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Abstract

One of the growing problems faced by network ad-
ministrators is the abuse of computing resources by
authorized and unauthorized personnel. The nature
of abuse may vary from using unauthorized applica-
tions to serving unauthorized content. Proliferation of
peer-to-peer networks and wide use of tunnels makes
it difficult to detect such abuses and easy to circum-
vent security policies. This paper presents the design
and implementation of a system, called Nabs, that
characterizes content types of network flows based
solely on the payload which can then be used to iden-
tify abuses of computing resources. The proposed
method does not depend on packet headers or other
simple packet characteristics hence is more robust to
circumvention.

1 Introduction

Abuse of computing resources is one of the growing
problems. Network administrators deal with a vari-
ety of abuses such as, network bandwidth by unau-
thorized application services, and the distribution of
unauthorized content to name a few. Abusers can be
malicious attackers looking for free resources to host
their illegal activities, a malicious insider running a
peer-to-peer hub, or simply an ill informed user unin-
tentionally running an application proxy.

The two most common defenses that are used to
prevent network abuses are firewalls and Intrusion De-
tection Systems (IDS). An IDS is not useful in de-
tecting many types of abuses where the essence of the
abuse is not captured by a simple set of signatures.
Firewalls, on the other hand, are more effective in pre-
venting abuse. Firewalls use port blocking to thwart
unauthorized application services. For instance, if a
security policy denies the use of web servers inside a
network then a firewall simply blocks traffic to port
80.

However, it is now well known that a firewall can
be circumvented. For example, most firewalls do not
block outbound connection requests. A malicious in-

sider or a host inside the network compromised by an
attacker can initiate a connection and transfer unau-
thorized data or make available an unauthorized ser-
vice without being detected by a firewall. Another
simple way to bypass the firewall would be to simply
run the unauthorized service on a port that the fire-
wall allows traffic on. So for example, if the firewall
blocks services on port 80 and leaves port 22 open so
that users can telecommute, then a web server can be
configured to use port 22, thereby circumventing the
security policy. A third way to get past the firewall
is by tunneling. Tunneling works by encapsulating a
network protocol within packets carried by another
protocol. So in the above example, with the presence
of a suitable proxy on the inside host, web traffic could
be tunneled through SSH traffic on port 22. Similarly,
there are many other techniques to get past a firewall,
given a malicious insider or a captured host inside the
target network.

Firewall circumvention techniques give rise to new
challenges in abuse detection. Current state-of-the-
art in abuse detection is to simply use port blocking
or bandwidth throttling. Routers simply monitor the
bandwidth usage of hosts and enforce throttling when
it exceed a preset limit. This is not always an effective
solution as the bandwidth may be used for legitimate
purposes. There have been some research work in
identifying application types in the presence of weak
port binding [3,11]. However, we believe the knowl-
edge of content carried by network flows gives better
granularity on detecting abuse more robustly than the
methods presently used. Therefore, the method pro-
posed in this paper does not rely on packet header
information for Flow Content Characterization. By
flow content characterization we mean the ability to
classify network packet contents as belonging to one
of a set of data types like audio data, encrypted data,
video data etc. Note that our intention is not to iden-
tify the application being used but to identify the type
of content emanating from a host or a network flow
in general.

A naive method to characterize flow content is to
simply use the media headers of various file types,



like the file(1) command on Unix systems. Such
as approach has many problems. First of all, me-
dia headers (like the JPEG headers or MPEG head-
ers) can be modified easily. Therefore, it is easy to
circumvent a method that relies on the header infor-
mation. On the other hand, not every single packet
contains header information. For instance, suppose
there is a 200KB JPEG image. When transmitted
over network this image will be split into around 200
packets and only one of them contains the header.
A header based monitoring system must be able to
examine each packet on the network for the string
“JFIF” to determine the content type is a JPEG im-
age. Such a method will also result in false positives
as the string “JFIF” could appear in a JPEG image or
in a text file. In order to minimize such false positives
the method would require some context information
be maintained to properly identify the text. This is
obviously a very expensive process in terms of pro-
cessing power and memory and such an approach is
not viable on large networks where traffic volume is
high. Besides, packet drops and asymmetric routing
may result in this method losing the packet that has
the header information rendering it useless. Also note
that some media types do not have headers at all.
For example, plain-text and encrypted content usu-
ally have no headers to indicate their content type.
Hence, the proposed method does not rely on media
headers. The method samples packets from a net-
work, groups them into flows and uses the group of
packets to characterize the flow content based on its
statistical properties.

