
CE 874 - Secure Software Systems

Program Analysis

Mehdi Kharrazi

Department of Computer Engineering

Sharif University of Technology

Acknowledgments: Some of the slides are fully or partially obtained from other sources. A
reference is noted on the bottom of each slide, when the content is fully obtained from
another source. Otherwise a full list of references is provided on the last slide.

Spring 1398 Ce 874 - Program Analysis

Program Analysis

• How could we analyze a
program (with source code)
and look for problems?

• How accurate would our
analysis be without executing
the code?

• If we execute the code, what
input values should we use to
test/analyze the code?

• What if we don’t have the
source code? https://www.viva64.com

Spring 1398 Ce 874 - Program Analysis

What is Program Analysis?

• Body of work to discover useful facts about programs

• Broadly classified into three kinds:

• Dynamic (execution-time)

• Static (compile-time)

• Hybrid (combines dynamic and static)

[Naik’18]

Spring 1398 Ce 874 - Program Analysis

Dynamic Program Analysis

• Infer facts of program by monitoring its runs

• Examples:

Array bound checking 
Purify

Datarace detection
Eraser

Memory leak detection
Valgrind Finding likely invariants

Daikon

[Naik’18]

Spring 1398 Ce 874 - Program Analysis

Static Analysis

• Infer facts of the program by inspecting its source (or binary) code

• Examples:

Suspicious error patterns
Lint, FindBugs, Coverity

Checking API usage rules
Microsoft SLAM

Memory leak detection
Facebook Infer

Verifying invariants
ESC/Java

[Naik’18]

Spring 1398 Ce 874 - Program Analysis

Program Invariants

• An invariant at the end 
of the program is 
(z == c) for some 
constant c. What is c?

int p(int x) { return x * x; }
 
void main() {
 int z;
 if (getc() == ‘a’)
 z = p(6) + 6;
 else  
 z = p(-7) – 7; 
 
 
 
}

z = ?

[Naik’18]

Spring 1398 Ce 874 - Program Analysis

QUIZ: Program Invariants

• An invariant at the end 
of the program is 
(z == c) for some 
constant c. What is c?

int p(int x) { return x * x; }
 
void main() {
 int z;
 if (getc() == ‘a’)
 z = p(6) + 6;
 else  
 z = p(-7) – 7; 
 
 if (z != 42)  
 disaster();  
}

z = 42
Disaster averted!

[Naik’18]

Spring 1398 Ce 874 - Program Analysis

Discovering Invariants By Dynamic Analysis

• (z == 42) might be an 
invariant

• (z == 30) is definitely 
not an invariant

int p(int x) { return x * x; }
 
void main() {
 int z;
 if (getc() == ‘a’)
 z = p(6) + 6;
 else  
 z = p(-7) – 7; 
 
 if (z != 42)  
 disaster();  
}

z = 42

[Naik’18]

Spring 1398 Ce 874 - Program Analysis

Discovering Invariants By Static Analysis

 is definitely

• (z == 42) might be an 

invariant

• (z == 30) is definitely 
not an invariant

int p(int x) { return x * x; }
 
void main() {
 int z;
 if (getc() == ‘a’)
 z = p(6) + 6;
 else  
 z = p(-7) – 7; 
 
 if (z != 42)  
 disaster();  
}

z = 42

[Naik’18]

Spring 1398 Ce 874 - Program Analysis

Dynamic vs. Static Analysis

Dynamic Static

Cost

Effectiveness

A. Unsound  
 (may miss

errors)

D. Incomplete  
(may report  

spurious errors)

B. Proportional to 
program’s
execution  

time

C. Proportional
to program’s size

[Naik’18]

Spring 1398 Ce 874 - Program Analysis

Dynamic Static

Cost

Effectiveness

QUIZ: Dynamic vs. Static Analysis

B. Proportional to 
program’s execution

time

C. Proportional to
program’s size

A. Unsound  
 (may miss

errors)

