Introduction to Usable Security
Reasoning About the Human in the Loop

Lorrie Faith Cranor
September 2011

CyLab Usable Privacy and Security Laboratory
http://cups.cs.cmu.edu/
Outline

- Why should we make secure systems more usable?
- How can we make secure systems more usable
- The human in the loop
Why should we make secure systems more usable?
Unusable security & privacy

- Unpatched Windows machines compromised in minutes
- Phishing web sites costing $billions
- Most PCs infected with spyware
- Users have more passwords than they can remember and practice poor password security
- Enterprises store confidential information on laptops and mobile devices that are frequently lost or stolen
“Give end-users security controls they can understand and privacy they can control for the dynamic, pervasive computing environments of the future.”

- Computing Research Association 2003
security/privacy researchers and system developers

human computer interaction researchers and usability professionals
security/privacy researchers and system developers

human computer interaction researchers and usability professionals
The user experience
How do users stay safe online?
After installing all that security and privacy software do you have any time left to get any work done?
Security is a secondary task
“Users do not want to be responsible for, nor concern themselves with, their own security.”

- Blake Ross
Concerns may not be aligned
Concerns may not be aligned

Security Expert

User
Concerns may not be aligned

Security Expert

Keep the bad guys out

User

Don’t lock me out!
Grey

- Smartphone based access-control system
- Used to open doors in the Carnegie Mellon CIC building
- Allows users to grant access to their doors remotely

Data collection

- Year long interview study
- Recorded 30 hours of interviews with Grey users
- System was actively used: 29 users x 12 access per week
Users complained about speed

- Users said Grey was slow
- But Grey was as fast as keys
- Videotaped a door to better understand how doors are opened differently with Grey and keys
Average access times

- Getting keys: 3.6 sec (σ = 3.1)
- Stop in front of door: 5.4 sec (σ = 3.1)
- Door opened: 5.7 sec (σ = 3.6)
- Door Closed: Total 14.7 sec (σ = 5.6)
Average access times

Getting keys 3.6 sec σ = 3.1 Stop in front of door 5.4 sec σ = 3.1 Door opened 5.7 sec σ = 3.6 Door Closed 14.7 sec σ = 5.6

Getting phone 8.4 sec σ = 2.8 Stop in front of door 2.9 sec σ = 1.5 Door opened 3.8 sec σ = 1.1 Door Closed 15.1 sec σ = 3.9
Average access times

Getting keys

Stop in front of door

Door opened

Door Closed

Total 14.7 sec

σ = 5.6

Getting phone

Stop in front of door

Door opened

Door Closed

Total 15.1 sec

σ = 3.9
“I find myself standing outside and everybody inside is looking at me standing outside while I am trying to futz with my phone and open the stupid door.”
Nobody wants to have to reboot their door
Unanticipated uses can bolster acceptance
Convenience always wins
Secure, but usable?
Unusable security frustrates users
Typical password advice

- Pick a hard to guess password
- Don’t use it anywhere else
- Change it often
- Don’t write it down
What do users do when every web site wants a password?
Bank = b3aYZ
Amazon = aa66x!
Phonebill = p2ta1
How can we make secure systems more usable?
How can we make secure systems more usable?

- **Make it “just work”**
 - Invisible security

- **Make security/privacy understandable**
 - Make it visible
 - Make it intuitive
 - Use metaphors that users can relate to

- **Train the user**
Make it “just work”
This makes users very happy

(but it’s not that easy)
One way to make it work: make decisions

- Developers should not expect users to make decisions they themselves can’t make
Make security understandable
“Present choices, not dilemmas”

- Chris Nodder
 (in charge of user experience for Windows XP SP2)
The installation wizard will automatically configure Tor for your privacy needs. Please select a default level below. If you're not sure, you can always customize or change your settings later.

- **Critical Privacy Needs**
 You will accept slower or more difficult Internet access in order to ensure that your Internet usage is never identified with you. This setting will configure all of your applications to use Tor.

- **Selective Privacy Needs**
 There are some online activities for which you may have critical privacy needs and other online activities for which your privacy needs are moderate or non-existent. For example, you may only have critical privacy needs while browsing or instant messaging. This setting will allow you to select which of your applications will use Tor.

