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Abstract—One of the growing problems in our networks is
the abuse of computing resources by authorized and unau-
thorized personnel. The nature of abuse may vary from us-
ing unauthorized applications to serving unauthorized con-
tent. Proliferation of peer-to-peer networks and the avail-
ability of of proxies for tunneling makes it difficult to detect
such abuse and easy to circumvent security policies. This
paper presents a novel method that can be used to detect
abuse of resources on a network based solely on the payload
content type. The proposed method does not depend on
packet headers and other simple packet characteristics and
hence is able to better detect incidents of abuse.

I. Introduction

Abuse of computing resources is one of the growing prob-
lems for which there hasn’t been a feasible solution sug-
gested yet. Network administrators routinely have to deal
with abuse of network resources such as network bandwidth
by unauthorized application services, and the distribution
of unauthorized content to name a few. Abusers can be
malicious attackers looking for free resources to host their
illegal activities, a malicious insider running a peer-to-peer
hub, or simply an ill informed user unintentionally running
an application proxy.

The two most common defenses that are used to pre-
vent network abuses are Firewalls and Intrusion Detection
Systems (IDS). An IDS is not useful in detecting many
types of abuses because the essence of the abuse is not
captured by a simple set of signatures. Firewalls, on the
other hand, are somewhat effective in preventing abuse.
Currently, firewalls use port blocking to thwart unautho-
rized application services. By convention [1], certain port
numbers are bound to certain types of applications (or ap-
plication level protocols) and are referred to as “well-known
ports.” For instance, port 80 is HTTP and port 22 is SSH.
Therefore, if a security policy denies the use of web servers
inside a network then a firewall simply blocks traffic to port
80.

However, it is now well known that a firewall can be
circumvented under certain circumstances. For example,
most firewalls do not block outbound connection requests.
A malicious insider or a host inside the network compro-
mised by an attacker can initiate a connection and transfer
unauthorized data or make available an unauthorized ser-
vice without being detected by a firewall. Another simple
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way to by pass the firewall would be to simply run the unau-
thorized service on a port that the firewall allows traffic on.
So for example, if the firewall blocks services on port 80 and
leaves port 22 open so that users can telecommute, then a
web server can be configured to use port 22, thereby cir-
cumventing the security policy. A third way to get past the
firewall is by tunneling. Tunneling is a technique that ex-
ploits some protocol-family’s ability to move packets from
user to user, or to open virtual-circuits between users, and
use this as if it were a data-link protocol to run another
protocol family’s upper layers (or even the same protocol
family’s upper layers). Tunneling works by encapsulating
a network protocol within packets carried by another pro-
tocol. So in the above example, with the presence of a
suitable proxy on the inside host, web traffic could be tun-
neled through SSH traffic on port 80. Similarly, there are
many other techniques that hackers employ to get past a
firewall, given a malicious insider or a captured host inside
the target network.

Firewall circumvention techniques give rise to new chal-
lenges in abuse detection. In this paper we present a
method to detect network abuse based on Flow Content
Characterization. By flow content characterization we
mean the ability to classify network packet contents as be-
longing one of a set of data types like audio data, encrypted
data, video data etc. Note that our intention is not to iden-
tify the application being used but to identify the type of
content emanating from a host or a network flow in general.
Flow content characterization can be very useful in abuse
detection. The knowledge of content type emanating from
a host can help detect abuses of resources on a network.
For example, suppose we have a FTP server that serves
RFCs to the Internet. Using flow content characterization
if we found that the server is emanating encrypted-text or
multimedia content then we know that the server is being
used for purposes other than serving RFCs. As another ex-
ample, observe that in general, a particular port has certain
flow content characteristics. For instance, port 80 generally
carries a lot of plain-text, some compressed-text, and mul-
timedia content. Knowing this flow content characteristic
for a network, we can monitor for significant deviations in
the characteristics for detecting the presence of tunneling.
If we observe that 80% of traffic on port 80 is audio traf-
fic then it may indicate that some one is tunneling audio
traffic through port 80. Similarly, tunneling various ap-



2plications through port 80 will show significantly different
characteristic than normal web traffic.

