model that integrates a generic form of a slow
modulating mechanism is proposed. This mechanism acts as
a representative for various types of slow ionic currents ei-
ther generated in cortical or subcortical regions.
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In the next section, a brief state of the art of MF models in
anesthesia is reported. Section III introduces the proposed
enhanced model. Section IV mainly discusses methods for
analyzing the enhanced model. Finally, behaviors of the en-
hanced MF model in various anesthetic drug concentrations
are presented in Section V.

II. BASICS OF EEG MODELING IN ANESTHESIA

To our knowledge, research conducted by Steyn-Ross et
al. was the first attempt to explain, using an MF model, why
the gradual increase of anesthetic concentration produces a
sudden transition between awareness and unconsciousness
�6–8�. In their model, anesthetic agents prolong the decay
time of �-aminobutyric acid �GABAA� receptors. Equilib-
rium solutions of the coupled differential equations in vari-
ous drug concentrations make an S-bend with one unstable
and two stable branches. According to Steyn-Ross et al.,
when anesthetic concentration is gradually increased or de-
creased, the equilibrium solution of the model suddenly
jumps from one stable branch to another and this can cause a
sudden transition between awareness and unconsciousness.
Since phase transitions make a hysteresis path, emergence
and induction phases of anesthesia take place in different
drug concentrations.

Steyn-Ross et al. indicate that their model may simulate
the biphasic response. Biphasic response is a kind of tran-
sient activation depression of the EEG signal that occurs in
induction and recovery phases of anesthesia �15�. Later, Bo-
jak and Liley �9� modify the Steyn-Ross et al. model. They
develop better formulations to describe inhibitory and exci-
tatory postsynaptic potentials �IPSP/EPSP� in different anes-
thetic drug concentrations. Bojak and Liley also argue that
anesthetic drugs reduce the firing rate of spontaneous action
potentials in a relatively smooth dose-dependent manner and
as a result, mean membrane potentials of inhibitory and ex-
citatory populations do not change abruptly by increasing or
decreasing anesthetic drug concentration. According to this
statement, Bojak and Liley generate a large set of spectra and
compare them to empirical EEG recordings using some clas-
sical features such as SEF90 �spectral edge frequency defined
as the frequency below which 90% of the power in the elec-
troencephalogram resides�. The biphasic response of the Bo-
jak and Liley model is produced differently compared to that
of the Steyn-Ross et al. model. It takes place in the same
drug concentration in induction and recovery phases
�i.e., nonhysteresis path�.

Our proposed enhanced MF model is mainly established
on Steyn-Ross et al. �6� and Bojak and Liley models �9�. A
slow ionic mechanism is also incorporated in the model that
let us have a better justification of some neurophysiological
phenomena. For example, this enhanced model may describe
the reason for the appearance of two different modes of neu-
ral firing rates and high amplitude delta waves observed in
moderate to deep depths of anesthesia.

Experimental observations show that anesthetic agents ba-
sically reduce the brain activity in a pulsating manner. Intra-
cellular and extracellular recordings during administration of
many kinds of anesthetic drugs show that neurons are

bistable and have short periods of firing separated by silence
phases. During firing phases the firing rate is more or less
equal to the firing rate of neurons in waking periods �16,17�.
Neural cells alternate between the firing phase �up state� and
the silence phase �down state� almost synchronously. The
result of this synchronous switching can be seen as high-
energy slow waves. Figures 3 and 4 in �18� and Figs. 1 and 4
in �19� indicate that neural cells firing onsets correlate well
with EEG slow waves. These waves are easily transferred in
the brain media �20� and are recorded on the brain surface
with high amplitudes. The enhanced MF model tries to take
into account the above remarks by integrating a modulating
slow mechanism to its basic foundation taken from the pre-
vious MF models.

In the Appendix, we have briefly introduced the basic
eight differential equations of the enhanced model. They
have been formed mainly by a combination of differential
equations of the two previously mentioned well-known MF
models. Figure 1 illustrates a schematic diagram of the en-
hanced model and its excitatory and inhibitory populations.
The populations interact with each other by GABAA and
�-amino-3-hydroxy-5-methylisoxazole–4-propionic acid
�AMPA� receptors. According to the position of the indicated
switch in Fig. 1, the model may be set either to basic or
enhanced mode. In the enhanced mode, the static firing rate
function corresponding to the excitatory population is substi-
tuted with a slow dynamic firing rate mechanism �see Sec.
III C�. This increases the number of coupled differential
equations to nine.

III. ENHANCING MF MODELS IN ANESTHESIA

This section describes the physiological as well as the
mathematical foundations of the enhanced model. Section
III A introduces the relation between up and down states in
single neurons and neural populations. Slow modulating
mechanisms that cause neural populations to switch to up
and down states are discussed in Sec. III B. Finally, the en-
hanced model equipped by a typical slow modulating mecha-
nism is presented in Sec. III C.

A. Single neurons induce up/down sates in cortical networks

Experiments of Destexhe et al. and Steriade et al. indicate
that the mean histogram of neural cells membrane potentials
has two distinct peaks during anesthesia or nonrapid eye
movement �REM� sleep. One of them is centered in resting
potential �e.g., −70 mV� and the other one in a higher poten-
tial �e.g., −57 mV� �11,21,22�. Existence of these two peaks
on the histogram is an indication of two different states in
neural cells.

Based on Fujisawa experiments �23�, neural cells may
have different patterns of firing, each one referred to as an
internal state of neural cells. Fujisawa indicates that single
neurons possess some internal firing states which are coher-
ent in adjacent neurons. He declares that an internal state of
single cells in a network represent the state of the network.

Destexhe et al. and Steriade et al. indicate that single
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neurons are in two different states �up and down� and
Fujisawa shows that single neurons induce phase transitions
of cortical networks with multiple internal states. Inferring
from these works, the neural populations have also two states
of electrical activities in anesthesia or non-REM sleep and it
is one of the multiple internal states of neural populations.
Comparisons of the pattern of neural firings in waking and
anesthesia periods show that neurons change their internal
states from continuous firing to phasic firing �bursts or spikes
separated by silence phases� �10,11�. Since phasic firing is
almost synchronous in neural cells, the frequency of bursts
or spike appearances in single neurons determines the fre-
quency of local field potentials.