D. Incomplete (may 
report spurious errors)

[Naik’18]

Spring 1398 Ce 874 - Program Analysis

Static Analysis

Spring 1398 Ce 874 - Program Analysis

Static analysis

• Analyze program’s code without running it

• In a sense, ask a computer to do code review

• Benefit: (much) higher coverage

• Reason about many possible runs of the program

• Sometimes all of them, providing a guarantee

• Reason about incomplete programs (e.g., libraries)

• Drawbacks:

• Can only analyze limited properties

• May miss some errors, or have false alarms

• Can be time- and resource-consuming

[Levin’18]

Spring 1398 Ce 874 - Program Analysis

The Halting Problem

• Can we write an analyzer that can prove, for any program P and inputs to it, P
will terminate?

• Doing so is called the halting problem

• Unfortunately, this is undecidable: any analyzer will fail to produce an

answer for at least some programs and/or inputs

program P analyzer

Always terminates? register char *q;
 char inp[MAXLINE];
 char cmdbuf[MAXLINE];
 extern ENVELOPE BlankEnvelope;
 extern void help __P((char *));
 extern void settime __P((ENVELOPE *));
 extern bool enoughdiskspace __P((long));
 extern int runinchild __P((char *, ENVELOPE *));
.
.
.

[Levin’18]

Spring 1398 Ce 874 - Program Analysis

So is static analysis impossible?

• Perfect static analysis is not possible

• Useful static analysis is perfectly possible, despite

• Nontermination - analyzer never terminates, or

• False alarms - claimed errors are not really errors, or

• Missed errors - no error reports ≠ error free

• Nonterminating analyses are confusing, so tools tend to exhibit only false
alarms and/or missed errors

[Levin’18]

Spring 1398 Ce 874 - Program Analysis

Reminder

• Soundness: No error found = no error exists

• Alarms may be false errors

• Completeness: Any error found = real error

• Silence does not guarantee no errors

• Basically any useful analysis

• is neither sound nor complete (def. not both)

• … usually leans one way or the other

[Levin’18]

Spring 1398 Ce 874 - Program Analysis

The Art of Static Analysis

• Design goals:

• Precision: Carefully model program, minimize false positives/negatives

• Scalability: Successfully analyze large programs

• Understandability: Error reports should be actionable

• Observation: Code style is important

• Aim to be precise for “good” programs

• OK to forbid yucky code in the name of safety

• Code that is more understandable to the analysis is more

understandable to humans

[Levin’18]

Spring 1398 Ce 874 - Program Analysis

A very quick and very short review of compliers!

Spring 1398 Ce 874 - Program Analysis

The Structure of a Compiler

scanner

parser

checker

code gen

Source code (stream of characters)

stream of tokens

Abstract Syntax Tree (AST)

AST with annotations (types, declarations)

Machine/byte code

[Jana’17]

Spring 1398 Ce 874 - Program Analysis

Syntactic Analysis

• Input: sequence of tokens from scanner

• Output: abstract syntax tree

• Actually,

• parser first builds a parse tree

• AST is then built by translating the parse tree

[Jana’17]

Spring 1398 Ce 874 - Program Analysis

Example

• Source Code
 4*(2+3)

• Parser input
NUM(4) TIMES LPAR NUM(2) PLUS NUM(3) RPAR

• Parser output (AST):
*

NUM(4) +

NUM(2)NUM(3)

[Jana’17]

Spring 1398 Ce 874 - Program Analysis

Parse tree for the example: 4*(2+3)

leaves are tokens

NUM(4) TIMES LPAR NUM(2) PLUS NUM(3) RPAR

 EXPR

 EXPR

 EXPR

[Jana’17]

Spring 1398 Ce 874 - Program Analysis

Another example

• Source Code
if (x == y) { a=1; }

• Parser input
IF LPAR ID EQ ID RPAR LBR ID AS INT SEMI RBR

• Parser output (AST):

IF-THEN
==

ID ID

=

ID INT

[Jana’17]

Spring 1398 Ce 874 - Program Analysis

 BLOCK

Parse tree for example: if (x==y) {a=1;}

IF LPAR ID == ID RPAR LBR ID = INT SEMI RBR

 EXPR EXPR

 STMT

 STMT

leaves are tokens

[Jana’17]

Spring 1398 Ce 874 - Program Analysis

Parse Tree

• Representation of grammars in a tree-like form.

