
In the name of God

CLIENT FRAMEWORK (CF)
USER MANUAL

PREPARED BY:

BEHNAM MOMENI

 1 Introduction

Client Framework (CF) is a part of Partov project. This framework provides the ability
to simulate variety of virtual networks by connecting to the central Partov server. Client
Framework is consisted of two main parts: 1) base (which includes all of the operations
for creating/instantiating topology instances (maps), making connections with Partov
server and other systematic operations) and 2) user part (which includes the user
program which will be executed over a virtual node within the map).

 2 Method of Programming

For simulating the virtual node, you could add all required files of your program to the
“user” folder and do required changes in the “sm.cpp” file in that folder. The “sm.cpp” file
includes code of “SimulatedMachine” class. By running CF an instance of this class will
be created and right after preparing virtual node's interfaces information (including IP
address and MAC address for each interface) its “initialize” method will be called. You
could initialize your data-structures in this method.

This class is child of “Machine” class. The “Machine” class provides access to
information of node's interfaces through two protected fields, namely “iface” and
“countOfInterfaces”. The “iface” is an array of “Interface” class instances.The “Interface”
class structure is like followings:

Page 1 from 5

Interface {
byte mac[MAC_ADDRESS_LENGTH];
uint32 ip;
int32 mask;

}

Note that this array isn't valid before calling “initialize” method (in the constructor).
After returning from “initialize” method, the “run” method will be called. The “run” method
makes it possible to have two threads of execution out of the box (main and run). You
could use “run” thread for operations which are not dependent on received packets (so
you do not need to wait for the first incoming packet to start simulation). Returning from
this method does not terminate the program and the main thread will continue
execution.

Whenever a packet received by the virtual node on one of its interfaces, the
“processFrame” method of “SimulatedMachine” class will be called by two arguments.
The first argument has “Frame” type with following structure:

Frame {
uint32 length;
byte *data;

}

The second argument is an “index” which indicates the interface which packet is
received by it (in the “iface” array). The “data” field of the received packet, points to the
first byte of the frame. This frame is placed in a shared buffer and will be overwritten
after returning from “processFrame” method. So if you need the content of the frame
after returning from this method, you should copy data to another buffer. You could use
each one of “processFrame” and “run” methods for sending packets over each one of
interfaces. For this purpose you could use following method (from the “Machine” class):

bool synchronized sendFrame (Frame frame, int ifaceIndex) const;

This method has similar arguments to the “processFrame” method nad will send the
packet over the requested interface. It return true on success and false on failure.

Also the user program could parse its own command line arguments using following
static method (from the “SimulatedMachine” class):

static void parseArguments(int argc, char *argv[]);

The framework will call this static method after parsing its own arguments. The user
program arguments (which should be marked with “--args”) will be passed to the
“parseArguments” method. In this method, “argc” is count of user program arguments
(count of arguments which are placed in front of “--args” when running CF) and “argv” is
an array of those arguments.

For correct operation of the framework, no one of “base” folder files should be
changed and address of files which are added to the “user” folder must be included in

Page 2 from 5

the “USER_SOURCES” variable in the “Makefile” file to be compiled. You could compile
the framework with make command in the CF root address and remove all created
binary files by make clean command.

 3 Running the Framework

After implementing your program and compiling the framework, the executable file,
namely “cf.out”, will be created. Run “./cf.out --help” to see the internal help of the
framework. A sample of running the framework is placed in the “run.sh” file. Framework
acceptable command line arguments are shown in the Table 1.

Argument name Example Explanation

--ip <server-ipv4> --ip 213.233.168.9 The IP (version 4) of the Partov server

--port <server-port> --port 9339 The port of the Partov server (currently 9339)

--map <map-name> --map bridge The name of the map which you want to connect to

--user <user-name> --user ali Your username (for authentication)

--pass <password> --pass sda;u0,4 Your password (for authentication)

--node <node-name> --node ap1 (optional) The name of the node which you want to
simulate it within selected map

--id <creator-username> --id ali Try to connect to the map instance which was created by
<creator-username> user previously

--new --new Try to create a new map instance.