The rest of the paper is organized as follows: in
the following section we present an overview of Nabs.
Subsequent sections, Section 3, Section 4, and Sec-
tion 5, discuss various components of the system in
detail. In Section 6 we discuss deployment and ex-
periences gained while running this system in a live
network. Related work is presented in Section 7 and
we conclude with a summary of current accomplish-
ments and future work in Section 8.

2 Overview of Nabs

Nabs is a tool developed for characterizing the con-
tent types of flows. Information about content types
of flows can significantly improve various applications
such as, resource provisioning, QoS policy develop-
ments, traffic accounting, and billing. Furthermore, a
system like Nabs also has the potential to be an intru-
sion detection system. In this paper, however, we fo-
cus on its application for detecting abuse of resources.
Abuse can be defined as an act considered unaccept-
able by the community sharing resources. In the pres-
ence of a use policy, which formally defines acceptable
acts, abuse can be defined precisely as any deviation

from the use policy. Use policies are currently defined
using parameters like bandwidth usage, port numbers,
and type of applications. For instance, a use policy
may state that a user’s net bandwidth limit is 2GB
per month. This leads to inconveniences to users who
use up the bandwidth to download legitimate content.
Besides, these parameters can be easily manipulated
hence use policies that rely on such parameters are
easily subverted. Flow content characterization allows
us to incorporate content types into use policies. It
is more difficult to manipulate content types because
of the difficulty in changing the underlying statistical
properties of one content type to another without dis-
torting the original content. Therefore, incorporating
content types makes use policies more expressive and
robust against subversion. Now, we can restate the
above use policy as a user’s net bandwidth on mul-
timedia content (audio, video, images) is limited to
2GB per month, which is more user friendly.

Nabs is currently deployed in our network and mon-
itors all TCP, UDP flows. Figure 1 illustrates an
overview of the system’s design. It collects network
packets and groups them into flows, characterizes the
content of each flow, and stores the results for future
use. It has three major components to achieve these
tasks, which we briefly discuss in the rest of this sec-
tion.

Flow Collection & Throttling. For the pur-
poses of this paper, a flow is defined as a
set of packets that have identical quine-tuple
Protocol, Sourcel P, Destinationl P, SourcePort,
DestinationPort. The flow collection component
sniffs the network and captures all traffic passing
through a monitoring point. Packet capture and filter-
ing is accomplished using 1ibpcap and BPF filters [1].
Packets that pass through the filter are then grouped
into flows and scheduled in the flow-table to be picked
up for flow characterization.

Flow Characterization. Flow characterization
component constantly sweeps the flow-table for flows
that have accumulated necessary data (16KB of pay-
load, for example). When such a flow is found it is
subsequently removed from the flow-table and pro-
cessed to identify the type of its content. OQutput from
flow characterization, of the form <time, flow-id,
flow-type [,auxiliary-datal>, is then stored in a
database or used to answer queries in real-time as
described below. flow-id is the concatenation of
quine-tuple mentioned above, flow-type is the con-
tent type of the flow as determined by the classifier,
and auxiliary-data includes number of packets and
bytes in the flow.

Storage. Output from the classifier can be stored
directly to a database. However, the storage space
required to store this data outweighs the usefulness of
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Figure 1: Architecture of The Proposed System

such fine grained data. Storage requirements can be
eased by summarizing the results without loosing too
much information in the process. Currently we have
implemented a simple summarization technique that
merges duplicate {flow-ids, flow-type} pairs from
the output and stores the resulting data set.

User Interaction & Query Processing. A user
can extract necessary information from the database
via a user interface using a SQL-like query language.
Query processing has two major components. One
of them is dedicated to continuous queries and the
other to instantaneous or one-time queries. Contin-
uous queries process the characterization results as
a stream and updates the results in real-time. Con-
tinuous queries are useful for monitoring networks in
real-time for such information as “What are the top-
k sources of audio in the network now? or “What
are the type of flows emanating from host x now?”’
Instantaneous queries, on the other hand, are carried
out on data stored in the database and are useful for
analysis of events postmortem.