• Is a one-to-one mapping from the grammar to a tree-form.

[Jana’17]

Spring 1398 Ce 874 - Program Analysis

C Statement: return a + 2

a very formal representation
that strictly shows how the

parser understands the
statement return a + 2;

[Jana’17]

Spring 1398 Ce 874 - Program Analysis

Abstract Syntax Tree (AST)

• Simplified syntactic representations of the source code, and they're most
often expressed by the data structures of the language used for
implementation

• Without showing the whole syntactic clutter, represents the parsed string in a
structured way, discarding all information that may be important for parsing
the string, but isn't needed for analyzing it.

[Jana’17]

Spring 1398 Ce 874 - Program Analysis

AST

C Statement: return a + 2

[Jana’17]

Spring 1398 Ce 874 - Program Analysis

AST Example

• What would be the AST for:

• y := x; 

z := 1; 
while y>1 do

z := z * y;

y :=y–1

[Aldrich’11]

Spring 1398 Ce 874 - Program Analysis

Matching AST against Bug Patterns

• AST Walker Analysis

• Walk the AST, looking for nodes of a particular type

• Check the immediate neighborhood of the node for a bug pattern

• Warn if the node matches the pattern

• Semantic grep

• Like grep, looking for simple patterns

• Unlike grep, consider not just names, but semantic structure of  

AST  

[Aldrich’11]

Spring 1398 Ce 874 - Program Analysis

Checking System Rules Using System-Specific,
Programmer-Written Compiler Extensions
Dawson Engler, Benjamin Chelf, Andy Chou, Seth Hallem,
OSDI 2005

Spring 1398 Ce 874 - Program Analysis

Motivation

• Developers of systems software have “rules” to check for correctness or
performance. (Do X, don’t do X, do X before Y…)

• Code that does not obey these “rules” will run slow, crash the system, launch
the missiles…

• Consequently, we need a systematic way of finding as many of these bugs as
we can, preferably for as little cost as possible.

[Thornton’05]

Spring 1398 Ce 874 - Program Analysis

What’s the Problem?

• Current solutions all have trade-offs.

• Formal Specifications-rigorous, mathematical approach

• Finds obscure bugs, but is hard to do, expensive, and don’t always mirror
the actual written code.

• Testing-systematic approach to test the actual code

• Will detect bugs, but testing a large system could require exponential/

combinatorial number of test cases. It also doesn’t isolate where the bug
is, just that a bug exists.

• Manual Inspection-peer review of the code

• Peer has knowledge of whole system and semantics, but doesn’t have the

diligence of a computer.

[Thornton’05]

Spring 1398 Ce 874 - Program Analysis

What’s the Problem?	

• None of the current methods seem to give us what we’re looking for.

• Can the compiler check the code?

• It would be nice to put the code in the compiler and have it check all of the
“rules.”

• Unfortunately, those “rules” are based on semantics of the system that the
compiler doesn’t understand. (Lock and Unlock are valid to the compiler,
but how and when they should be used isn’t.)

• Need some technique that merges the domain knowledge of the developer
with the analysis of a compiler.

[Thornton’05]

Spring 1398 Ce 874 - Program Analysis

What’s the Solution?

• Meta-level compilation (MC) combines the domain knowledge of developers
with analysis capabilities of a compiler.

• Allows programmers to write short, simple, system-specific checkers that
take into account unique semantics of a system.

• Checkers are then added to a compiler to check during compile-time.

[Thornton’05]

Spring 1398 Ce 874 - Program Analysis

What’s the Solution?	