One critical question arises, however. Why can’t we sim-
ply use unique header information found in multimedia for-
mats to identify the content type? First of all, media head-
ers (like the JPEG headers or MPEG headers) can be mod-
ified easily. Therefore, it is easy to circumvent a method
that relies on the header information. On the other hand,
not every single packet contains header information. For
instance, suppose there is a 200KB JPEG image. When
transmitted over network this image will be split into 200
packets and only one of them contains a header. A header
based monitoring system must be able to examine each
packet on the network for the string “JFIF” to determine
the content type is a JPEG image. This is obviously a very
expensive process in terms of processing power and mem-
ory and such an approach is not viable on a large network
where the traffic volume is high. Besides, packet drops may
result in this method losing the packet that has the header
information rendering it useless. Also note that some media
types do not have headers at all. For example, plain-text
and encrypted content usually have no headers to indicate
their content type. Hence, the proposed method does not
rely on media headers. The method samples packets from
a network, groups them into flows and uses the group of
packets to characterize the flow content based on statistical
properties.

The rest of the paper is organized as follows: in the
following section we briefly present the related work. Sec-
tion III presents various statistical measured used in char-
acterization followed by a description of experiments and
results in Section IV. We present a discussion of the results
in Section V. We conclude with a summary of our current
accomplishments and future work in Section VI.

II. Related Work

Over the past few years significant research has been
done to characterize network flows. Network traffic char-
acteristics of various applications such as, web, email, and
multimedia streaming, have been studied to support emerg-
ing network traffic trends for improving the underlying pro-
tocols. For this purpose, researchers have looked into vari-
ous characteristics of network traffic such as, size of pack-
ets, inter-packet timings, round trip times, and transmis-
sion protocols. Network security community have borrowed
some of these ideas and extended some others to improve
the security of networks by identifying malicious network
flows, applications, or hosts. In this section we briefly dis-
cuss prior work on network traffic characterization related
to network security and refer the readers to [4] for a survey
on traffic characterization in general.

In [2] a neural network is used to detect the presence
of unauthorized network services. The author proposes
a method that uses the neural network to learn the sig-

nature of common network services and then monitor the
network to detect flows that deviate from the norm. The
authors used the total number of bytes transferred as a sin-
gle feature to distinguish between Telnet and FTP traffic
on networks. In [3], authors propose a method to identify
well-known applications being tunneled through unconven-
tional ports. The proposed method uses a decision tree
algorithm to learn the statistical properties of various ap-
plications. The model learned is then used to characterize
the application types of network flows. Thanks to weak
port bindings, port numbers are not considered in learning
the model of both of these works.

A related problem to the above works is tracing connec-
tion chains over multiple networks. Attackers often obscure
their identity and location by forming a connection chain by
logging into a set of compromised systems before attacking
a target. Tracing the attack from the victim takes us only
to the last link in the chain but not to the location of the
attacker. In [5], [6], methods are proposed to trace intrud-
ers who obscure their identity by logging through a chain of
multiple machines, known as stepping-stones. The method
proposed in [5] creates “thumb-prints” of connections us-
ing packet content which can be compared to determine
whether two connections contain the same content and are
therefore likely to be part of the same connection chain.
However, the method fails when the connections are en-
crypted. To address the problem [6] proposes an algorithm
that doesn’t rely on traffic content, instead relies on packet
sizes, packet intervals, etc. to detect stepping stones.

III. Identifying Measures

In order to distinguish between a variety of flow content
types, we look at the payload in each packet as a 1-D vec-
tor of 8-bit numbers. Thus, our goal is to come up with a
statistical model that would help us distinguish these vec-
tors based on their respective statistical signatures. The
statistical measures we considered to build the model can
be separated into three broad categories: time domain, fre-
quency domain, and higher order statistical measures. We
review these measures in the rest of this section and give
intuitive reasoning for their selection.
• Time Domain: We choose a number of simple statistical
measures from the time domain. Although some of these
measures are simple and rudimentary, they help greatly
in distinguishing different content types. These measures
are, mean, variance, auto-correlation, and entropy. For ex-
ample, since we are considering the payload of captured
packets as 8-bit integers, the mean value of each fragment
should lie anywhere between 0 and 255. Now, one would ex-
pect compressed or encrypted data to have a mean around
128, where as flows carrying a plain-text file should have
lower mean values. The expectation is reasonable because
compression and encryption de-correlates data or random-
ize it thereby distributing the values uniformly whereas in