The Liley MF model �5� has the capability of generating
up and down states. For instance, the upper S-bend equilib-
rium branch of the Steyn-Ross et al. model �6� can be related
to up state because on the upper branch, populations have
constantly high synaptic conductance and firing rates �21�.
On the other hand, the lower S-bend equilibrium branch can
be related to the down state. Establishing such relationships
can justify the difference between synaptic conductance in
the up and down states. It also describes the reason for re-
cording of high amplitude EEG delta rhythm on brain sur-
face during anesthesia. It seems likely that previous MF
models encounter an inherent limitation in generating the
slow and delta waves because they only consider either up or
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FIG. 1. �Color online� Schematic diagram of the enhanced model. The enhanced model considers the brain as a homogenous media
without any kind of specialized subcortical areas. Subcortical activities are modeled by four white noises �pjk � j ,k� �e , i�� that drive the
excitatory �pyramidal� and inhibitory �interneurons� populations in the neocortex. Mean membrane potential of each population �hk� is
determined by inhibitory and excitatory postsynaptic potentials �Ijk� generated by GABAA and AMPA receptors. The model in its basic mode
�see the Appendix� incorporates two sigmoid functions for determining mean firing rates of populations �Sk� from their mean membrane
potentials. In addition to short-range influences of neural firing rates on GABAA and AMPA receptors, the excitatory firing rate has also
long-range influences on pyramidal and interneurons by the means of AMPA receptor. In the enhanced mode, the static sigmoid function
corresponding to the excitatory population is substituted by a slow dynamic equation. A more detailed block diagram related to the slow
dynamic equation �see Sec. III C� and excitatory �inhibitory� populations �see the Appendix� have been illustrated in the bottom of the figure.
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down state of neural populations in various anesthetic drug
concentrations.

B. Needs to insert slow ionic mechanisms in MF models

As mentioned before, neurons have two different firing
states in anesthesia. Synaptic receptors and ion channels
have different responses during each of these two firing
states; therefore it is not only because of synaptic receptors
that neural populations demonstrate two different firing
states. A co-working between synapses and ionic mecha-
nisms is responsible for generating up and down states. Neu-
ral firing patterns under different anesthetic drugs are quite
different �24� and it is mainly because of unique influences
that each anesthetic drug has on synaptic �25–27� or ionic
�28–31� mechanisms. As a result, simulating the effects of
different anesthetic drugs on EEG signals is possible if ionic
currents are also considered in MF models.

Different ionic mechanisms have been hypothesized for
the slow switching of neural activities to up and down states.
Compte et al. �12� assert that the existence of slow
Na+-dependent K+ channels �IKNa� on pyramidal cells �exci-
tatory population� is mainly responsible for pulling down the
state of neurons. Massimini and Amzica �13� state that dur-
ing up state the gradual reduction of extracellular Ca2+ con-
centration in response to high activity of synapses, or open-
ing a kind of specific Ca2+ channel can produce a global
dysfacilitation in cortical network that led it to down state.
Bazhenov et al. �14� suggest that progressive depression of
excitatory interconnections and activation of Ca2+-dependent
K+ currents eventually terminate neural firing. Compte et al.
and Bazhenov et al. have the same opinion in transitions of
neural populations from down to up state. They declare that
random summations of miniature EPSPs in some neocortex
pyramidal cells are responsible for the switching from down
to up state. They assert summations of miniature EPSPs ac-
tivate persistent Na+ currents �INa�p�� and generate action po-
tentials. Massimini et al. suggest when neurons become hy-
perpolarized, extracellular Ca2+ concentration is increased
linearly and dysfacilitation is removed from the network un-
til neurons resume their firing in up state.

According to Timofeev et al. experiments, the slow oscil-
lation is cortical in origin. In a decorticated brain or in a
desynchronized cortex, this activity cannot be observed on
thalamus and striatum �32,33�, whereas it can be recorded on
a deafferented cortex �34�. All aforementioned cortical ionic
mechanisms have been introduced as possibly responsible
mechanisms for generating the slow oscillation in the brain.
However, it should be remembered that other kinds of slow
mechanisms may also interfere with ionic mechanisms in the
cortex. For example, intrinsic properties of thalamocortical
cells �i.e., Ih and It ionic currents� generate a stereotype delta
oscillation �35�. However, it should be noticed that they can-
not be reflected at the macroscopic level of the EEG unless
thalamic neurons are synchronized by slow oscillations origi-
nated from cortical regions �36�. It is also not so clear yet
whether EEG delta oscillations basically come from
thalamocortical stereotype oscillations or from waves gener-
ated in the cortex.

Instead of engaging with various kinds of slow ionic
mechanisms in cortical and subcortical regions, in this paper
we propose to formulate their overall characteristics and ef-
fects by a generic slow ionic mechanism. This mechanism
mainly originates from intrinsic ionic currents of neural cells
and it can be represented by a single or coupled slow gating
variable. Gating variables should activate �inactivate� an in-
ward �outward� current in down state or activate �inactivate�
an outward �inward� current in up state.

It should be emphasized that it is not possible to insert
neuronal-level equations of slow gating variables directly in
MF models. In fact, gating variables are intrinsic properties
of single neurons. For example, an ionic current, which is
activated in a high voltage by a burst of action potential,
would not be activated if it is included in a MF model as it is
employed in a single neuron. Their counterparts need to be
defined in the context of MF models.

C. Modeling slow ionic mechanisms in MF models

We can roughly formulate the activation or inactivation of
slow ionic mechanisms or facilitation and dysfacilitation of
neurons in a MF model by a slow variable s. Here, we as-
sume that the variable s slowly follows s��he� �an instantly
voltage-dependent variable� according to Eq. �1�. s��he� is
the activity of the slow mechanism when the membrane po-
tential is kept constant. The slow mechanism is activated in
low potentials so s��he� is represented by a descending sig-
moid function.

�s
d

dt
s�t� = s� − s�t� , �1�

s� = s�
max/�1 + exp�− gs�he − �s���, gs � 0. �2�

�s is the time constant, s�
max is the maximum value of the

sigmoid function, �s is the inflection point of the sigmoid
function, and gs is the slope at the inflection point.

Equations �1� and �2� show how the membrane potential
can influence the activity of the slow mechanism. On the
other hand, the slow mechanism is able to modulate the fir-
ing rate of neural populations. In the enhanced model, the
modulating effect of the slow mechanism is applied on exci-
tatory population. Modulating the excitatory firing rate has
indirect effects on other parameters of the model such as
excitatory and inhibitory membrane potentials. An increase
of s in an up or down state increases the firing rate of neural
populations. In the down state, an increase of s is equivalent
to the removal of dysfacilitation and an increase of miniature
EPSPs. In the up state, a decrease of s is equivalent to a
gradual decrease of firing rate and membrane potential.
Equation �3� shows how the excitatory firing rate is modu-
lated by s. In this equation, the previously defined excitatory
firing rate in Eq. �A4� was renamed Se

prev�he�.

Se�he� = �F1�s�Se
prev�he� + F2�s�Se

mod�/�F1�s� + F2�s�� , �3�

where

F1�s� = a�1 − B�/�1 + exp�− gF�s − �F��� + b1, �4�
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F2�s� = aB/�1 + exp�gF�s − �F��� + b2. �5�

Equation �3� gathers two different terms of firing rates:
Se

prev�he� and a constant modulating firing rate value Se
mod.

