Large Scale Machine Learning in Digital Advertising

Seyed Abbas Hosseini
Cofounder, Pegah Inc.
Ph.D. 2018, Sharif
abbas@tapsell.ir
Outline

- Digital Advertising
 - Sponsored Search
 - Display Advertising
- RTB Mechanism
- Bid Estimation
 - CVR Estimation
- Other Interesting Issues
- Who We Are?!
Conveying advertisers’ message to target audience in online media
Sponsored Search

Search: iphone 6s case

Search Engine

App Market
Sponsored Search

- Advertiser sets a bid price on Keywords
- User searches the keyword
- Search engine or market owner ranks ads and selected the best match
Display Advertising
Display Advertising

- Advertiser targets a segment of users
 - No matter what the user is searching or reading
- Ad Network selects the best ad to show to the user
Digital Advertising Ecosystem
Display Advertising Ecosystem

- Buying ads via RTB, 10 billion per day
- A real big data battlefield

<table>
<thead>
<tr>
<th>Query per Second</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turn DSP</td>
</tr>
<tr>
<td>Google</td>
</tr>
</tbody>
</table>
Auction Mechanism

First Price Auction

Second Price Auction

at $8

at $5

$2 $8 $5 $3

$2 $8 $5 $3
Bid Estimation

- Each Advertiser has many campaigns
- With different Pricing Schemas
 - **CPM**: cost per mille impression [favored by publisher]
 - **CPC**: cost per click
 - **CPA**: cost per action [favored by advertiser]

- **Goal**: Maximize Revenue

- **Simple Solution**:
 - Select ad based on Expected Revenue per Impression
 - suppose: ad a, goal cpc

\[
E[Rev|a, u] = \Pr(\text{click}|a, u) \times CPC_a
\]

Called **CVR**, Unknown! Need to be calculated
Income per Click, Known
CVR Estimation: Problem Definition

- Problem Definition

Available Data about
- User
- Context
- Ad

One instance data
- Date: 20160320
- Hour: 14
- Weekday: 7
- IP: 119.163.222.*
- Region: England
- City: London
- Country: UK
- Search Query: “iphone 6s case”
- OS: Windows
- Browser: Chrome
- Ad title: “iphone 6s case on sale!”
- Ad content: “Customize your case design”
- Bid keywords: “iphone case”
- User occupation: Student
- User tags: Sports

Click (1) or not (0)?
Predicted CTR (0.15)
CVR Estimation: Feature Engineering

- One-Hot Binary Encoding

\[x = [\text{Weekday} = \text{Friday}, \text{Gender} = \text{Male}, \text{City} = \text{Shanghai}] \]

\[x = [0,0,0,1,0,0,0,1,0\ldots0] \]

Sparse representation: \[x = [5:1 \ 9:1 \ 12:1] \]

- Prediction Challenges:
 - High Dimensional Data
 - Too Sparse Feature Vectors
 - Very Unbalanced Classification [The convert events are too rare]
 - Real-time response [<100ms]
CVR Estimation: Predictive Models

• Generalized Linear Models
 • Logistic Regression
 • Bayesian Probit Regression

• Factorization Machines
 • Sparse Factorization Machines
 • Field-Aware Factorization Machines
 • Field-Weighted Factorization Machines

• Deep models
 • Deep CTR Predictor
 • Deep Factorization Machines
 • Wide and Deep Recommender Systems
Generalized Linear Models

• General Form
 \[p(y|x, w) = f(w^T x) \]

• Logistic Regression
 - Likelihood is convex and hence Parameters can be learnt using ML
 - Learning can be done in an online fashion using stochastic Gradient Descent
 \[p(y = 1|x, w) = \sigma(w^T x) \]
 \[E(w) = -\ln p(Y|X, w) = \sum_{n=1}^{N} y_n \ln \sigma(w^T x) + (1 - y_n)(1 - \ln \sigma(w^T x)) \]

• Bayesian Probit Regression
 - A fully Bayesian method based on a Gaussian prior over latent weights
 - Posterior can be found online using stochastic variational inference
 - Bing’s Sponsored Search CTR Prediction algorithm
 \[W \sim \prod_{i=1}^{N} \prod_{j=1}^{M_i} N(w_{ij}; \mu_{ij}, \sigma_{ij}^2) \]
 \[y = \text{sgn}(w^T x + \epsilon) \quad \text{where} \quad \epsilon \sim N(0, \beta^2) \]
 \[\Rightarrow p(y|x, w) = \Phi \left(\frac{y \cdot w^T x}{\beta} \right) \]
Generalized Linear Models

• **Pros**
 - **Fast Prediction**
 - Only one inner Product should be calculated
 - **Fast Learning Methods**
 - Efficient online algorithms exist for both proposed methods
 - **Interpretable**

• **Cons**
 - Linear models don’t consider correlation among features
 - Linear models can only memorize feature combinations which users have already performed actions on
Factorization Machines

- One way to consider inter-feature correlations is using polynomial kernels
 \[p(y|x, w) = f(\phi(x, w)) \]
 \[\phi(x, w) = \sum_{i,j \in F} w_{ij} x_i x_j \]

- Challenge: the model has \(O(N^2) \) parameters where \(N \) is the number of features
 - A very common idea in machine learning in this scenario is using factorized models
 \[\phi(x, w) = \sum_{i,j \in F} v_i^T v_j x_i x_j \]
Field-Aware Factorization Machines

- In FMs, every feature has only one latent vector to learn the latent effect with any other feature.