3plain-text format, where ASCII standard is used, most of
the symbols in printable text have a numerical represen-
tation between 32 to 127 and the extended ASCII codes
which range from 128 to 255 are used rarely, thus lowering
the mean value.
Another measure we consider from the time domain
is entropy. Entropy, H(x), is defined as H(x) =
−∑

x P (x)log2(x) and is a measure of randomness in the
data. One would expect that RAW data formats such as,
bitmaps images, or .WAV audio, to have lower entropy than
compressed or encrypted formats. This is evident in figure
1 which shows the average entropy of data fragments for
1000 files in each of the 8 categories. Discussion on how the
data set used was obtained is in Section IV. Similar rea-
soning can be used for using variance and auto-correlation
as well.
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Fig. 1. Average entropy of data vectors from 8 different file types.

• Frequency Domain: As stated in the previous paragraphs
it is expected that payload data originating from different
file types should have different statistical properties. This
led us to inspect the frequency domain representation of a
set of data vectors obtained from different files. Seeing that
on average there are subtle difference in their frequency rep-
resentations depending on the original data type, we choose
to use a number of statistics from the power spectrum. To
that order we first divide the power spectrum into 4 sepa-
rate bands ranging from, 0 − π/8, π/8 − π/4, π/4 − π/2,
and π/2 − π. We then calculate the mean, variance and
skewness of each band. For example the average mean of
the power spectrum in the first band could be seen in figure
2.
• Higher Order Statistics: The last category of measures
which we use are higher order statistical measures. More
specifically we look at bicoherence, which is a third or-
der statistic. The bicoherence is able to characterize non-
linearities in the underlying data. Our argument is that the
amount of non-linearity introduced by the compression or
encryption techniques varies. Thus these measurers could
help in separating these data types. We first calculate the
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Fig. 2. Average mean of the first band, 0−π/8, of the power spectrum
for data vectors from 8 different file types.

bicoherence, after which the following statistics are calcu-
lated, power of the bicoherence magnitude and phase, and
also the mean of the bicoherence magnitude. In addition
to these statistics we also calculate the kurtosis, and skew-
ness of each data vector. For a good review of bicoherence
and more generally on higher order statistics the reader
is referred to [16]. For example, skewness is a measure
of symmetry of a given distribution, if the negative tail is
larger than the positive tail, then we will have a negative
skew, and if the positive tail is larger than the negative
tail we will have a positive skew. The average skewness
for the 8 content types are shown in Figure 3. It is clear
that depending on the content type the average skewness
varies greatly. Furthermore, in the case of encrypted data,
the average skewness is zero meaning that it should have a
normal distribution.
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Fig. 3. Average skewness of data vectors from 8 different file types.

We need multiple statistics to distinguish between the
different data types as the differences between them are
complex and cannot be easily captured by a single statistic.
For example, observing Figure 1 we can see that entropy
can be used to distinguish between {TXT, BMP} and rest
of the content types. It cannot be used to distinguish be-



4tween TXT and BMP. On the other hand, power spectrum
(See Figure 2) can be used to distinguish between BMP
and rest of the content types. Combining both entropy
and power spectrum together we can distinguish between
TXT and BMP. Similar examples can be provided for the
other data types.

IV. Experiments

In this section we describe the experiments carried out to
evaluate the effectiveness of our method in classifying the
flow content. We describe our data set, the experimental
setup, and the results.

A. Data Set

There are a variety of content types available on the In-
ternet. One could divide these content types into three
major categories: raw (or uncompressed), compressed, and
encrypted data. Our goal is to evaluate how well we can
distinguish between data from each category. To this end,
we have selected a number of different content types from
each category. For example, in the raw category we look at
content types of plain-text, BMP, and WAV, and in the
compressed category ZIP, JPG, MP3, and MPEG files.
Our data set, consisting of the 7 different file types are
obtained from a random crawl of a peer-to-peer network.
The only constraint placed on the downloads was that the
files be at least 50KB. This is to ensure that that maxi-
mum length of data vectors in the experiments can be at
least 50KB. A total of 1000 files are downloaded for each
file type. These files are then encrypted using the AES
encryption algorithm to obtain 1000 encrypted files.