3 Flow Collection & Throttling

Flow characterization requires a certain minimum
amount of payload per flow to determine the con-
tent type. Until the required payload is accumulated
flows are buffered in the flow-table. This arrangement
necessitates a garbage collector which prevents flows
that do not carry the required minimum from occupy-
ing precious memory. Two major factors stand in the
way of optimizing memory utilization. First, small
insignificant flows take up valuable space in the flow-
table preventing interesting flows from being buffered.

Second, even among the interesting flows we may not
need to look at every single packet to characterize the
flow. Therefore, packets must go through a mecha-
nism that throttles packets based on a preset strat-
egy. Please note that the system is a passive mon-
itor and when we say “throttle” we mean throttling
flows entering the system and not throttling the flows
themselves. We now describe the throttling strategy
currently used.

Throttling & Lossy Counting. Throttling flows
would require us to keep track of flow rates (pack-
ets per second or bandwidth) of all flows entering the
system. Naive approach of building a table to keep
track of flows consumes too much memory. What we
need is an efficient and flexible way of measuring flow
rates. Over the years various data structures and algo-
rithms have been developed for this purpose. For our
implementation we choose one such algorithm, lossy
counting [5], for the following reasons:
Deterministic: Among the many probabilistic al-
gorithms lossy counting is one of the few deterministic
algorithms that can maintain an e-deficient synopsis
of data within the error bounds specified by user.
Streaming Algorithm: It is an one-pass algorithm
which means lossy counting computes the necessary
information on a single pass over the data. It is, there-
fore, well suited for network streams.

Efficiency & Footprint: It is computationally ef-
ficient requiring only a few additions and comparisons
per packet. The data structure is easy to maintain,
has small memory footprint, and self pruning.

‘We now briefly describe lossy counting and refer the
readers to [5] for a detailed description and analysis
of the algorithm and to [7] for an excellent survey on
data stream algorithms in general.



Lossy Counting. Lossy counting is a streaming al-
gorithm that can deterministically compute approxi-
mate frequency counts of elements exceeding a user-
specified threshold in a space efficient manner. More
formally, suppose N denotes the length of current
stream and s, € are two user-specified parameters sup-
port and error respectively, then lossy counting esti-
mates the frequency of elements in the stream whose
true frequency exceeds sN with the guarantee that
the estimated frequencies are utmost e N less than the
true frequencies by using utmost % log(eN) space.

The algorithm works as follows: the data stream is
conceptually divided into buckets of width w = [1]
elements each. Buckets are labeled with bucket ids
starting with 1 and let current bucket id be beyrrent
whose value is eN. A table D of rows of the form
(e, f, A) is maintained where e is the element, f is the
frequency, and A is the value of (beyrrent — 1) when
e was inserted into the table. Initially D is empty.
Whenever an element e arrives , the algorithm first
looks up table D to see if the element is listed. If
so, then frequency f is incremented by one for the
corresponding entry. Otherwise, an entry of the form
(e, 1, beurrent —1) is inserted into D. Table D is pruned
at bucket boundaries, whenever N = (0 mod w), by
removing entries where f 4+ A < beyrrent- Note that
for an entry e in D, f denotes the exact frequency of e
ever since it is inserted into D. Now to find elements
exceeding threshold s we simply walk through entries
in D and extract entries where f > (s —€)N.

We use lossy counting to keep track of the flow rate
of each flow and at bucket boundaries we obtain a list
of flows which exceeds the user-specified threshold s.
All flows that do not satisfy this threshold are dis-
carded and those that satisfy the threshold are put
into the flow-table. For example, setting ¢ = 0.001
and s = 0.01 would result in flows that exceed 1%
of total traffic be placed in the flow-table. Since lossy
counting has no false negatives none of the flows above
1% will be missed. However, flows that are between
0.9% and 1% might or might not appear in the stream
and are false positives. This is a good trade-off be-
tween accuracy and resources as we will never miss
flows that we are interested in (above 1% of total traf-
fic) and will eliminate most of the flows that we are not
interested in (below 0.9%) but only incur some over-
head in processing the false positives (between 0.9%
and 1%).