• The author’s [Engler] MC system uses a high-level, state-machine language
called Metal.

• Metal extensions written by programmers are linked to a compiler (xg++) that
analyzes the code as it is being compiled.

• Intra and Interprocedural analysis.

xg++source.cpp

Metal “rules”
Warnings/Errors

source.o

[Thornton’05]

Spring 1398 Ce 874 - Program Analysis

How does it work?

• The language is a high-level, state-machine language.

• Two parts of the language—pattern part and state-transition part.

• Pattern language—finds “interesting” parts of code based on the
extension the programmer writes.

• State-transition—Based on the discovered pattern, current state, either
move to a new state or raise an error.

• Tests are written and then added to the xg++ compiler. Xg++ includes a base
library that includes some common, useful functions and types.

[Thornton’05]

Spring 1398 Ce 874 - Program Analysis

Metacompilation (MC)
• Implementation:

• Extensions dynamically linked into GNU gcc compiler

• Applied down all paths in input program source

• Scalable: handles millions of lines of code

• Precise: says exactly what error was

• Immediate: finds bugs without having to execute path

• Effective: 1500+ errors in Linux source code

ent->data = kmalloc(..)
if(!ent->data)
 free(ent);
 goto out;
…
out: return ent;

Linux
fs/proc/
generic.c

GNU C compiler

 free checker “using ent
 after free!”

[Engler’02]

Spring 1398 Ce 874 - Program Analysis

A bit more detail
sm free_checker {
 state decl any_pointer v;
 decl any_pointer x;

 start: { kfree(v); } ==> v.freed;
 v.freed:
 { v != x } || { v == x }
 ==> { /* do nothing */ }
 | { v } ==> { err(“Use after free!”); }
 ;
}

start

 v.freed

error

use(v)

kfree(v)

/* 2.4.1: fs/proc/generic.c */  
ent->data = kmalloc(…)
if(!ent->data) {
 kfree(ent);
 goto out;
…
out: return ent;

[Engler’02]

Spring 1398 Ce 874 - Program Analysis

A quick analysis example

 foo(int *x) {

}

freeit(x);
if(y)

… …

 *x

 bar(int *y) {

}

freeit(y);
*y

 freeit(int *z) {

}

kfree(z);

[Engler’02]

Spring 1398 Ce 874 - Program Analysis

A quick analysis example

 foo(int *x) {

}

freeit(x);
if(y)

… …

 *x

 bar(int *y) {

}

freeit(y);
*y

 freeit(int *z) {

}

kfree(z);

[Engler’02]

Spring 1398 Ce 874 - Program Analysis

A quick analysis example

 foo(int *x) {

}

freeit(x);
if(y)

… …

 *x

 bar(int *y) {

}

freeit(y);
*y

 freeit(int *z) {

}

kfree(z); { v:z.start->freed }

[Engler’02]

Spring 1398 Ce 874 - Program Analysis

A quick analysis example

 foo(int *x) {

}

freeit(x);
if(y)

… …

 *x

 bar(int *y) {

}

freeit(y);
*y

 freeit(int *z) {

}

kfree(z); { v:z.start->freed }

{ v:z.freed }

[Engler’02]

Spring 1398 Ce 874 - Program Analysis

A quick analysis example

 foo(int *x) {

}

freeit(x);
if(y)

… …

 *x

 bar(int *y) {

}

freeit(y);
*y

 freeit(int *z) {

}

kfree(z); { v:z.start->freed }

{ v:z.freed }

{ v:z.freed }

[Engler’02]

Spring 1398 Ce 874 - Program Analysis

A quick analysis example

 foo(int *x) {

}

freeit(x);
if(y)

… …

 *x

 bar(int *y) {

}

freeit(y);
*y

 freeit(int *z) {

}

kfree(z); { v:z.start->freed }

{ v:z.freed }

{ v:z.freed }

{ v:z.freed }

ERROR: use after free!