- **Basic Privacy Needs**
 You would like to maximize the speed and convenience of your Internet access while protecting your privacy as much as possible. This setting will configure Tor for the Firefox web browser only. Your configuration options will be set to maximize the speed and convenience of your Internet access.
Train the user
Why do humans fall for phish?

- Not motivated to pay attention to training
 - “Security is not my problem”
- Mental models inconsistent with reality
 - “If site looks professional it must be legitimate”
- Need actionable advice they can understand
 - Difficult to be alert if you don’t know what you’re looking for
How do we get people trained?

- Learning science principles
- Teachable moments
- Fun

PhishGuru embedded training

- Send email that look like phish
- If recipient falls for it, train in succinct and engaging format
- Study demonstrated effectiveness of PhishGuru and found that same training was not effective sent as regular email

Learning science principles + Teachable moments + Fun
School of phish

- 28-day study
- 515 CMU students, faculty, and staff
- Conditions: No training, 1 training message, 2 training messages
- 7 simulated phishing emails and 3 legitimate emails sent to each participant

http://www.cylab.cmu.edu/research/techreports/tr_cylab09002.html
Simulated spear phishing message

From: Help Desk <alert-password@cmu.edu>
Subject: Your Andrew password alert
Date: November 17, 2008 11:08:19 AM EST
To: Ponnurangam Kumaraguru (PK)

Dear Student/Faculty/Staff,

Our records indicate that you have not changed your Andrew password in the last 90 days, if you do not change your password in the next 5 days, your access to the Andrew email system will be terminated. Click the link below to update your password.

http://andrewwebmail.org/password/change.htm?ID=9009

Sincerely,
Andrew Help Desk
Simulated spear phishing message

Plain text email without graphics

URL is not hidden
Simulated phishing website
Simulated phishing website

Thank you for updating your password!

Carnegie Mellon Certificates: Many of the services that use WebISO also use the Carnegie Mellon Certificates. If you haven’t already done so, you should install the Carnegie Mellon CA Root Certificates in your browser.

About this service. WebISO verifies the identity of Carnegie Mellon users. WebISO does not require installation of specialized software. However, your browser must be configured to accept cookies. This is the default configuration for all major web browsers. If you have disabled cookies in the past you will need to enable cookie support in your browser to use WebISO... [more]
Results

- PhishGuru training taught people to distinguish phishing and legitimate emails
 - Those trained with PhishGuru still clicked on legitimate links
 - But those trained with PhishGuru were less likely to click on phishing links, even 28 days after training
Training games: Anti-phishing Phil

Learning science principles
+ Teachable moments
+ Fun
From research to reality

- Started as student thesis projects
- Studied how experts, novices respond to phish
- Iterated on PhishGuru and Phil implementations
 - Lab studies, focus groups, field studies
- PhishGuru training, Anti-Phishing Phil, and more now offered by Wombat Security Technologies
The human in the loop
Humans

“Humans are incapable of securely storing high-quality cryptographic keys, and they have unacceptable speed and accuracy when performing cryptographic operations. (They are also large, expensive to maintain, difficult to manage, and they pollute the environment. It is astonishing that these devices continue to be manufactured and deployed. But they are sufficiently pervasive that we must design our protocols around their limitations.)”

--- C. Kaufman, R. Perlman, and M. Speciner.
Humans are weakest link

- Most security breaches attributed to “human error”
- Social engineering attacks proliferate
- Frequent security policy compliance failures
- Automated systems are generally more predictable and accurate than humans
Why are humans in the loop at all?
Why are humans in the loop at all?

- Don’t know how or too expensive to automate
- Human judgments or policy decisions needed
- Need to authenticate humans
The human threat
The human threat

- **Malicious** humans who will attack system
The human threat

- **Malicious** humans who will attack system
- Humans who are *unmotivated* to perform security-critical tasks properly or comply with policies
The human threat

- *Malicious* humans who will attack system
- Humans who are *unmotivated* to perform security-critical tasks properly or comply with policies
- Humans who *don’t know* when or how to perform security-critical tasks
The human threat

- **Malicious** humans who will attack system
- Humans who are *unmotivated* to perform security-critical tasks properly or comply with policies
- Humans who *don’t know* when or how to perform security-critical tasks
- Humans who are *incapable* of performing security-critical tasks
Need to better understand humans in the loop