The above throttling technique and packet filtering
together gives us better control over precisely which
flows should be monitored by the system. For in-
stance, we have the flexibility to specify something
like “consider only TCP or UDP flows to or from
ports above 1024 that occupy more than 1% of total
traffic.” This is a considerable advantage when mon-
itoring traffic on large networks.

4 Flow Characterization

This component is responsible for determining content
types of flows buffered in the flow-table. In order to
distinguish between a variety of flow content types,
we looked at the payload of each packet as a vector of
bytes. Thus, our goal was to come up with a model
that would help us distinguish these vectors based on
their respective statistical signatures. The statistical
measures we used to build the model can be grouped
into three broad categories:

Time Domain. We choose a number of simple
statistical measures from the time domain. Al-
though some of these measures are simple and rudi-
mentary, they help greatly in distinguishing content
types. These measures were, mean, variance, auto-
correlation, and entropy. For example one would ex-
pect that RAW data formats such as, bitmap im-
ages, or .WAV audio, to have lower entropy than com-
pressed or encrypted formats. This is evident in Fig-
ure 2, which shows the average entropy of data frag-
ments for 1000 files in each of the 8 major content
types. A discussion of the data set used can be found
in Section 4.1. Similar reasoning justifies the use of
variance and auto-correlation as well.

8

Avg. Entropy
N

Figure 2: Average entropy of data vectors from 8 dif-
ferent file types.

Frequency Domain. Inspecting the frequency do-
main representation of a set of byte vectors obtained
from different types of files we noticed subtle differ-
ences in frequency representations depending on the
original data type, we choose to use a number of statis-
tical measures from the frequency spectrum. We first
divided the frequency spectrum into 4 bands ranging
from, 0—n/8, 7/8 —w/4, w/4—m/2, and 7w/2 —m. We
then calculated the mean, variance, power, and skew-
ness of each band. For example the average mean of
the power in the 0 — /8 band of the frequency spec-
ﬁlilé%g%rbki%%?‘egtlgtf‘sl ics. 3'Finally, we looked at bi-
coherence, which is a third order statistic. The bico-
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Figure 3: Average mean of the first band, 0 — 7/8, of
the power spectrum for data vectors from 8 different
file types.

herence is able to characterize non-linearities in the
underlying data. Our argument is that the amount
of non-linearity introduced by the compression or en-
cryption techniques varies. Thus these measures could
help us distinguish these content types. We first com-
puted the bicoherence, after which power of the bico-
herence magnitude and phase, and the mean of the
bicoherence magnitude are calculated. In addition
to these statistics we also computed the kurtosis and
skewness of each byte vector. For a good review of bi-
coherence and more generally higher order statistics
the reader is referred to [6].

4.1 Offline Experiments

In this section we describe experiments carried out
to determine three critical parameters related to the
classifier. First, we would like to determine the ef-
fectiveness of the features we have in distinguishing
the content type. Then, we would like to find the
appropriate trade-off between the required minimum
data for classification and accuracy of classification.
Finally, we would like to determine trade-off between
the number of features used for classification and ac-
curacy so that we can increase the through put of the
flow characterization component. We begin this sec-
tion with the explanation of the data set followed by
the experimental setup.

Data Set. There are a variety of content types
available on the Internet. One could divide these con-
tent types into three major categories: raw (or un-
compressed), compressed, and encrypted data. Our
goal was to evaluate how well we can distinguish be-
tween data from each category. We selected a number
of different content types from each category. For ex-
ample, in the raw category we looked at content types
of plain-text, BMP, and WAV, and in the compressed
category ZIP, JPG, MP3, and MPEG files. Our data

set, consisting of the 7 different content types, was
obtained from a random crawl of a peer-to-peer net-
work. The only constraint placed on the downloads
was that the files be at least 50KB. A total of 1000
files were downloaded for each file type. These files
were then encrypted using the AES encryption algo-
rithm to obtain 1000 encrypted files.

Classification. There are a variety of classification
algorithms available. We have chosen to use Support
Vector Machines [12] in our experiments based on our
previous experiments with a number of different data
sets, and observing consistently better performance
results over other classifiers. In our experiments we
opted to use the RBF kernel (Radial Basis Function).
The RBF kernel was optimized by doing a grid search
over its two parameters: cost and gamma. There are
many implementations of SVM available on the public
domain and we have chosen the freely available Lib-
Svm [2] for our experiments and for implementation
in the Nabs itself.