[Engler’02]

Spring 1398 Ce 874 - Program Analysis

A quick analysis example

 foo(int *x) {

}

freeit(x);
if(y)

… …

 *x

 bar(int *y) {

}

freeit(y);
*y

 freeit(int *z) {

}

kfree(z); { v:z.start->freed }

{ v:z.freed }

{ v:z.freed }

{ v:z.freed }

ERROR: use after free!

{ v:z.freed }

[Engler’02]

Spring 1398 Ce 874 - Program Analysis

A quick analysis example

 foo(int *x) {

}

freeit(x);
if(y)

… …

 *x

 bar(int *y) {

}

freeit(y);
*y

 freeit(int *z) {

}

kfree(z); { v:z.start->freed }

{ v:z.freed }

{ v:z.freed }

{ v:z.freed }

ERROR: use after free!

{ v:z.freed }

[Engler’02]

Spring 1398 Ce 874 - Program Analysis

A quick analysis example

 foo(int *x) {

}

freeit(x);
if(y)

… …

 *x

 bar(int *y) {

}

freeit(y);
*y

 freeit(int *z) {

}

kfree(z); { v:z.start->freed }

{ v:z.freed }

{ v:z.freed }

{ v:z.freed }

ERROR: use after free!

{ v:z.freed }

[Engler’02]

Spring 1398 Ce 874 - Program Analysis

A quick analysis example

 foo(int *x) {

}

freeit(x);
if(y)

… …

 *x

 bar(int *y) {

}

freeit(y);
*y

 freeit(int *z) {

}

kfree(z); { v:z.start->freed }

{ v:z.freed }

{ v:z.freed }

{ v:z.freed }

ERROR: use after free!

{ v:z.freed }

{ v:y.freed }

[Engler’02]

Spring 1398 Ce 874 - Program Analysis

Bugs to Detect

Some examples

• Crash Causing Defects
• Null pointer dereference
• Use after free
• Double free
• Array indexing errors
• Mismatched array new/delete
• Potential stack overrun
• Potential heap overrun
• Return pointers to local variables
• Logically inconsistent code

• Uninitialized variables
• Invalid use of negative values
• Passing large parameters by value
• Underallocations of dynamic data
• Memory leaks
• File handle leaks
• Network resource leaks
• Unused values
• Unhandled return codes
• Use of invalid iterators

Slide credit: Andy Chou

[Mitchell’15]

Spring 1398 Ce 874 - Program Analysis

Example: Check for missing optional args

• Prototype for open() syscall:

• int open(const char *path, int oflag, /* mode_t mode */...);

• Typical mistake:

• fd = open(“file”, O_CREAT);

• Result: file has random permissions

• Check: Look for oflags == O_CREAT without mode argument

[Mitchell’15]

Spring 1398 Ce 874 - Program Analysis

Example: Chroot protocol checker

• Goal: confine process to a “jail” on the filesystem

• chroot() changes filesystem root for a process

• Problem

• chroot() itself does not change current working directory

chroot() chdir(“/”)

open(“../file”,…) Error if open before
chdir

[Mitchell’15]

Spring 1398 Ce 874 - Program Analysis

Tainting checkers

[Mitchell’15]

Spring 1398 Ce 874 - Program Analysis

atoi

main

exit free malloc

printffgets

say_hello

Callgraph

[Mitchell’15]

Spring 1398 Ce 874 - Program Analysis

atoi

main

exit free malloc

printffgets

say_hello

Reverse Topological Sort

12

3 4 5 6 7

8

Idea: analyze function
before you analyze caller

[Mitchell’15]

Spring 1398 Ce 874 - Program Analysis

atoi

main

exit free malloc

printffgets

say_hello

Apply Library Models

12

3 4 5 6 7

8

Tool has built-in summaries of
library function behavior

[Mitchell’15]