- Do they know they are supposed to be doing something?
- Do they understand what they are supposed to do?
- Do they know how to do it?
- Are they motivated to do it?
- Are they capable of doing it?
- Will they actually do it?
C-HIP Model

Communication-Human Information Processing Model

Human-in-the-loop security framework

- Applied C-HIP to security indicators
- Expanded to model other types of human interaction with secure systems
 - Password policies
 - Online trust decisions
- Developed human threat identification and mitigation process

Human-in-the-loop framework

Communication

Communication Impediments
- Environmental Stimuli
- Interference

Human Receiver

Personal Variables
- Demographics and Personal Characteristics
- Knowledge & Experience

Intentions
- Attitudes and Beliefs
- Motivation

Capabilities

Communication Delivery
- Attention Switch
- Attention Maintenance

Communication Processing
- Comprehension
- Knowledge Acquisition

Application
- Knowledge Retention
- Knowledge Transfer

Behavior
Communication processing model

- Framework is based on communication processing model
 - Many models in the literature
 - Used to model all sorts of communications
- Most end-user security actions are triggered by some form of communication
 - Pop-up alert, email, manual, etc.
- Expert self-discovery of a security process can be modeled as communication to oneself
Communication

Communication Impediments
- Environmental Stimuli
- Interference

Human Receiver
- Communication Delivery
 - Attention Switch
 - Attention Maintenance
- Communication Processing
 - Comprehension
 - Knowledge Acquisition
- Communication Application
 - Knowledge Retention
 - Knowledge Transfer

Intentions
- Attitudes and Beliefs
- Motivation

Personal Variables
- Demographics and Personal Characteristics
- Knowledge & Experience

Capabilities

Behavior
Types of security communications
Types of security communications

- **Warnings**
 - Alert users to take immediate action to avoid hazard
Types of security communications

- **Warnings**
 - Alert users to take immediate action to avoid hazard

- **Notices**
 - Inform users about characteristics of entity or object
Types of security communications

- **Warnings**
 - Alert users to take immediate action to avoid hazard

- **Notices**
 - Inform users about characteristics of entity or object

- **Status indicators**
 - Inform users about system status information
Types of security communications

- **Warnings**
 - Alert users to take immediate action to avoid hazard
- **Notices**
 - Inform users about characteristics of entity or object
- **Status indicators**
 - Inform users about system status information
- **Training**
 - Teach users about threat and how to respond
Types of security communications

- **Warnings**
 - Alert users to take immediate action to avoid hazard

- **Notices**
 - Inform users about characteristics of entity or object

- **Status indicators**
 - Inform users about system status information

- **Training**
 - Teach users about threat and how to respond

- **Policy**
 - Inform users about policies
Active versus passive communications

Active -- Passive
Active versus passive communications

Firefox Anti-Phishing Warning
Active versus passive communications

Active

Firefox Anti-Phishing Warning

Passive

Bluetooth indicator in Mac menu bar
Active versus passive communications

Active
- Firefox Anti-Phishing Warning

Indicators with audio alerts

Passive
- Bluetooth indicator in Mac menu bar
Active versus passive communications

Active
- Firefox Anti-Phishing Warning
- Indicators with audio alerts
- Indicators with animation

Passive
- Bluetooth indicator in Mac menu bar
Communication impediments

Communication Impediments
- Environmental Stimuli
- Interference

Human Receiver
- Personal Variables
 - Demographics and Personal Characteristics
 - Knowledge & Experience
- Communication Delivery
 - Attention Switch
 - Attention Maintenance
- Communication Processing
 - Comprehension
 - Knowledge Acquisition
- Application
 - Knowledge Retention
 - Knowledge Transfer
- Intentions
 - Attitudes and Beliefs
 - Motivation
- Capabilities
Environmental stimuli

- Divert user’s attention
- Greatest impact on passive communication
- Examples
 - Other communications
 - Ambient light and noise
 - User’s primary task
Sign In

What is your e-mail address?

My e-mail address is lorrie@acm.org

Do you have an Amazon.com password?

- No, I am a new customer.
- Yes, I have a password: |

Sign in using our secure server

Forgot your password? Click here
Has your e-mail address changed since your last order?

The secure server will encrypt your information. If you received an error message when you tried to use our secure server, sign in using our standard server.