Experimental Setup. The proposed statistics
were computed over various sizes of payload. In or-
der to simulate sampling packets off the wire we seg-
mented each file into 1024-byte blocks. The 1024-byte
block was chosen in accordance with the average size
of TCP packet with payload. 32768 bytes of data,
or equivalently 32 packets were collected from ran-
dom locations in each file. Since we were interested
in seeing the effects of the size of available data on
the classification results, we then obtained different
size payloads from the 32768 bytes of sampled data.
Given a payload size, statistics were then computed
for the payload. After which we have 1000 feature
vectors containing the identifying features proposed
for each of the eight categories. A SVM classifier was
then trained using 400 feature vectors from each of
the 8 content types. The remaining 600 feature vec-
tors were then used to test the resulting classifier.

4.2 Results

The above procedure was repeated for different pay-
load sizes, and as expected the accuracy of the clas-
sification improved with the size of payload used for
classification. In our experiment accuracy was defined

as:
T

T+ F (1)
where T is the number of samples classified correctly,
and F is the number of samples classified incorrectly.
Figure 4 shows the results of accuracy vs. payload size
trade-off. Interestingly, we observed that the accuracy
begins to saturate as the features are computed over
payloads larger than 16KB.

Since we were building a multi-class classifier, just
looking at the overall accuracy would not give a com-

Accuracy =
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Figure 4: Accuracy of classification for various pay-
load sizes.

plete picture on how well the classifier was able to
distinguish between the categories. In order to see
how well each category is distinguished with respect to
the others, we computed the confusion matrix. Con-
fusion matrix presents information about the actual
and predicted results using the classifier. These en-
tries should not be misinterpreted as accuracy figures.
In fact, the overall accuracy of the classifier is equal
to the average of the diagonal entries in the confusion
matrix. In Table 4.2 we show the confusion matrix for
payloads of size 16KB. From the table we can observe
that 96.33% of plain-text payloads were classified cor-
rectly. However, 2.83%, 0.17%, 0.67%, and 0.17% of
them were misclassified as BMP, WAV, ZIP, and MPG
respectively.

4.3 Feature Selection

Some of the features described in the feature set above
may have very little or no information gain in distin-
guishing between the different categories. Further-
more, when implementing the actual system, speed
and complexity become an issue so one would only
want to employ the more essential features from the
25 proposed features. Therefore, we used SFFS (Se-
quential Forward Feature Selection) [9] algorithm to
identify and extract the essential features. This algo-
rithm sequentially adds or removes features and finds
the best subset of features which give maximal infor-
mation gain in the classification process. As seen in
Figure 5, we could obtain optimal accuracy by us-
ing only 6 of 25 features. In fact the accuracy has
less than 1% of difference with the case that all 25
features are used. The chosen features are in order of
importance entropy, power in the first frequency band,
mean, variance, mean and variance in the fourth fre-

quency band.
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Figure 5: Accuracy of classification for number of fea-
tures selected by SFFS.

Using the selected features, the classifier was re-
trained and tested using the data segments of size,
1024, 4096, 8192, and 16384 bytes. Detection results
can be seen in Figure 6. As evident from the fig-
ure, although feature selection provides only marginal
improvement, it greatly reduces required processing
power per flow. Thus with only 6 features we are able
to obtain similar results as if we were using all 25
features.

5 Flow Scheduling

As we can observe from the previous section, flow
characterization is slower than flow collection and on
large networks the characterization becomes a bottle-
neck. Network flows can be categorized into four ma-
jor groups based on packet rate over time (sustained,
temporary) and content type (static, dynamic.)
Sustained Static Flows. These flows have con-
stant packet rate for long periods of time, several min-
utes or hours. These flows do not change the content
type during their life time. Sustained static flows are
generally the result of streaming audio/video or down-
loading a large file (like an ISO image).