Spring 1398 Ce 874 - Program Analysis

atoi

main

exit free malloc

printffgets

say_hello

Bottom Up Analysis

12

3 4 5 6 7

8

Analyze function using known
properties of functions it calls

[Mitchell’15]

Spring 1398 Ce 874 - Program Analysis

atoi

main

exit free malloc

printffgets

say_hello

Bottom Up Analysis

12

3 4 5 6 7

8

Analyze function using known
properties of functions it calls

[Mitchell’15]

Spring 1398 Ce 874 - Program Analysis

atoi

main

exit free malloc

printffgets

say_hello

Bottom Up Analysis

12

3 4 5 6 7

8

Finish analysis by analyzing all
functions in the program

[Mitchell’15]

Spring 1398 Ce 874 - Program Analysis

Finding Local Bugs

#define SIZE 8
void set_a_b(char * a, char * b) {

char * buf[SIZE];
if (a) {

b = new char[5];
} else {

if (a && b) {
buf[SIZE] = a;
return;

} else {
delete [] b;

}
*b = ‘x’;

}
*a = *b;

}

[Mitchell’15]

Spring 1398 Ce 874 - Program Analysis

char * buf[8];

if (a)

b = new char [5]; if (a && b)

buf[8] = a; delete [] b;

*b = ‘x’;

END

*a = *b;

a !a

a && b !(a && b)

Control Flow Graph

Represent logical structure of code
in graph form

[Mitchell’15]

Spring 1398 Ce 874 - Program Analysis

char * buf[8];

if (a)

b = new char [5]; if (a && b)

buf[8] = a; delete [] b;

*b = ‘x’;

END

*a = *b;

a !a

a && b !(a && b)

Path Traversal Conceptually: Analyze each path
through control graph separately

Actually Perform some checking
computation once per node;
combine paths at merge nodes

Conceptually

Actually

[Mitchell’15]

Spring 1398 Ce 874 - Program Analysis

char * buf[8];

if (a)

if (a && b)

delete [] b;

*b = ‘x’;

END

*a = *b;

!a

!(a && b)

Apply Checking Null pointers Use after free Array overrun

See how three checkers are run for this path

•
• Defined by a state diagram, with state

transitions and error states

Checker

•
• Assign initial state to each program var
• State at program point depends on state

at previous point, program actions
• Emit error if error state reached

Run Checker

[Mitchell’15]

Spring 1398 Ce 874 - Program Analysis

char * buf[8];

if (a)

if (a && b)

delete [] b;

*b = ‘x’;

END

*a = *b;

!a

!(a && b)

Apply Checking Null pointers Use after free Array overrun

“buf is 8 bytes”

[Mitchell’15]

Spring 1398 Ce 874 - Program Analysis

char * buf[8];

if (a)

if (a && b)

delete [] b;

*b = ‘x’;

END

*a = *b;

!a

!(a && b)

Apply Checking Null pointers Use after free Array overrun

“buf is 8 bytes”

“a is null”

[Mitchell’15]

Spring 1398 Ce 874 - Program Analysis

char * buf[8];

if (a)

if (a && b)

delete [] b;

*b = ‘x’;

END

*a = *b;

!a

!(a && b)

Apply Checking Null pointers Use after free Array overrun

“buf is 8 bytes”

“a is null”

Already knew
a was null

[Mitchell’15]

Spring 1398 Ce 874 - Program Analysis

char * buf[8];

if (a)

if (a && b)

delete [] b;

*b = ‘x’;

END

*a = *b;

!a

!(a && b)

Apply Checking Null pointers Use after free Array overrun

“buf is 8 bytes”

“a is null”

“b is deleted”

[Mitchell’15]

Spring 1398 Ce 874 - Program Analysis

char * buf[8];

if (a)

if (a && b)

delete [] b;

*b = ‘x’;

END

*a = *b;

!a

!(a && b)

Apply Checking Null pointers Use after free Array overrun

“buf is 8 bytes”

“a is null”

“b is deleted”

“b dereferenced!”