B. Classification

There are a variety of classification algorithms available
and we have chosen to use Support Vector Machines [17]
in our experiments. The selection is based on our previous
experiments on a number of different data sets, and observ-
ing better performance results from SVM as compared to
other classifiers. In essence, there are two main differences
between a SVM classifier and a linear classifier. In SVM:

• The data is mapped to another dimension, this is done
with the help of kernels. There a multitude of kernels to
choose from such as Polynomial, Radial, sigmoid.
• A separating hyperplane is chosen so that the separating
margins are maximized.

In our experiments we opted to use the RBF kernel (Ra-
dial Basis Function). The RBF kernel is optimized by do-
ing a grid search over it’s two parameters, cost and gamma.
There are many implementations of SVM available on the
public domain. We have chosen the freely available Lib-
Svm [18] package.

C. Experimental Setup

The proposed statistics are computed over various sizes
of payload. In order to simulate sampling packets off the
wire we segmented each file into 1024 byte blocks. The
1024-byte block is chosen in accordance with the size of
average TCP packet size. (See Figure 5). 32768 bytes of
data, or equivalently 32 packets are collected from random
locations in each file. Since we are interested in seeing
the effects of the size of available data on the classifica-
tion results, we then obtained differen size payloads from
the 32768 bytes of sampled data. Given a payload size,
statistics are then calculated for the payload after which
we have 1000 feature vectors, containing the identifying
features proposed, for each of the eight categories. A SVM
classifier is then trained using 400 feature vectors from each
of the 8 categories. The remaining 600 features vectors are
then used to test the resulting classifier.

D. Results

The above procedure is repeated for different payload
sizes, and as expected the accuracy of the classification im-
proves with the size of payload considered for classification.
In our experiment accuracy is defined as:

Accuracy =
T

T + F
(1)

where T is number of samples classified correctly, and F
is the number of samples classified incorrectly. Figure 4
shows the results of accuracy vs. payload size tradeoff. In-
terestingly, however, we observe that the accuracy begins to
saturate as the features are computed over payloads larger
than 16KB.
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Fig. 4. Payload size vs. accuracy.

Since we are building a multi-class classifier, just looking
at the overall accuracy would not give a complete picture
on how well the classifier is able to distinguish between



5the categories. In order to see how well each category is
distinguished with respect to the other, we compute the
confusion matrix. Confusion matrix presents information
about the actual and predicted results using the classifier.
These entries should not be misinterpreted as accuracy fig-
ures. In fact, the overall accuracy of the classifier is equal to
the average of the diagonal entries in the confusion matrix.
Table I presents the confusion matrix for payload of 1024
bytes. For example, from the table we can see that 97.5%
of plain-text payloads are correctly classified. However,
1.83%, 0.33%, 0.17%, and 0.17% of them are incorrectly
classified as BMP, WAV, ZIP, and MPG respectively. On
the other hand, the detection rate for the ZIP format is
33%, and it is predicted incorrectly as encrypted format
37.5% of the times.

As shown in figure 4, the overall accuracy of classifi-
cation improves when we consider larger payload chunks.
Thus, we also compute the confusion matrix for payloads
of size 4096 bytes (4 packets), and 16384 bytes (16 pack-
ets). We can see clear improvements in the results by com-
paring the entries of the confusion matrix obtained from
payloads of size 1024 bytes in table I, with the confusion
matrix obtained from payloads of size 4096 bytes in table
II, and 16384 bytes in table III. For example, note that
the ZIP format is predicted correctly with a rate of 53%,
and 73.83%, with payloads of 4096 and 16384 bytes respec-
tively, as opposed to 33% with just 1024 bytes.

V. Discussion

As evident from the results above, the accuracy of the
method increases with the size of payload considered during
classification. Is it feasible to capture 4096 bytes of a flow,
from a sample of network traffic? More clearly, suppose
we collect 500 packets from a network is it likely to have
at least 4096 bytes for each flow in the sample? In order
to evaluate the viability of such an approach we captured
around 100 million TCP packets over a 3 hour period in
our campus edge router. Discarding the ACK packets that
carry no payload the average size of a packet is 1188 bytes.
The histogram of packet sizes could be seen in log scale in
figure 5.