You are now Unmasked
Interference

- Anything that may prevent a communication from being received as the sender intended
- Caused by
 - Malicious attackers
 - Technology failures
 - Environmental stimuli that obscure the communication
- Focus of traditional secure systems analysis
Human receiver - *The human in the loop*

Communication
- Communication Impediments
 - Environmental Stimuli
 - Interference

Human Receiver
- Personal Variables
 - Demographics and Personal Characteristics
 - Knowledge & Experience
- Communication Delivery
 - Attention Switch
 - Attention Maintenance
- Communication Processing
 - Comprehension
 - Knowledge Acquisition
- Application
 - Knowledge Retention
 - Knowledge Transfer
- Intentions
 - Attitudes and Beliefs
 - Motivation
- Capabilities

Behavior
Communication delivery

- **Attention switch**
 - Noticing communication

- **Attention maintenance**
 - Paying attention long enough to process

- **Breakdowns**
 - Environmental stimuli, interference
 - Characteristics of communication
 - Habituation
 - Tendency for the impact of stimuli to decrease over time
“What lock icon?”
Communication processing

- **Comprehension**
 - Understand communication
- **Knowledge acquisition**
 - Learn what to do in response

- **Breakdowns**
 - Unfamiliar symbols, vocabulary, complex sentences, conceptual complexity
Firefox SSL icon

Internet Explorer cookie flag
WARNING

Moving Gate Can Cause Serious Injury or Death

KEEP CLEAR! Gate may move at any time without warning.

Do not allow children to operate the gate or play in the gate area.

This gate is for vehicles only. All pedestrians must use a separate entrance.

Read the owner's manual and safety instructions.

If entrapment protection is by constant hold control, an automatic closing device shall not be used with this gate operator.

OED-300 7/99
WARNING

Moving Gate Can Cause Serious Injury or Death
浴衣・スリッパのままで、客室フロア（廊下）以外へお出になることは、非常時を除き、ご遠慮ください。
WARNING!
SUFFOCATION HAZARD

MISE EN GARDE!
RISQUE D'ÉTOUFFEMENT.

DEUTSCH
WARNhinweis! Erstickungsgefahr.

NEDERLANDS
LET OP! Verstikkingsgevaar.
Application

- **Knowledge retention**
 - Ability to remember communication

- **Knowledge transfer**
 - Ability to recognize applicable situations and apply knowledge

- **May not be necessary if application is immediate (e.g. pop-up warning)**
Personal variables

- Demographics and personal characteristics
 - Age, gender, culture, education, occupation, disabilities

- Knowledge and experience
 - Education, occupation, prior experience
Intentions

- **Attitudes and beliefs**
 - Beliefs about communication accuracy
 - Beliefs about whether they should pay attention
 - Self-efficacy - whether they believe they can complete actions effectively
 - Response-efficacy - whether they believe the actions they take will be effective
 - How long it will take
 - General attitudes - trust, annoyance

- **Motivation**
 - Incentives, disincentives
Capabilities

- User’s level of ability
 - Cognitive or physical skills
 - Availability of necessary software or devices
Are you capable of remembering a unique strong password for every account you have?
Are you capable of remembering a unique strong password for every account you have?
Behavior

Communication

Communication Impediments
- Environmental Stimuli
- Interference

Human Receiver

- Personal Variables
 - Demographics and Personal Characteristics
 - Knowledge & Experience

- Attention Switch
- Attention Maintenance

- Communication Delivery
- Comprehension
- Knowledge Acquisition

- Communication Processing
- Knowledge Retention
- Knowledge Transfer

Intentions
- Attitudes and Beliefs
- Motivation

Application

Capabilities

Intentions

Knowledge & Experience

Communication

Behavior

Demographics and Personal Characteristics

Retention

Knowledge Transfer
Behavior

- Users may intend to comply, but may fail to complete necessary action
- Users may complete recommended action, but do so in a way that follows a predictable pattern that can be exploited by attackers
 - Example: password choice
...Then we just type in your password...

How did you know my password?

2201? It's the same password you use for everything.

But how did you know? It was a secret!

Call it a wild guess.