The normalized combination of these two terms determines
the overall firing rate of the excitatory population. Weighting
functions F1�s� and F2�s� are antisymmetric sigmoid func-
tions. B is a free parameter that determines the gain of the
modulating term Se

mod by changing the balance between F1�s�
and F2�s�. �F and gF determine the inflection point and slope
of the sigmoid functions, respectively. gF is a negative value
so F1�s� and F2�s� are descending and ascending functions,

respectively. b1 and b2 are two constant values such that set
F1�0� and F2�0� to one and zero, respectively. �F determines
the convexity of F1�s� and F2�s� functions over the interval
�0,s�

max�. Since F1�s� and F2�s� are fixed to one and zero,
respectively, at zero, �F and gF may influence the values of
these two functions at s�

max. Parameter a compensates this
effect and force F1�s� and F2�s� to have the same value at
s�

max for a given B regardless of the values of �F and gF. We
have chosen �F=0.1, gF=−3.5 as our references for normal-
ization of these functions. If �F and gF are equal to 0.1 and
−3.5, respectively, a would be equal to one. In brief, a, b1,
and b2 are obtained as follows:

a =
�1 + exp�gF�s�

max − �F����1 + exp�− �FgF���1 − exp�− 3.5s�
max��exp�3.5 � 0.1�

�1 + exp�3.5�0.1 − s�
max����1 + exp�0.1 � 3.5���1 − exp�gFs�

max��exp�− gF�F�
, �6�

b1 = 1 − a�1 − B�/�1 + exp�gF�F�� , �7�

b2 = − aB/�1 + exp�− gF�F�� . �8�

Figure 2 illustrates F1�s� and F2�s� for some different values
of �F and gF. For each coupled �F and gF values, b1, b2, and
a are tuned so that boundaries of F1�s� and F2�s� do not
change for the same given gain of modulating mechanism B.

To study influences of s, �F, and B on the excitatory firing
rate, some samples of these variables �e.g., �0,0.33,0.66,1�,
�0.1,0.9�, and �0.16,0.04�, respectively� are selected and
their corresponding excitatory firing rates are sketched in
Fig. 3. Increasing the s value raises the excitatory firing rate.
Activation of the slow mechanism s has more influence on
the increase of the firing rate in low potentials. This is mainly
due to the generation of spikes or bursts in low membrane
potentials when slow modulating mechanisms are activated.
A comparison of the left and right graphs in Fig. 3 show that
B magnifies the influence of s on the firing rate. B does not
change excitatory firing rate values corresponding to s=0.
By comparing the graphs in the top and bottom it can be
understood that �F may change the ascending patterns of
sigmoid functions. However, it does not change the boundary
values of the excitatory firing rates. In another word, it does
not change excitatory firing rate values corresponding to s
=0 and s=s�

max as was shown in Fig. 2.
Anesthetic concentration affects amplitudes and decay

times of EPSPs and IPSPs as well as the activity of the slow
mechanism. For instance, it has been shown that anesthetic
drugs in very high concentrations may reduce inward cur-
rents �30,31�. In order to take into account such a phenom-
enon we can reduce the maximum activity of the slow
mechanism by reducing B or �s values when anesthetic con-
centration is increased.

IV. MODEL SOLUTIONS

A general way to examine the behavior of the variables of

the model �hk , Ijk ,	ek ,s , İ jk ,	̇ek � j ,k= �e , i�� is to obtain the
numerical solution of the coupled differential equations. If
the variables exhibit stable behaviors, generally a good com-
patibility exists between power spectrums calculated by nu-
merical and analytical methods. Otherwise, when the vari-
ables do not converge to equilibrium points, it is not possible
to use analytical methods to evaluate their behaviors. Al-
though in such a case numerical solution is employed to
examine the behavior of the variables, investigations of equi-
librium solutions, isoclines, and their corresponding vector
field may give insight into the behavior of the variables be-
fore deriving the numerical solution.

This section is divided into two parts. In the first part, a
numerical solution of the enhanced model is described. Equi-
librium solutions of the model, isoclines, and their corre-
sponding vector field are mainly described in the second
part.

A. Numerical solution of the model

The nine coupled differential equations of the model con-
sist of three first-order and six second-order equations �four
of them are stochastic differential equations�. Second-order
differential equations can be substituted by pairs of first-
order differential equations. The general form of the resulting
first-order differential equations and their corresponding
first-order difference equations are

d

dt
x�t� = F„he�t�,hi�t�… + A
�t� , �9�

x�n + 1� = „x�n� + F�he�n�,hi�n��…�t + A��t
�n� , �10�

where n is the discrete time, 
�n� is a zero mean uniform
white noise with 4

12 variance �see Eq. �A6�� and �t is the
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time increment value �step size� in the Euler method, and it
was set to 1 ms in our simulations. We could not see any
significant changes in numerical results when we used
smaller time steps such as 0.1 or 0.01 ms.

Basically, the main purpose of performing the numerical
simulation of the model is to find the time evolution of he�t�
and s�t� �better to say he�n� and s�n�� for different anesthetic
drug concentrations. In order to do so, drug effects are first
applied to IPSP and EPSP parameters �or any other desired
parameter such as the slow mechanism� according to Eqs.
�A7� and �A8�. In the next step, the numerical values of the
variables of the model are calculated by the Euler one-step
scheme for 51.2 s. In the Euler method, the initial values of
the variables are set to their equilibrium values. The simu-
lated signals are down sampled to 400 Hz in order to be
comparable with our real EEG recordings on children �37�.
Table I lists the numerical values and definitions for the
equation parameters and constants. These numerical values
are used throughout this paper, except where stated other-
wise.

B. Equilibrium solution, isoclines, and vector field

Equilibrium solution of the model provides much infor-
mation about the functioning mode of the model. For ex-
ample, the equilibrium value of he�t� may provide some in-
formation about the balance between excitatory and
inhibitory populations, and the status of the patient such as
waking, light, or deep anesthesia.

As mentioned before, isoclines may be helpful when the
variables of the model do not converge to equilibrium points.
To obtain p isoclines in a p-dimensional �pD� hyperplane, p
variables are first selected from the entire m variables of the
model, then the equilibrium solution of each variable is cal-
culated while maintaining others to different constant values.
The trajectory of the p variables can be sketched in a pD
space, but predicting the new position of the trajectory re-
quires obtaining an mD vector field. Directions and lengths
of the vectors in this field determine the dynamics of the
trajectory. If p=m, the vector field can be sketched in the pD
space.

By some simplifying assumptions it is possible to reduce
the value of m. For example, we can assume that all variables
are fast enough compared to he, hi, and s to have a simplified
model that only consists of three dynamic variables. Since
we are mainly interested in evaluating the role of slow vari-
able s on the EEG signal, we derive dhe /dt=0 and ds /dt
=0 isoclines �called s,he isoclines� in Sec. IV B 1. The cor-
responding vector field of s ,he isoclines is a three-
dimensional �3D� vector field that cannot be sketched in a
plane. In Sec. IV B 2, we propose a method that reduces the
3D vector field to a planar vector field. It should be remem-
bered that the 3D simplified model is only used to obtain the
planar vector field. Numerically simulated signals and their
corresponding trajectories �in Sec. V� are derived from the
full model.