Sustained Dynamic Flows. Similar to the above
in terms of packet rate and lifetime but the con-
tent type of the flow changes with time. Example
of such flows include, accessing network file systems
and downloading files via a file sharing program.
Temporary Static Flows. Temporary flows are
mostly bursts of traffic that lasts only for a few sec-
onds or perhaps minutes utmost. Most network traffic
is of this form— web requests and emails to name a few.
These flows carry a single type of content.
Temporary Dynamic Flows. Lifetime of the flow
is same as above but the content type changes. The
change in content type is due to the fact a file may
have various embedded contents. Examples of such



Predicted

Txt [Bmp | Wav [ Zip [ Jpg | Mp3 [ Mpg | Enc
Txt | 96.33 2 0.67 0.83 0 0.17 0 0
Bmp 2.83 91 3.67 1.17 0.5 0.17 0.5 0.17
Wav 0.17 3.17 | 88.33 1.33 0.83 5.67 0.5 0
Zip 0.67 0 0.17 73.83 6 1.5 1.17 16.67
Jpg 0.17 1.33 0.83 4.17 89.83 2 1.67 0
Mp3 0 0.67 1.17 0.83 0.83 95.83 0.67 0
Mpg 0.83 2.33 0.83 0.67 2 2.67 90.67 0
Enc 0 0 0 2.33 0 0 0 97.67

Table 1: Confusion matrix for flow content characterization using payload of size 16384 bytes (or roughly equiv-

alent to using payloads from 16 packets).
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Figure 6: Characterization results using all 25 features and the results using the selected 6 features (marked with

a -F at the end of the category name) for each category.

flows include a flow of downloading a Postscript file
with embedded image or downloading a Microsoft
Word document.

It is easy to see that sustained flows will occupy
the classifier most of the time even though repeat-
edly characterizing them yields no additional infor-
mation. This is especially true for sustained static
flows as the flow content does not change at all. Even
for sustained dynamic flows the content type change is
gradual enough to skip a few packets in the flow. Pro-
posed scheduling identifies sustained flows (regardless
of dynamic or static) and throttles them from entering
the characterization component. This prevents dom-
inating flows from using the classifier repeatedly and
balances the use of expensive classification across all
four types of flows.

Scheduling Sustained Flows. Within the frame-
work of lossy counting we first define sustained flows
more formally. Given a threshold s, a flow is consid-
ered sustained if it was above the threshold in the past
n buckets where n is a user specified parameter. Now
we describe the scheduling policy used in Nabs.
Given the definition for sustained flows, the algo-
rithm to identify sustained flows works as flows: input
to the algorithm is the stream of output from the flow
characterization component. For each element in the
output stream a table D is updated as in lossy count-
ing. In addition, if the corresponding entry satisfies
(beurrent —A) > n then the entry is removed from the
table and the flow-id is sent to the flow collection
and throttling component. The throttling component
prevents packets corresponding to the flow from en-
tering the flow-table for a preset epoch k. This epoch



could be a time interval or a packet count. In our im-
plementation k& = n hence throttling will prevent the
flow from entering the flow-table for next n buckets.
Flow-ids that have been throttled for the past k buck-
ets are then removed from the throttling component
which then allows the corresponding flows to use the
classifier. This cycle continues until either the flow
falls below threshold s or it is finished.

Given that the flow characterization is done multi-
ple times on a single flow, it is possible to characterize
the content type mix in a flow. For example, we can
state that a particular flow is composed of “20% au-
dio, 45% video, and 35% compressed” content. We
call such an estimation flow composition. Obviously
when the scheduler throttles flows it is bound to affect
the accuracy of flow composition. Note, however, this
scheduling only affects the flow composition of sus-
tained dynamic flows. Neither temporary flows nor
sustained static flows are affected by the above throt-
tling because temporary flows are not throttled at all
and content type of sustained static flows does not
change hence flow composition does not apply. In the
worst case, scheduling policy drops all packets of a
set of content types hence flow compositions of these
types, as observed by the system and end user, are
zero. This happens when a content type begins every
n bucket and lasts for the next k£ buckets. In the best
case, packets from each content type will be dropped
proportional to their contribution to the flow hence
the actual and observed flow composition are identi-
cal. On average, however, the accuracy depends on
the ordering of packets in the flow— which in turn de-
pends on network and application latency and routing
delays. In the next section we show that the schedul-
ing is still feasible and does not affect the flow com-
position accuracy much.