Honey! He's broken our code!
Gulfs

- Gulf of Execution
 - Gap between a person’s intentions to carry out an action and the mechanisms provided by a system to facilitate that action
 - “I can’t figure out how to make it do what I want it to do”

- Gulf of Evaluation
 - When a user completes an action but is unable to interpret the results to determine whether it was successful
 - “I can’t figure out whether it worked”

Generic Error-Modeling System

- **Mistakes**
 - When people formulate action plans that will not achieve the desired goal

- **Lapses**
 - When people formulate suitable action plans, but forget to perform a planned action (for example, skipping a step)

- **Slips**
 - When people perform actions incorrectly (for example, press the wrong button)

Appendix A: Components of the human-in-the-loop security framework

<table>
<thead>
<tr>
<th>Component</th>
<th>Questions to ask</th>
<th>Factors to consider</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication</td>
<td>What type of communication is it (warning, notice, status indicator, policy, training)? Is communication active or passive? Is this the best type of communication for this situation?</td>
<td>Severity of hazard, frequency with which hazard is encountered, extent to which appropriate user action is necessary to avoid hazard</td>
</tr>
<tr>
<td>Communication impediments</td>
<td>Environmental Stimuli: What other environmental stimuli are likely to be present?</td>
<td>Other related and unrelated communications, user’s primary task, ambient light, noise</td>
</tr>
<tr>
<td></td>
<td>Interference: Will anything interfere with the communication being delivered as intended?</td>
<td>Malicious attackers, technology failures, environmental stimuli that obscure the communication</td>
</tr>
<tr>
<td>Personality variables</td>
<td>Demographics and personal characteristics: Who are the users? What do their personal characteristics suggest about how they are likely to behave?</td>
<td>Age, gender, culture, education, occupation, disabilities</td>
</tr>
<tr>
<td>Knowledge and experience</td>
<td>What relevant knowledge or experience do the users or recipients have?</td>
<td>Education, occupation, prior experience</td>
</tr>
<tr>
<td>Intentions</td>
<td>Attitudes and beliefs: Do users believe the communication is accurate? Do they believe they should pay attention to it? Do they have a positive attitude about it?</td>
<td>Reliability, conflicting goals, distraction from primary task, risk perception, self-efficacy, response efficacy</td>
</tr>
<tr>
<td>Motivation</td>
<td>Are users motivated to take the appropriate action? Are they motivated to do so carefully or properly?</td>
<td>Conflicting goals, distraction from primary task, convenience, risk perception, consequences, incentives/disincentives</td>
</tr>
<tr>
<td>Capabilities</td>
<td>Are users capable of taking the appropriate action?</td>
<td>Knowledge, cognitive or physical skills, memorability, required software or devices</td>
</tr>
<tr>
<td>Communication delivery</td>
<td>Attention switch: Do users notice the communication? Are they aware of rules, procedures, or training messages?</td>
<td>Environmental stimuli, interference, format, font size, length, delivery channel, habituation</td>
</tr>
<tr>
<td>Attention maintenance</td>
<td>Do users pay attention to the communication long enough to process it? Do they read, watch, or listen to it fully?</td>
<td>Environmental stimuli, format, font size, length, delivery channel, habituation</td>
</tr>
<tr>
<td>Communication processing</td>
<td>Comprehension: Do users understand what the communication means?</td>
<td>Symbols, vocabulary and sentence structure, conceptual complexity, personal variables</td>
</tr>
<tr>
<td>Knowledge acquisition</td>
<td>Have users learned how to apply it in practice? Do they know what they are supposed to do?</td>
<td>Exposure or training time, involvement during training, personal characteristics</td>
</tr>
<tr>
<td>Application</td>
<td>Knowledge retention: Do users remember the communication when a situation arises in which they need to apply it? Do they recognize and recall the meaning of symbols or instructions?</td>
<td>Frequency, familiarity, long term memory, involvement during training, personal characteristics</td>
</tr>
<tr>
<td>Knowledge transfer</td>
<td>Can users recognize situations where the communication is applicable and figure out how to apply it?</td>
<td>Involvement during training, similarity of training, personal characteristics</td>
</tr>
<tr>
<td>Behavior</td>
<td>Does behavior result in successful completion of desired action?</td>
<td>See Norman’s Stages of Action, GEMS</td>
</tr>
<tr>
<td></td>
<td>Does behavior follow predictable patterns that an attacker might exploit?</td>
<td>Type of behavior, ability of people to act randomly in this context, usefulness of prediction to attacker</td>
</tr>
</tbody>
</table>
Human threat identification and mitigation process
Human threat identification and mitigation process