--free --free Free resources of the map instance which was created by
this user.

--args <arg>[<arg>...] --args 12 hl (optional) The arguments which come after --args will be
passed to the SimulatedMachine::parseArguments
method (must be last argument).

Table 1: CF command line arguments

Each user requires a username/password (which will be sent by email) in order to
connect to the Partov server. After identifying IP/port of the server and your
username/password, you could connect to server (sign in). Then the desired map will be
founded and one instance of it will be assigned to your session. In this phase you could
only use one of three arguments “--id”, “--new”, or “--free”.

Page 3 from 5

At the beginning you should use “--new” to instantiate a map (which is identified by
the “--map” argument). The instantiated map will be assigned to you. Note that each
user could only instantiate one map from each topology at a time. So if you try to
instantiate more maps (of the same topology) you will face an error. After end of your
simulation, it's required to run framework with “--free” argument so the instantiated map
and its resources could be released. After releasing one map, you could “--new” it again.

When you connect to a map, the value of “--node” argument will be used to identify
the virtual node (within the map) which you want to simulate it. If you want to simulate
multiple nodes of a map concurrently (like simulating 4 bridges in a LAN), or if you were
disconnected from the server accidentally and you want to resume the simulation, you
could use “--id <username>” argument. For example for resuming simulation of “bdg1”
you could use following command:

./cf.out --ip 213.233.169.0 --port 9339 --map bridge --node bdg1 --user ali --pass sda;u0,4 --id ali

Or for simulating three nodes, namely “bdg1”, “bdg2”, and “bdg3” in one map
concurrently you could use following commands:

first run this...
./cf.out --ip 213.233.168.9 --port 9339 --map bridge --node bdg1 --user ali --pass sda;u0,4 --new
and in another terminal run this...
./cf.out --ip 213.233.168.9 --port 9339 --map bridge --node bdg2 --user ali --pass sda;u0,4 --id ali
and in yet another terminal, run this...
./cf.out --ip 213.233.168.9 --port 9339 --map bridge --node bdg3 --user ali --pass sda;u0,4 --id ali

And at the end you should free the map with following command:

./cf.out --ip 213.233.168.9 --port 9339 --map bridge --user ali --pass sda;u0,4 –free

Page 4 from 5

 4 Possible Errors

In the Table 2 you could find a list of possible errors. If you encountered any issue,
check this table to find possible solutions. If issue remained unsolved, please let us
know about it via email describing the exact process of triggering the issue.

Code Name Description Solution

5 Map not exists The requested map does
not exists on the server

Check the name after --map argument.
Names are case-sensitive.

6 Duplicate map id Another map with same ID
exists currently

Each user could instantiate one map from
each topology at most. Either free previous
instance or resume it using --id argument.

7 Out of resource Server does not have
enough resources to
instantiate a map

Each map requires some IP addresses. If
other persons use all IP addresses by
instantiating a lot of maps, server could not
instantiate another map. You have to wait till
another person release a map by --free
argument.

12 Node not exists There is no node with the
requested name in the map

• Maybe node name entered
incorrectly. Names are case-sensitive,

• Maybe you are connected to that
node from another terminal. Note that
each node in each map could only be
simulated by one CF.

If node name is correct, --free map and --new
it again.

31 Error in sending
frame in simulated
machine

Length of the sent packet is
invalid

Length of frames which are sent by
“sendFrame” method should be between 14
and 1514 bytes (do NOT include 4 bytes
CRC of the Ethernet trailer).

42 Username or
password is
incorrect

Either your username or
your password is misspelled
(they are case-sensitive)

Check username/password again. If you
saved your password in a file, check the file
encoding.

Others Negotiations failed An error occurred in network
communication

Check your network connection. Use w wired
connection. Check your firewall settings.
Retry.

Table 2: Possible errors and their solution

Page 5 from 5