6 Deployment & Experiences

Now we summarize our experiences running the sys-
tem on a live network with hundreds of active hosts
for two weeks. Nabs was deployed at a traffic con-
centration point of our campus network to monitor
all TCP and UDP flows. The OC3 link on average
carried 10.57TMB/s and was utilized 55% of its capac-
ity. The system ran on a 3GHz Pentium IV with 1GB
of RAM equipped machine with Linux Kernel 2.4.25.
Flow characterization component was set to use 16KB
of data for characterizing content types. The garbage
collector in the flow-table was set to remove flows that
could not accumulate 16KB in 60 seconds. During the
two week monitoring period we observed Nabs pro-
cessing about 600 flows per second on average. Flow
characterization on 16KB payload, including comput-
ing the 6 features on the payload and classifying the
content types using SVM, took 945us. During the

monitoring period the system’s average main mem-
ory usage was 15MB and never exceeded 20MB.

6.1 Use Policy & Abuse Detection

Although the system can identify the content type of
any flow to tag an event or set of events as abuse we
must first define a use policy to detect abuses pre-
cisely. We summarize the results of observing Nabs
in the network during the two-week period.

Use Policy 1. Encrypted Content Encrypted
traffic is allowed only for the purposes of remote shell
and secure web transactions. No other form of en-
crypted traffic is allowed within the network or to
outside hosts from within the network.

Abuse: We found plenty of hosts in the network
being sources of encrypted traffic however most are
legitimate uses. Upon closer examination, we found
9 hosts on two subnets being sources of significant
amount of encrypted traffic. Nmapping the hosts re-
veal them being part of Waste peer-to-peer network
which, encrypts connections between the nodes.

Use Policy 2. Multimedia Content Besides the
designated web servers, hosts within the network shall
not serve multimedia content.

Abuse: To locate the abusers of this policy we
queried the system for hosts emanating content types
MP3, MPEG, or JPEG. Among the many hosts, we
found 16 hosts of interest based on the amount of
multimedia traffic they serve. Further investigation
revealed them running proxy servers such as http-
proxy and ccftp-proxy, and contents emanate from
these proxies. We also found some machines run-
ning Internet Relay Chat servers. One of the hosts is
running QMQP server which, implements Quick Mail
Queuing Protocol, and used by Spammers for mail
relaying.

Use Policy 3. MP3 Trollers. Web trollers are
crawlers that targets web servers and ftp servers ex-
tracting specific contents from the servers, such as
images and MP3 files. This policy disallows the use
of any trollers against servers in the network.
Abuse: Designated web servers did not emanate
any MP3 or MPEG traffic therefore we believe the
trollers are useless against these servers.

The above results are very promising in that Nabs
is able to detect these abuses where firewalls and in-
trusion detection systems deployed in the network
failed.

6.2 Flow Composition

Finally, we wanted to determine the accuracy of flow
composition observed by the system. For this ex-
periment, we used four content types, namely MP3,



MPEG, JPEG, and plain-text, and constructed ten
different flows with random permutations of these
types. Size of each flow was 86MB. We then sent
the streams across the network and monitored it us-
ing Nabs. Table 6.2 shows the actual and observed
flow composition. Observed composition is averaged
over all ten flows.

Audio | Video Text Jpeg
Actual 24.83% | 25.70% | 24.41% | 24.83%

Observed | 27.46% | 28.08% | 19.75% | 20.93%

Difference | 2.63% | 2.38% | 4.66% | 3.90%

Table 2: Actual and observed flow composition of a
86MB flow with four different types of content.

Even though the flow was only 86MB due to the
scheduler between the classifier and flow-table only
half of the flow was examined by the classifier and rest
is dropped by the scheduler to accommodate other
flows on the network. On average, Nabs examined
only 47.52MB or 55.25% of the total flow. As we
can see the results are promising in that they ac-
curately depict the flow composition of a relatively
short-lived flow. Note that the observed flow compo-
sition does not add up to 100%. This is due to false
positives from the classifier which sometimes, for ex-
ample, miss-classifies JPEG as compressed (gzip or
zipped) content. We believe, Nabs will perform even
better on longer flows.

6.3 Caveats of The System

We believe the following issues must be raised in the
context of flow characterization for the sake of com-
pleteness and for motivating future research in this
area.