- In FFMs, each feature has several latent vectors. Depending on the field of the other features, one of them is used to do the inner product.

\[
\phi_{FM}(x, w) = v_{Tabnak}^T \cdot v_{Digikala} + v_{Tabnak}^T \cdot v_{Male} + v_{Digikala}^T \cdot v_{Male}
\]

\[
\phi_{FFM}(x, w) = v_{Tabnak,A}^T \cdot v_{Digikala,P} + v_{Tabnak,G}^T \cdot v_{Male,A} + v_{Digikala,G}^T \cdot v_{Male,P}
\]

\[
\phi_{FFM}(x, w) = \sum_{i=1}^{n} \sum_{j=i+1}^{n} v_{i,f_2}^T \cdot v_{j,f_1} \cdot x_i x_j
\]

<table>
<thead>
<tr>
<th>Clicked</th>
<th>Publisher (P)</th>
<th>Advertiser (A)</th>
<th>Gender (G)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Tabnak</td>
<td>Digikala</td>
<td>Male</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>#variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM</td>
<td>n</td>
</tr>
<tr>
<td>Poly2</td>
<td>B</td>
</tr>
<tr>
<td>FM</td>
<td>nk</td>
</tr>
<tr>
<td>FFM</td>
<td>nfk</td>
</tr>
</tbody>
</table>
Factorization Machines

- **Pros**
 - Fast Prediction
 - Only one inner Product should be calculated
 - Considers Correlation Among Features
 - FFM won many Kaggle challenges due to its superior performance

- **Cons**
 - Learning FM models is more computational expensive than linear models
 - Learning the parameters can’t be done online
 - FMs can’t consider correlations among more than two features
 - Over-generalization
Wide & Deep Model

- Memorization of feature interactions through a wide set of cross-product feature transformations are effective and interpretable.

- Generalization requires more feature engineering effort.

- Deep neural networks can generalize better to unseen feature combinations through low dimensional dense embeddings learned for the sparse features.

- Deep neural networks with embeddings can over-generalize and recommend less relevant items when the user-item interactions are sparse and high-rank.

\[P(Y = 1 | x) = \sigma (w_{\text{wide}}^T [x, \phi(x)] + w_{\text{deep}}^T \alpha(t_f) + b) \]
Wide & Deep Model

• Pros
 • Good generalization and memorization

• Cons
 • Learning deep models is computationally expensive
 • Time consuming prediction method
 • Deep features need to be calculated in prediction time
 • Can’t be scaled to RTB size but can be used in sponsored search
Other Interesting Issues

Frequency Capping

Budget Pacing

Fraud Detection

Attribution
Who we are

- **Sponsored Search Advertising**
 - Bazaar Search Advertising

- **Display Advertising**
 - Websites
 - Mobile Applications

- **Social Media Advertising**
 - Micro Influencer Advertising
Tapsell 1st Generation

- **Business state:**
 - 500K daily impression
 - Video advertising SDK with 50 Publishers
 - CPM and CPC campaigns

- **Technical State:**
 - Centralized system to answer the requests
 - Estimating CTRs using a simple Bayesian Bernoulli Model
 - Visualizing the historical data and improve algorithm incrementally

- **Cons:**
 - Not scalable
 - Large error in CTR estimation

- **Pros:**
 - Best Performance based advertising platform in its own time
Tapsell 2nd Generation

- **Business state:**
 - 1M+ daily impression
 - 150+ Publishers
 - CPI Campaign

- **Technical State:**
 - Adding multi-level cache to response more requests (still centralized)
 - Estimating CVRs in lower granularity
 - Adding time effect to the CVR estimation model
 - Using feedback data to improve CVR estimations

- **Cons:**
 - Not scalable
 - Large error in CVR estimation for post-click actions

- **Pros:**
 - The Only CPI based advertising platform in its own time
Tapsell 3rd Generation

- **Business state:**
 - 100M+ daily impression
 - 500+ Publishers
 - CPI, CPA Campaign

- **Technical State:**
 - Making the model horizontally scalable in all levels
 - Changing the servers’ OS to DCOS
 - Switching to distributed programming platforms (Apache Spark)
 - Switching to distributed Databases (Cassandra, …)
 - Dockerizing all modules
 - Making the CVR estimation model much more efficient by considering all users’ history

- **Pros:**
 - The system is completely scalable and there exist no technical limitation to get the market
 - Best Performance based advertising platform in Iran
Tapsell 4th Generation

• **Business state:**
 - 200M+ daily impression
 - 3500+ Direct Publishers
 - About 2x traffic in comparison to 3rd generation

• **Technical State:**
 - Decreasing response time to global standards
 - Connecting to different ad exchanges through RTB
 - Estimating Bid using CVR and other DSPs values

• **Pros:**
 - Be able to easily increase traffic by connecting to ad exchanges
Current Challenges

• Improving CVR estimation method
 • We still have a far way to be optimized in CVR estimation

• Improving bid estimation algorithm
 • Bid estimation in competition to other DSPs is still a new challenge for us

• Making the system more scalable and efficient
 • Responding to millions of requests per second with our limited resource is still a dream for us
How to Join Us

- **Co-op Program for B.Sc. students**
 - Learn cutting edge technologies by working in a professional atmosphere
 - Designing, Evaluating and Deploying Large Scale ML Algorithms
 - Distributed Databases and Programming Platforms
 - Cloud Computing technologies

- **Research Topic for M.Sc. and Ph.D. students**
 - Computational Advertising is a hot topic in top conferences such as KDD, WSDM, WWW, ...
 - Real world problems
 - Real Datasets
 - Baseline Methods that can be used to develop more advanced ones

- **Apply for full time or part time job by**
 - Send your resume to jobs@tapsell.ir
 - Fill the form at jobs.tapsell.ir
Thank You!