Task Identification

Identify points where the system relies on humans to perform security-critical functions.
Human threat identification and mitigation process

Task Identification
- Identify points where the system relies on humans to perform security-critical functions

Task Automation
- Find ways to partially or fully automate some of these tasks
Human threat identification and mitigation process

- **Task Identification**
 - Identify points where system relies on humans to perform security-critical functions

- **Task Automation**
 - Find ways to partially or fully automate some of these tasks

- **Failure Identification**
 - Identify potential failure modes for remaining tasks
 - Human-in-the-loop Framework
 - User Studies
Human threat identification and mitigation process

1. **Task Identification**: Identify points where the system relies on humans to perform security-critical functions.
2. **Task Automation**: Find ways to partially or fully automate some of these tasks.
3. **Failure Identification**: Identify potential failure modes for remaining tasks.
4. **Failure Mitigation**: Find ways to prevent these failures.

- **Human-in-the-loop Framework**: User Studies
Human threat identification and mitigation process

Task Identification
Identify points where system relies on humans to perform security-critical functions

Task Automation
Find ways to partially or fully automate some of these tasks

Failure Identification
Identify potential failure modes for remaining tasks

Failure Mitigation
Find ways to prevent these failures

Human-in-the-loop Framework
User Studies
Guidelines for automating appropriately

- How accurate is the system?
- How are stakeholder values embodied in the system? What roles do social and environmental contexts have in this particular application?
- Does automation reduce end-user information overload or otherwise simplify the task of security decision making?
- Are there alternatives to automation that are at least as appropriate for end-users?
- If automating, are there mechanisms to “keep the human in the loop”?
- If the automation mechanisms fail, are there user interfaces for gracefully dealing with these situations?

W.K. Edwards, E.S. Poole, and J. Stoll. Security Automation Considered Harmful? NSPW;07.
Applying the framework

- Applied as part of a human threat identification and mitigation process
- Can be applied to understand failures in existing systems and prioritize mitigations
- Can be applied to proposed systems in design phase to inform design decisions
Applying threat identification and mitigation process to warnings

- Task identification
 - Determine whether the task I am trying to complete is sufficiently risky that I should stop
- Often, software asks the user and provides little or no information to help user make this decision
Computer security warnings

- All too often, when software detects a possible security hazard, it warns the user about it
- Often, it turns out not to be a hazard
- But sometimes it really is a hazard and users ignore the warning anyway
Security Error: Domain Name Mismatch

You have attempted to establish a connection with "www.whitehouse.gov". However, the security certificate presented belongs to "a248.e.akamai.net". It is possible, though unlikely, that someone may be trying to intercept your communication with this web site.

If you suspect the certificate shown does not belong to "www.whitehouse.gov", please cancel the connection and notify the site administrator.

View Certificate Cancel OK
Something happened and you need to click OK to get on with doing things.

Certificate mismatch security identification administrator communication intercept liliputian snotweasel foxtrot omegaforce.
Automate and change tasks to reduce need for user involvement

Might be dangerous

User must decide
Automate and change tasks to reduce need for user involvement

Might be dangerous
User must decide

Use automated analysis to determine probability of danger
Automate and change tasks to reduce need for user involvement

Use automated analysis to determine probability of danger

- High probability of danger: Block
- Might be dangerous: User must decide
- Very low probability of danger: Don’t bother user
Support user decision

- High probability of danger
 - Block

- Might be dangerous
 - User must decide

- Very low probability of danger
 - Don’t bother user
Support user decision

- High probability of danger: Block
- Might be dangerous: User must decide
- Very low probability of danger: Don’t bother user

Improve warnings

Help user decide by asking question user is qualified to answer
Bad question

Your web browser thinks this is a phishing web site. Do you want to go there anyway?

Don’t go there Go there anyway

I don’t know what a phishing site is.

I really want to go to this site.

Of course I will go there anyway!
Better question

You are trying to go to evilsite.com. Do you really want to go there or would you rather go to yourbank.com?

Go to yourbank.com Go to evilsite.com

Of course I want to go to yourbank.com!
What to do about hazards?
Best solution: remove hazard
Next best: guard against hazard
If all else fails: warn
CAUTION
Cylab Usable Privacy and Security Laboratory

http://cups.cs.cmu.edu/

Carnegie Mellon