Pipelining. Connection pipelining is the process of
sending multiple requests/resources through a single
connection. Pipelining of connections may result in
various types of content interlaced in an application
depended manner. This could increase the false pos-
itives of the classifier. However, we did not observe
applications using pipelining.

DataMasking. In [8] Radhakrishnan et. al. pro-
pose a method to change the statistical properties of
encrypted data to that of non-encrypted content. We
are not clear on the practicality of such method. Data-
Masking, however, could be a potential threat to flow
content characterization if it were feasible.

Compression. Zip/Gzip compressed content is of-
ten confused with other compressed content types
such as MP3, JPEG, and MPEG. We believe this is
due to the fact that compression is not perfect and
leaves traces of the statistical properties of the under-
lying data.

Privacy. We are not addressing the issue explicitly
but it is an important one to consider when imple-
menting the system. However, it can be easily incor-
porated into the system by means of proper autho-
rization mechanisms and monitoring policies.

6.4 Scaling Nabs

Vertical scaling of Nabs is achieved through feature
selection and throttling the flows using lossy counting.
Nabs can also be scaled horizontally by deploying it
on a pool of machines. The challenge is dividing the
flows such that we guarantee each flow is handled by
one and only one machine and all flows are handled
by the pool. A simple hash-based sampling can effec-
tively schedule the flows among the machines. Sup-
pose we hash the flow-id and each machine in the
flow is responsible for a non-overlapping range in the
domain of the hash function, the scheduling works as
follows. For each packet, machines compute the hash
of flow-id and if the hash value falls into its assigned
range then it continues to process the packet other-
wise it the packet is discarded.

7 Related Work

Over the past few years significant research has been
done to characterize network flows. Network traffic
characteristics of various applications such as, web,
email, and multimedia streaming, have been studied
to support emerging network traffic trends for im-
proving the underlying protocols. For this purpose,
researchers have looked into various characteristics of
network traffic such as, size of packets, inter-packet
timings, round trip times, and transmission protocols.
Network security community have borrowed some of
these ideas and extended some others to improve the
security of networks by identifying malicious network
flows, applications, or hosts. In this section we briefly
discuss prior work on network traffic characterization
related to network security and refer the readers to [4]
for a survey on traffic characterization in general.

In [11] a method is presented that uses the neu-
ral network to learn the signature of common net-
work services and then monitor the network to detect
flows that deviate from the norm. The authors use
the total number of bytes transferred as a single fea-
ture to distinguish between Telnet and FTP traffic on
networks. In [3], authors propose a method to iden-
tify well-known applications being tunneled through
unconventional ports. The proposed method uses a
decision tree algorithm to learn the statistical proper-
ties of various applications. The model learned is then
used to characterize the application types of network
flows. Thanks to weak port bindings, port numbers
are not considered in learning the model of both of



these works.

A related problem to the above is tracing connec-
tion chains over multiple networks. Attackers often
obscure their identity and location by forming a con-
nection chain by logging into a set of compromised
systems before attacking a target. Tracing the at-
tack from the victim takes us only to the last link
in the chain but not to the location of the attacker.
In [10, 13], methods are proposed to trace intruders
who obscure their identity by logging through a chain
of multiple machines, known as stepping-stones. The
method proposed in [10] creates “thumb-prints” of
connections using packet content which can be com-
pared to determine whether two connections contain
the same content and are therefore likely to be part
of the same connection chain. However, the method
fails when the connections are encrypted. To address
the problem [13] proposes an algorithm that doesn’t
rely on traffic content, instead relies on packet sizes,
packet intervals, etc. to detect stepping stones.

8 Conclusion and Future Work

In this paper we introduced a system that charac-
terizes content types of flows using only the payload.
We presented the design and implementation details
of a system which can be used for this purposes. We
proposed and analyzed two throttling mechanisms to
scale the system for deployment on large networks.
We also identified 6 statistical properties of payloads
that can characterize content types effectively. The
proposed system was then used to detect abuses of
network resources on a live network over a period of
two weeks. The system performed well in detecting
many cases of abuses which were missed by the fire-
wall and intrusion detection systems.

We are currently developing a query processor that
could integrate both continuous and instantaneous
queries seamlessly. We are also looking to improve
the accuracy of the classifier on compressed contents.
Finally, we plan to design an active abuse detection
system that can automate the enforcement of use poli-
cies on large networks.
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