1. Isoclines of the slow mechanism and excitatory
membrane potential

One of the best ways to study the influence of slow vari-
able s on the model behavior in different anesthetic concen-
trations is to sketch s, he isoclines and the trajectory of s�t�
and he�t� signals in the same plane. If ds /dt is set to zero in
Eq. �1� and he is calculated as a function of s, the result will
be ds /dt=0 isocline �simply called s isocline�. On the other
hand, declaring s as a function of he when dhe /dt=0 in Eq.
�A1� results in he isocline. It should be remembered since we
only obtain two isoclines of the simplified model, hi must be
set to its equilibrium value in Eq. �A1�. In this case, a simple
method to calculate he isocline is to vary s between zero and
s�

max with a definite step size �e.g., 0.05� and compute the
equilibrium values of he and hi in parallel �they are referred
to as he

• and hi
•�.

Figure 4 shows two typical superimposed s,he isoclines.
Intersections of these two isoclines determine the equilib-
rium solutions of the differential equations �ds /dt=dhe /dt
=0�. Any other point on the isoclines plane may have posi-
tive or negative values of ds /dt and dhe /dt. These values can
be represented by a vector field. Length and direction of any
given member vector of this vector field show how s and he
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FIG. 2. �Color online� Influences of �F and gF on weighting
functions F1�s� and F2�s�. These two functions determine the firing
rate of excitatory population based on two competing terms
Se

prev�he� and Se
mod. An increment of s raises the firing rate by in-

creasing �decreasing� the value of F2�s� /F1�s�. �F determines their
convexities. If �F is smaller than zero, F1�s� and F2�s� are convex
and concave functions, respectively, in the range of zero and smax.
Convexities are reversed if �F is greater than smax. In between, these
two functions have inflection points that are indicated on F1�s� by
circles. gF controls slopes of F1�s� and F2�s�.
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vary if the state of the model is located on the origin of that
vector.

2. Obtaining planar vector field on isoclines plane

In Fig. 4, in addition to s,he isoclines �dashed line and
solid line with hexagram marks� we have also shown nine
member vectors of a planar vector field in �s=0.4, he=he

•

+�he�, where �he= �−1,0 ,1� mV and he
•’s are red hexagram

marks on he isocline. Ordinates and abscissas of the vectors
are proportional to ds /dt and dhe /dt, respectively. ds /dt is
simply calculated from Eq. �1�, but obtaining dhe /dt from
Eq. �A1� requires more considerations. A glance into Eq.
�A1� reveals that in addition to he, hi also influences the
value of dhe /dt. As a result, since hi is a dynamic variable in
the simplified model, a 3D vector field
�dhe /dt ,dhi /dt ,ds /dt� is associated to the model.

To find a planar vector field that can be used instead of the
3D vector field, variable hi should be replaced by a static
value. In order to do so, we examined different planar vec-
tors in different points around he isocline �i.e., �s ,he

• +�he��.
In each given point, planar vectors were different in their
abscissas �i.e., dhe /dt� because of the various hi values that
were used in Eq. �A1�. These values were confined to hi

•

+�hi values, where �hi= �±1.4, ±1.2, . . . , ±0.2,0�. We ob-
served visually that lengths and directions of vectors for
which �hi	D / �he

• −hi
•+D�, D=5 mV, fit well trajectories.

As a result, these planar vectors are good candidates to be
used instead of 3D vectors. Although these vectors are ob-
tained roughly by this method, it is possible to track simu-
lated signals by a planar vector field �dhe /dt ,ds /dt�. This
approximation can be used as a useful method for tuning the
model parameters and balancing the excitatory and inhibitory

factors. It is important to remember that s ,he isoclines and
their corresponding planar vector field cannot describe the
whole dynamics of the model. For example, other variables
may start limit cycles that are unpredictable by s ,he iso-
clines; therefore, a numerical solution may still be necessary
to confirm results provided by isoclines.

V. BEHAVIOR OF ENHANCED MF MODEL IN VARIOUS
DRUG CONCENTRATIONS

In this section, we study the evolution of the EEG signal
during various anesthetic concentrations. We perform several
numerical simulations in different drug concentrations �from
low to high� and describe characteristics and morphologies
of the simulated EEG signals. In order to compare the repro-
duced EEG signals with empirical data, we bring some real
EEG signals recorded on children undergoing surgery with
Desflurane agent �see �37� to see the protocol of EEG record-
ing�. In Desflurane anesthesia, 1 minimum alveolar concen-
tration �MAC� is equivalent to applying 8.3 vol % of this gas
to children �38�. This value corresponds to c	0.73 mM
aqueous concentrations of Desflurane in saline �39,40�.

A. Waking and sedation

In the enhanced model, s ,he isoclines obtained in waking
situation are very similar to those derived for a very low
anesthetic drug concentration. Figure 5�a� shows a 10 s
�s ,he� trajectory superimposed on s ,he isoclines in c
=0.2 mM. Figure 6�a� illustrates that part of the he�t� which
forms the depicted trajectory in Fig. 5�a�. The power spec-
trum of he�t� is shown in Fig. 7�a� �solid line�. In Fig. 5�a�,
coordinates of the intersection point of the two isoclines in-
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FIG. 3. Influences of s, �F, and B on the ex-
citatory firing rate. An increase of s raises the
firing rate value especially in low membrane po-
tentials. Increasing the gain of the modulating
mechanism B from 0.04 to 0.16 �compare left and
right figures� increases the influence of s on the
excitatory firing rate. �F does not change the
value of the excitatory firing rates at boundaries
of s �i.e., at 0 and s�

max� but it can affect the as-
cending shape of the excitatory firing rates corre-
sponding to 0�s�s�

max �compare top and bottom
figures�.
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dicate the equilibrium values of s�t� and he�t� signals. The
intersection point is located somewhere in the up state area.
Head to head directions of the vectors about this equilibrium
point indicate that it is a stable equilibrium point. The histo-
gram of he�t� in Fig. 8�a� also shows that the equilibrium
point is stable because he fluctuations are centered about a
fixed point in the up state area. These fluctuations are actu-
ally the result of the asynchronous firing mode in neural
cells. In such a case, the balance between excitatory and
inhibitory populations is the most important factor in deter-
mining the characteristics of inhibitory and excitatory mem-
brane potentials and firing rates �41�. This balance is mainly
determined by �i� subcortical noises that are modeled by

white uniform noises �pjk�, �ii� characteristics of IPSPs and
EPSPs, and �iii� connectivity properties of the two popula-
tions. In fact, these factors determine a particular model op-
erating state �equilibrium solution� and thus the characteris-
tics of he fluctuations. It is straightforward to derive the
eigenspectrum �power spectrum� of he by taking Fourier
transform of the linearized form of the coupled differential
equations about their equilibrium values. Figure 7�a� illus-
trates the analytically calculated eigenspectrum of he �dashed
line� when drug concentration is 0.2 mM. For comparison, a
typical real EEG signal is illustrated in Fig. 9�a�. This signal
is recorded on a child a few seconds before administration of
Desflurane agent. The power spectrum of the illustrated EEG
signal in Fig. 9�a� is shown in Fig. 10�a�. It should be men-
tioned that the patient is awake, a little agitated, and eyes are
open. This situation causes the energy of the alpha band to be
lower compared with the energy of the alpha band in the
eyes-closed condition.