We also need to know how many packets need to be cap-
tured, to get the required number of bytes in sequence. To
that extent, we take 100 packets from the collected traf-
fic, exclude packets with size of less than 70 bytes, and
computed the number of packets that belong to the same
flow. Thus we obtain a histogram for the number of packets
which are from the same flow. This process is repeated 100
times and the resulting histograms are averaged. The same
procedure is repeated for 500, and 1000 sampled packets.
The averaged histograms are shown in figure 6.

For example in order to get payload of size 4096 bytes,
one needs to capture 4096

1188 ' 4 packets. Furthermore, a re-
cent study of network traffic at a Tier-1 ISP shows only a
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Fig. 5. Histogram of payload size for TCP packets. The y-axis is in
log scale.
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Fig. 6. Histogram of number of packets from the same flow. Top plot
is for 100 packets being captured at once. Middle and bottom
plots are for 500, and 1000 packets being captured at once.

fraction of (3.14%) TCP traffic is ever out of sequence [19].
Therefore, from the histograms in figure 6, we infer that
capturing 500 packets with high probability yields at least
4 packets from the same flow and in sequence. Therefore,
this method can is a viable alternative to that of moni-
toring every single packet in the network for flow content
attribution using header information.

VI. Conclusion and Future Work

In this paper we proposed a novel problem, Flow Con-
tent Characterization, which attributes content types for
network traffic on a per flow basis. We presented a method
that can attribute flow content types for network flows
based on payload and presented simulation results.

Improving the accuracy of the overall system for lower
values of payload is part of our future work. One approach
we are looking into is to exclude irrelevant or maybe con-
tradictory features by using a feature selection algorithm.
Furthermore, we are also interested in implementing a pro-
totype system to be used on large networks.



6TABLE I

Confusion matrix of flow content characterization using payload of size 1024 bytes (or equivalent to 1 packet)

Predicted
Txt Bmp Wav Zip Jpg Mp3 Mpg Enc

Txt 97.5 1.83 0.33 0.17 0 0 0.17 0
Bmp 6.17 88.17 4.50 0.17 0.17 0.17 0.67 0
Wav 0 7.67 79.17 1.83 1.67 6.50 2.83 0.33
Zip 0.17 0.33 0.67 33 16.17 9.67 2.5 37.5
Jpg 0 0.50 0.83 30.33 40.67 8.67 5.67 13.33
Mp3 0 0 0.17 5.83 4.67 82.33 4.17 2.83
Mpg 0 1.67 1.5 2.5 6.83 9.5 77 1
Enc 0 0 0 15.83 3.33 4.67 0 76.17

TABLE II

Confusion matrix for flow content characterization using payload of size 4096 bytes (or equivalent to 4 packets).

Predicted
Txt Bmp Wav Zip Jpg Mp3 Mpg Enc

Txt 96.83 2.5 0 0.67 0 0 0 0
Bmp 3.17 91.67 3.33 0.5 0.67 0.17 0.50 0
Wav 0.5 6.67 82.17 0.67 2 7.5 0.5 0
Zip 0.67 0.33 1.33 53 12 3.83 1.17 27.67
Jpg 0 0.33 0.67 12.50 77.67 4.33 3.33 1.17
Mp3 0.33 0.17 0.33 3.17 3.17 90.50 2.33 0
Mpg 0.67 2 1.5 1 4.67 6 84.17 0
Enc 0.17 0 0 12.67 0 0.33 0 86.83

TABLE III

Confusion matrix for flow content characterization using payload of size 16384 bytes (or equivalent to 16 packets).

Predicted
Txt Bmp Wav Zip Jpg Mp3 Mpg Enc

Txt 96.33 2 0.67 0.83 0 0.17 0 0
Bmp 2.83 91 3.67 1.17 0.5 0.17 0.5 0.17
Wav 0.17 3.17 88.33 1.33 0.83 5.67 0.5 0
Zip 0.67 0 0.17 73.83 6 1.5 1.17 16.67
Jpg 0.17 1.33 0.83 4.17 89.83 2 1.67 0
Mp3 0 0.67 1.17 0.83 0.83 95.83 0.67 0
Mpg 0.83 2.33 0.83 0.67 2 2.67 90.67 0
Enc 0 0 0 2.33 0 0 0 97.67
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