Besides focusing on intersections of isoclines and equilib-
rium solutions of s and he, assessing the behavior of the
model when s takes different constant values is of interest
especially in cases when the trajectory runs away from the
attracting area of a stable equilibrium point or when an equi-
librium point is unstable. Since he converges to its equilib-
rium value faster than s, on a short time period, s can be
assumed constant and the behavior of the trajectory can be
mainly thus studied by means of he isocline. It is important
to remember that for any point on he isocline, dhe /dt is equal
to zero and following the fast convergence of a trajectory to
he isocline, dhe /dt value also converges to zero rapidly. Con-
sequently, in an instability mode, trajectories are mainly lo-
cated in the vicinity of he isocline, and we generally need to
obtain only a few members of the planar vector field in the
vicinity of he isocline and not over the entire isoclines plane.

In Fig. 5�a�, he isocline shows that those equilibrium so-
lutions corresponding to 0.25�s�1 make a single branch in
the up state area, while those corresponding to s�0.25 make

TABLE I. Symbol definitions and constants values of the en-
hanced model.

Parameter Symbol Value

Mean resting membrane potential he,i
rest −77, −77 mV

Passive membrane decay time constant �e,i 45, 30 ms

Synaptic reversal potential he,i
rev 0, −85 mV

Peak amplitude of EPSP/IPSP Ge,i 0.3, 0.32 mV

EPSP/IPSP rate constant �e,i 0.5, 0.15 ms−1

Total number of e→e, e→ i local
synaptic connections

Nee,ei
� 2400, 2300

Total number of i→e, i→ i
local synaptic connections

Nie,ii
� 200, 440

Total number of synaptic connection
from distant excitatory population

Nee,ei
� 2000,1600

Spatial drop-off rate of long-range
excitatory connections


 0.4 cm−1

Mean axonal conduction speed v̄ 0.7 cm ms−1

Maximum firing rate Se,i
max 0.02, 0.02 ms−1

Inflexion-point voltage for firing rate
sigmoid function

�e,i −60, −60 mV

Firing rate sigmoid slope at inflexion
point

ge,i 0.3, 0.3 mV−1

Subcortical mean firing rate p̄ek , p̄ik 0.5, 0.4 ms−1

Weighting factors for fluctuations in
p̄jk spike inputs

� 1

Effective time constant of slow ionic
currents

�s 180 ms

Slope at the inflexion point of the
activity function �sigmoid� of slow
mechanism

gs −0.8 mV−1

Inflexion-point voltage of the activity
function �sigmoid� of slow mechanism

�s −58.8 mV

Maximum value of the activity
function �sigmoid� of slow mechanism

s�
max 1

Slope at the inflexion point of the
modulating sigmoid function

gF −3.5

Inflexion point of the modulating
sigmoid function

�F 0.1

Maximum firing rate due to the
modulating mechanism.

Se
mod 0.03 ms−1

Gain of the modulating mechanism B 0.16
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three branches in down, middle, and up state areas. Equilib-
rium points located in the middle branch are unstable. This is
known from the opposite directions of planar vectors in the
vicinity of these equilibrium points. The probability of find-
ing a trajectory in the vicinity of these points is low. The up
state equilibrium points have the highest probability of oc-
currence compared with the two other types of equilibrium
points. If he�t� is initialized to a value greater than −64 mV
and then it is perturbed by, for example, an inhibitory sub-
cortical activity, there is a high probability that he�t� ap-
proaches again the up state area. In contrary, vectors about
the down state equilibrium points indicate that there are not
enough attraction forces toward these points and even if he�t�
approaches this area, it does not stay for a long time in this

state and will switch back again to the up state via a saddle
point.

B. Moderate anesthetic drug concentration (about 1 MAC)

When anesthetic concentration is increased to a higher
value �e.g., c=0.75 mM� and the balance between excitatory
and inhibitory populations shifts a little toward more inhibi-
tion, the power spectrum of he�t� shifts to lower frequencies.
Compared to Fig. 5�a�, in Fig. 5�b� the right branch of he
isocline has moved a little to more negative potentials and
the inverse U-turn has moved to up and right sides. Since s
positively modulates the excitatory firing rate in Eq. �3�,
movement of the inverse U-turn toward more positive s val-

−80 −75 −70 −65 −60 −55 −50

0

0.2

0.4

0.6

0.8

1

h
e

(mV)

s
(a)

−80 −75 −70 −65 −60 −55 −50

0

0.2

0.4

0.6

0.8

1

h
e

(mV)

s

(b)

−80 −75 −70 −65 −60 −55 −50

0

0.2

0.4

0.6

0.8

1

h
e

(mV)

s

(c)

−80 −75 −70 −65 −60 −55 −50

0

0.2

0.4

0.6

0.8

1

h
e

(mV)

s

(d)

FIG. 5. �Color online� s ,he isoclines �dashed line and hexagrams� and 10 s �s ,he� trajectories superimposed on them in different depths
of anesthesia. Ordinates and abscissas of vectors �solid lines marked at vector origins� are proportional to the values of ds /dt and dhe /dt,
respectively. �a� When drug concentration is low �c=0.2 mM�, he�t� fluctuates about a stable equilibrium point. �b� When drug concentration
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ues indicates that the balance has moved to inhibition. As a
result, for example, when s is equal to 0.4 mM three equi-
librium points exist on he isocline depicted on Fig. 5�b�,
while for the same s value, only one equilibrium point can be
found on he isocline reported on Fig. 5�a�. When the distance
between right and middle branches of he isocline is reduced,
he�t� is distributed over a wider region along the up state area
so the probability of the trajectory for being in the neighbor-
hood of the middle branch is increased. This can cause the
trajectory to move along or cross the barrier of the unstable
branch to reach the down state area. This is the beginning
phase of slow wave episodes on the EEG signal. At first,

most of the trajectory cycles encounter the attraction of the
up state area and the repulsion of the middle branch so they
move back to the up state area. Those who reach the down
state area appear as semiperiodic high amplitude negative
pulses on he�t� illustrated in Fig. 6�b�. The appearance of
such negative pulses extends the histogram of the he signal
toward negative potentials �see Fig. 8�b��, but since most of
the time he activities are related to the up state, the histogram
still contains a single peak located in the up state area. Nega-
tive pulses of he�t� increase the overall power especially in
the slow delta band �0–2 Hz�. Figure 7�b� illustrates a typi-
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FIG. 6. Ten seconds of simulated he signals in
various anesthetic concentrations �0.2, 0.75, 0.9,
and 1.5 mM�. These signals correspond to illus-
trated trajectories in Fig. 5.
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FIG. 7. The power spectra of simulated he

signals in different drug concentrations. Each
power spectrum is calculated by averaging 20
power spectra of consecutive 2.56 s he epochs
�i.e., 51.2 s�. �a� In very low drug concentration
�c=0.2 mM�, the power spectrum extends to high
frequency terms. The eigenspectrum �dashed
line� corresponding to this drug concentration is a
descending function that is reminiscent of the
background spectrum of a real EEG signal in the
waking period. �b� Appearance of slow waves
�c=0.75 mM�, increases the energy of the slow
delta band in the power spectrum. �c� Increasing
the rate of slow waves �c=0.9 mM� increases the
energy of the fast delta band in the power spec-
trum. �d� Regular switching between up and
down state �c=1.5 mM� narrows the he spectrum
in the fast delta band.
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cal power spectrum of he�t� when drug concentration is
0.75 mM.

Figure 9�b� shows a typical real EEG signal recorded at 1
MAC Desflurane. A combination of high amplitude, low fre-
quency negative peaks and low amplitude, high frequency
activities is seen on the real EEG signal like what can be
observed on the simulated signal in Fig. 6�b�. However, it
should be mentioned that amplitudes of negative slow waves
on real signals may vary accidentally in successive EEG ep-
ochs. This variation may increase the standard deviation of
EEG energy. It seems that interactions of different modulat-
ing mechanisms and their overall effects on the brain activity

and so synchronization of neural cells in a local field may be
influenced by past non-full-periodic activities of slow nega-
tive pulses. However, this is a subject that we do not deal
with in this study.

Increasing the anesthetic concentration a bit more �e.g.,
c=0.9 mM�, makes it possible for trajectories to jump over
the barrier of the unstable area and change the state of the
model from up to down easier than before. Figure 5�c� shows
10 s of �s ,he� trajectory when c is equal to 0.9 mM �see also
Figs. 6�c�, 7�c�, and 8�c� that show the time course, power
spectrum, and histogram of he�t�, respectively�. In transition
from up to down state, the value of s increases gradually
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FIG. 8. Histograms of simulated he signals in
different anesthetic drug concentrations. �a� In
very low drug concentration �c=0.2 mM� the his-
togram contains only one peak centered in the up
state area. �b� Slow waves extend the histogram
to down state �c=0.75 mM�. �c� The histogram
contains two peaks in up and down states �c
=0.9 mM�. �d� The amplitude of the peak located
in the down state may be equal or even higher
than the amplitude of the other peak �c
=1.5 mM�.
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FIG. 9. Real EEG signals recorded on chil-
dren undergoing surgery with Desflurane agent
�37�. �a� EEG signal before administration of
Desflurane. The patient is awake and in eyes-
open condition. �b� EEG signal at 1 MAC anes-
thesia. The high amplitude negative peaks are
easily distinguished from high frequency lower
amplitude background EEG activities. �c� The
EEG at a concentration higher than 1 MAC. The
number of negative peaks is increased in this sig-
nal and high frequency, low amplitude back-
ground activities are replaced by lower fre-
quency, higher amplitude activities. �d� EEG
signal at 2 MAC. This signal mainly consists of
high amplitude rhythmic pulses.
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following the rapid change of the s� value. An Increase of s
continues until the trajectory approaches a saddle point �tip
of the inverse U-turn�. This point is the critical point where
sufficient modulating factors have been accumulated in the
excitatory neural population; therefore the trajectory
switches back to the up state. When the switching is taking
place, s is then gradually decreased until another transition
from up to down state happens.

As illustrated in Fig. 6�c�, the transition rate between the
two states has increased compared to the case where c
=0.75 mM. The histogram of he�t� has now two distinct
peaks that are related to down and up states, respectively
�Fig. 8�c��. But as it is shown in Fig. 5�c�, the trajectory is
still mainly located in the up state area and as a consequence,
the amplitude of the second peak of the histogram is higher
than the first one.

Figure 9�c� illustrates a real EEG signal recorded in a
drug concentration that is a bit higher than 1 MAC �37�. It
should be mentioned that compared to Fig. 9�b�, the number
of negative peaks is increased and the EEG background ac-
tivity is replaced by a lower frequency, higher amplitude
activity.

C. High anesthetic drug concentration (about 2 MAC)

We have determined the equilibrium solution of he and
studied their linear stability when anesthetic drug concentra-
tion is varied between 0 and 1.8 mM. Figure 11 displays the
results where stars and circles correspond to stable and un-
stable solutions, respectively. For a wide range of anesthetic
drug concentration, simulated EEG signals have almost the
same morphologies. Therefore, we select a candidate con-
centration value within this range to examine the behavior of
the model. Figure 5�d� represents s ,he isoclines correspond-
ing to c=1.5 mM. The intersection of the two isoclines oc-
curs in middle branch of he isocline. Linear stability analysis

shows that the model has a unique equilibrium point which is
unstable.

The time course and power spectrum of the numerically
simulated he signal in Figs. 6�d� and 7�d� show that the rate
of negative peaks in he�t� is more or less similar to what we
had for c=0.9 mM and it is higher than what we had for c
=0.75 mM. Figure 6�d� also shows that the switching be-
tween up and down states is more regular. This can also be
testified by means of the histogram of he fluctuations, which
depicts two dominant peaks.

Figure 9�d� illustrates a real EEG signal at 2 MAC �37�.
Visually inspection of this figure shows that our model is still
able to generate signals miming real EEG recordings. The
power spectrum of the EEG signal, basically consists of a
semiperiodic 2.3 Hz activity. Due to this semiperiodic activ-
ity, the power of the fast delta band �e.g., 2–4 Hz� may even
become greater than the power of the slow delta band �e.g.,
0–2 Hz� at 2 MAC �42�. Similar behavior is expressed by
simulated data �see Fig. 7�d��.
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FIG. 10. Power spectrums corresponding to
the illustrated real EEG signals in Fig. 9.
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D. Burst-suppression

EEG suppression is the last phenomenon to be observed
in very deep anesthesia. About 30% of EEG signals in the
Tirel et al. experiment �37�, exhibit suppressed activity at
2 MAC Desflurane anesthesia. Sometimes EEG suppressions
alternate with bursting activities. This phenomenon is the
so-called burst-suppression pattern. Bursts result from short-
time discharges of single cells action potentials. Although the
enhanced model was not optimized for simulating burst-
suppression patterns, it is able to qualitatively reproduce
EEG dynamics showing bursting activities and the transition
toward full suppression.

A burst is generated when neural cells jump temporarily
from down to up state. The enhanced model can reproduce
such activity if s ,he isoclines intersect in the down state area
in the vicinity of the unstable middle branch of he isocline.
For example, if we keep all parameters of the model constant
but reduce the modulation strength of the slow mechanism
slightly �e.g., B=0.14, �s=−60�, burst suppression is gener-
ated. Figure 12 shows the two isoclines of the model when
drug concentration is 1.8 mM. The intersection of the two
isoclines is very close to the saddle point of the he isocline so
�s ,he� trajectory that is generally located in the vicinity of
the down state equilibrium point, may sometimes switch to
the up state for short periods. Figure 13 shows he�t� corre-
sponding to the illustrated trajectory in Fig. 12. The histo-
gram of he, which only consists of a single peak in the down
state area is depicted in Fig. 14.

By decreasing the drug concentration, he isocline moves
toward the negative direction of the s axis so the equilibrium
point becomes closer to the middle branch of he isocline
�unstable area�. Consequently, �s ,he� trajectory may escape
from the down state area easier than before. This increases
the number of bursts on the EEG signal, which is in agree-
ment with Bruhn’s experiments �43,44�. On the other hand,

increasing the drug concentration or blocking the slow
modulating mechanisms reduces the possibility of burst gen-
eration. In such a case the model may remain in a suppressed
mode if subcortical inputs do not activate the model by trig-
gering events.

VI. DISCUSSIONS AND CONCLUSIONS

Modeling is unavoidably based on simplifications of real
systems. In our viewpoint, the simpler the model that can
explain a particular phenomenon, the more fundamental is its
scope. The proposed MF model encompasses the two most
important neural populations in the neocortex �pyramidal and
interneurons� and a slow mechanism that modulates the fir-
ing rate of pyramidal population. It is an easy to understand
model by which we can study the role of inhibitory and
excitatory factors as well as the slow modulating mechanism
of the excitatory firing rate in various anesthetic concentra-
tions.

Since internal states of a neural network and single neu-
rons are closely related to each other, a population of neural
cells may exhibit bursts of activity �like single neurons� even
if it has been settled in down state. Without including any
modulating parameter in the model, a static form of the sig-
moid relationship between the mean membrane potential and
the firing rate does not justify the generation of bursts in very
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FIG. 12. �Color online� s ,he isoclines and a 20 s �s ,he� trajec-
tory corresponding to burst suppression in high anesthetic drug con-
centration �c=1.8, B=0.14, �s=−60�. The intersection of the two
isoclines is very close to the saddle point of the he isocline so �s ,he�
trajectory has the possibility of short-time traveling from down to
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FIG. 13. Twenty seconds of simulated he signal corresponding
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low potentials. We redefined the sigmoid relationship and
included the influence of a typical slow modulating mecha-
nism. Out of various types of modulating parameters that
may modulate the mean firing rate of a neural population, we
only considered a generic slow voltage-dependent ionic cur-
rent. It should be remembered that there are many kinds of
modulating mechanisms in the brain and each mechanism
may have its own characteristics �e.g., different time con-
stants� and may exhibit different behaviors in different anes-
thetic drug concentrations. In this model, the overall effects
of all types of slow mechanisms have been gathered in a
voltage-dependent mechanism leading to a new functioning
mode �i.e., up and down states�, which better explains the
occurrence of high amplitude slow waves in the EEG. How-
ever, in order to further improve the model, MF characteris-
tics of the most important modulating mechanisms in cortical
and subcortical areas should be identified and incorporated.

Compared to previous MF models, the working modes of
the enhanced model are closer to some neurophysiological
observations. For example, experimental results show that in
an overall view, neural cell activities may be classified as
continuous, phasic, or silence. The single point equilibrium
solution of the model in each drug concentration �Fig. 11� is
in accordance with this classification. If this single point
equilibrium solution is stable, it represents either a high
firing-rate continuous activity �up state� or silence �down
state�. If the equilibrium solution is unstable or very close to
the unstable region, it corresponds to switching of neural
activities between the two states.

Nonsmooth variation of stable equilibrium solutions �7,8�
is not in agreement with a smooth reduction of neural firing
rates with anesthetic drug concentration �26�. A single stable
branch in various drug concentrations �9� does not justify the
two different firing states of neural populations �e.g., in slow
waves or burst suppression�. On the contrary, equilibrium
solutions of the enhanced model vary smoothly in a dose-
dependant manner from up to down state. This model con-
siders the two firing states of neural populations so it can
reproduce some internal states of neural populations �23�
such as continuous activities in up state, transient jumps
from up to down state, regular switching between up and
down states, burst suppression, and suppression. In general,
the maximum firing rate value of a neural population does
not change noticeably before and after applying an anesthetic
agent �26�. The mean firing rate value of a neural population
is mainly reduced by the occurrence of a silence phase be-
tween firing phases �16�. Firing patterns of neural popula-
tions of the enhanced model �see Fig. 15� are in agreement
with these remarks, while in previous MF models, mean and
maximum firing rate values are jointly reduced by increasing
anesthetic concentration.

In the enhanced model, the sudden transition between
awareness and unconsciousness may be interpreted by sud-
den transition between internal states of neural populations
induced by similar behaviors in single neurons �23�. Accord-
ing to different activity modes represented in Sec. V, it is
probable that awareness and unconsciousness are two dis-
joint mental states because firing patterns of neural popula-
tions are changed suddenly from continuous mode to phasic
mode as if the information processing mode of the brain is

changed suddenly by administrating an anesthetic agent.
Such a result needs to be confirmed by experimental data
showing the evolution of neural membrane potentials and
firing rates during the awareness-unconsciousness transition.

The enhanced model also has some limitations. A single
homogeneous neocortical module is introduced without con-
sidering other parts of the brain such as the thalamus and
hippocampus; therefore, it is not forced to reproduce some
typical EEG activities such as spindles and alpha rhythm that
are generated in these parts of the brain. It has been sug-
gested that spindles are generated in the thalamus �45� and
corticothalamic inputs control the patterns of activities in the
thalamus and thalamocortical networks �46,47�. Recent stud-
ies show that a distributed alpha network, which consists of
thalamus, cortex, and hippocampus is engaged in alpha os-
cillations. A communication exists between neocortex and
hippocampus during alpha oscillations �48� and hippocam-
pus can react to sensory stimuli with a 10 Hz enhancement
�49�.

In future studies, a model aimed at generating slow and
delta rhythms as well as spindles and alpha rhythm will be
built by integrating underlying synaptic and ionic mecha-
nisms located in cortical and subcortical regions. It would be
useful also to expand the enhanced model to a nonhomog-
enous one.

It should be emphasized that in a stable situation, the
amplitude of the simulated EEG signal �he� is mainly deter-
mined by the variance of input noises and characteristics of
the transfer function of the model, but in an unstable situa-
tion �limit cycle�, it is mainly determined by the potential
difference between the left and right branches of he isocline
�i.e., up and down states�. However, because of individual
dissimilarities in the structures of different single neural
cells, they may switch to up and down state not in a fully
synchronized manner. According to our EEG recordings on
children �Fig. 9� and Constant et al. experiments �50� it can
be inferred that the amplitude ratio is almost equal to 10
before and after administration of anesthetics. The amplitude
ratio of reproduced EEG signals �Fig. 6� is comparable with
the empirical amplitude ratio in children, but it is higher than
the amplitude ratio in adults �51�. It has been stated that this
amplitude ratio is decreased by the age and maturation of
neural cells �50,51�. Such an increase in amplitude ratio is
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based on numerical simulation of the model for 51.2 s.
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also observed in reproduced K-complexes in the Wilson et
al. model �52�. The amplitude ratio of K-complexes to back-
ground EEG activities in this model is slightly higher than
the one in empirical data �19�. It seems that maturation of
neural cells or, equivalently, specialization of neural cells to
do more specific tasks in the brain induces less similarity
between them. As a result, synchronization between adjacent
neural cells in a local field is higher for children than for
adults.

One of the basic assumptions in designing population
equations is that neural cells are identical and have similar
properties in a volume of one macrocolumn. Prominent ex-
amples are columns in the somatosensory and visual cortex
and pools of motor neurons. Dissimilarities in structure and
the function of neural cells in a local field degrade the above
assumption; so it seems that maturation of neural cells and
their potency of synchronization are still required to be con-
sidered somehow �for example, by dividing inhibitory and
excitatory populations into some subpopulations and ran-
domizing their parameters� in MF models. This may fill the
gap which exists between full-synchronous and asynchro-
nous activities.

At last, we want to mention that biphasic is a transient
dynamic response of the brain which, is basically originated
from fast variations of brain inputs �e.g., drug concentration�
during the time. It is shown that changing the speed of the
administration of an anesthetic drug changes the characteris-
tics of biphasic response and the concentration in which the
maximum of the biphasic response appears �15�. In general,
at a given drug concentration, EEG amplitudes are not iden-
tical in steady-state and transient conditions. Behavior of our
enhanced MF model is discussed in steady-state condition so
a simulated EEG signal in this condition should be compared
with a real EEG signal recorded in steady-state condition not
in transient condition.
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APPENDIX

This Appendix briefly describes the basic equations of the
enhanced MF model that were derived from the pioneering
works of Steyn-Ross et al. �6–8� and Bojak and Liley �9�.
Since these equations are now well covered in many other
journals, we do not define them in so much detail. For defi-
nitions of the parameters of the model see Table I.

Equation �A1� depicts the two main differential equations
of the model that express mean membrane potentials of in-
hibitory and excitatory populations �he ,hi�.

�k
dhk�t�

dt
= hk

rest − hk + �ek�hk�Iek�he� + �ik�hk�Iik�hi�,

k = �e,i� , �A1�

� jk�hk� = �hj
rev − hk�/�hj

rev − hk
rest� . �A2�

j and k may represent either excitatory �e� or inhibitory �i�.
� jk is a scaling factor and indicates the potency of synapses
between j- and k-type populations. Ijk represents voltaic in-
fluences of synapses and is represented in Eq. �A3� by con-
volving the firing rate of k population and j-type postsynap-
tic potential �PSP� function. The bracketed term in the right
hand side of Eq. �A3� represents the firing rate of k-type
population, which is composed of three sources: locally in
the same macrocolumn �Sj�, distant from other macrocol-
umns �	 jk�, and subcortical inputs �pjk�.


 d

dt
+ � j�
 d

dt
+ �̄ j�Ijk�t� = �Njk

� Sj�hj� + 	 jk + pjk�

�Gj�̄ je
�j�j��j,�̄j�, j,k = �e,i� .

�A3�

PSPs are represented by biexponential functions. Gj, � j, and
�̃ j determine maximum values, rising and falling time con-
stants of the biexponential functions. These parameters are
varied by anesthetic drug concentrations. Instead of directly
applying the influence of anesthetic drugs on � j and �̃ j, it is
more convenient to define two alternative parameters �� j and
� j� and then modify them by drug concentration �9�. � j is the
time lag of PSP maximum peak and � j is the decay time of
PSP function.

Sj determines the mean firing rate of j-type population
from mean membrane potential. A sigmoid function is em-
ployed to represent this relationship �53�.

Sj�hj� = Sj
max/�1 + exp�− gj�hj − � j��� , �A4�

where Sj
max denotes the maximum firing rate; � j and gj, re-

spectively, determine the inflection point and its slope in the
sigmoid function.

Distant generated firing rates �	 jk� are only confined to
excitatory originated because the long-distance coupling
from inhibitory populations is unlikely �	ik=0�. 	ek is de-
termined by applying a spatial-temporal filter on Se�he�.
Since the brain has been assumed to be a homogeneous me-
dia no spatial variable is seen in Eq. �A5�.


 d

dt
+ v̄
ek�2

	ek�t� = v̄2
ek
2 Nek

� Se�he� . �A5�

For simplicity, each subcortical noise is modeled by Eq.
�A6�. However, it should be mentioned that there are also
other formulations for representations of subcortical noises
�9,54� that may be employed in more specialized studies ac-
cording to their specific purposes. In Eq. �A6�, p̄jk is a con-
stant value and represents the incoming mean firing rate of
the j-type subcortical population to k-type cortical popula-
tion. 
 jk�t� is a zero mean uniform white noise that extends
between −1 and +1, so the variance of p̄jk is equal to
�2p̄jk

2 /3. � is a scaling factor that controls the variance of the
noises and can be used to prevent the generation of negative
value noises in numerical simulations.
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pjk�t� = p̄jk + �p̄jk
 jk�t� . �A6�

Administration of anesthetic drugs changes the shape of
PSPs. Based on real experimental data it is possible to relate
the amplitude and time constant of IPSP or EPSP to different
anesthetic drug concentrations. We used the following Hill
equations �for more discussion see Refs. �9,55�� to express
variations of maximum amplitudes and decay times of IPSPs
and EPSPs in different concentrations of a generic anesthetic
drug as follows:

Gj�cMAC� = Gj
0
Kj

Nj + MjcMAC

Nj

Kj
Nj + cMAC

Nj
, j = �i,e� , �A7�

�i�cMAC� = �i
0ki

ni + micMAC
ni

ki
ni + cMAC

ni
, �e�cMAC� = �e

0, �A8�

where cMAC is the alveolar drug concentration in MAC
�1 MAC is the minimum alveolar concentration of an anes-

thetic agent at 1 atmosphere pressure at which 50% of pa-
tients still move in response to a noxious stimulus�. Ki, Mi,
Ni, Ke, Me, Ne, ki, mi, and ni are free parameters of Hill
equations that have been assigned with 1.25, 0.37, 2.3, 2.5,
0.5, 1, 0.975, 4.4, and 2.8, respectively, for our generic an-
esthetic drug. Gj

0 and � j
0 are the maximum amplitude and

decay time of j-type PSP at zero drug concentration.
In this paper we use 1 MAC=8.3 vol % for Desflurane.

This is appropriate for young children �38� and corresponds
to caq	0.73 mM aqueous concentration of Desflurane in sa-

line �39,40� considering that the saline or gas partition coef-
ficient is equal to 0.225 for Desflurane �56�.

To express Eqs. �A7� and �A8� as functions of aqueous
concentration of Desflurane �caq� or vol % �cvol�, it is only
necessary to replace Kj and ki with �Kj and �ki, where � is
equal to 0.73 and 8.3 for caq and cvol, respectively. In this
study, we express the concentration of Desflurane �c� by its
aqueous concentration caq.
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