[Mitchell’15]

Spring 1398 Ce 874 - Program Analysis

False Positives

• What is a bug? Something the user will fix.

• Many sources of false positives

• False paths
• Idioms
• Execution environment assumptions
• Killpaths
• Conditional compilation
• “third party code”
• Analysis imprecision
• …

[Mitchell’15]

Spring 1398 Ce 874 - Program Analysis

char * buf[8];

if (a)

b = new char [5]; if (a && b)

buf[8] = a; delete [] b;

*b = ‘x’;

END

*a = *b;

a !a

a && b !(a && b)

A False Path

[Mitchell’15]

Spring 1398 Ce 874 - Program Analysis

char * buf[8];

if (a)

if (a && b)

buf[8] = a;

END

!a

a && b

False Path Pruning Integer Range Disequality Branch

[Mitchell’15]

Spring 1398 Ce 874 - Program Analysis

char * buf[8];

if (a)

if (a && b)

buf[8] = a;

END

!a

a && b

False Path Pruning

“a in [0,0]” “a == 0 is true”

Integer Range Disequality Branch

[Mitchell’15]

Spring 1398 Ce 874 - Program Analysis

char * buf[8];

if (a)

if (a && b)

buf[8] = a;

END

!a

a && b

False Path Pruning

“a in [0,0]” “a == 0 is true”

“a != 0”

Integer Range Disequality Branch

[Mitchell’15]

Spring 1398 Ce 874 - Program Analysis

char * buf[8];

if (a)

if (a && b)

buf[8] = a;

END

!a

a && b

False Path Pruning

“a in [0,0]” “a == 0 is true”

“a != 0”

Impossible

Integer Range Disequality Branch

[Mitchell’15]

Spring 1398 Ce 874 - Program Analysis

Goal: find as many serious bugs as possible

• Problem: what are the rules?!?!

• 100-1000s of rules in 100-1000s of subsystems.

• To check, must answer: Must a() follow b()? Can foo() fail? Does bar(p)

free p? Does lock l protect x?

• Manually finding rules is hard. So don’t. Instead infer what code believes,

cross check for contradiction

• Intuition: how to find errors without knowing truth?

• Contradiction. To find lies: cross-examine. Any contradiction is an error.

• Deviance. To infer correct behavior: if 1 person does X, might be right or a

coincidence. If 1000s do X and 1 does Y, probably an error.

• Crucial: we know contradiction is an error without knowing the correct

belief!

[Engler’02]

Spring 1398 Ce 874 - Program Analysis

B(); // MUST: B() need not
 // be preceded by A()

A();
…
B();

A();
…
B();

A();
…
B();

A();
…
B();

Cross-checking program belief systems
• MUST beliefs:

• Inferred from acts that imply beliefs code *must* have.

• Check using internal consistency: infer beliefs at different locations, then
cross-check for contradiction

• MAY beliefs: could be coincidental

• Inferred from acts that imply beliefs code *may* have

• Check as MUST beliefs; rank errors by belief confidence.

x = *p / z; // MUST belief: p not null
 // MUST: z != 0
unlock(l); // MUST: l acquired
x++; // MUST: x not protected by l

// MAY: A() and B()
// must be paired

[Engler’02]

Spring 1398 Ce 874 - Program Analysis

Environment Assumptions

• Should the return value of malloc() be checked?

int *p = malloc(sizeof(int));
*p = 42;

OS Kernel:
Crash machine.

File server:
Pause filesystem.

Spreadsheet:
Lose unsaved changes.

Game:
Annoy user.

Library:
?

Medical device:
malloc?!

Web application:
200ms downtime

IP Phone:
Annoy user.

[Mitchell’15]

Spring 1398 Ce 874 - Program Analysis

Statistical Analysis

• Assume the code is usually right

int *p = malloc(sizeof(int));
*p = 42;

int *p = malloc(sizeof(int));
if(p) *p = 42;

int *p = malloc(sizeof(int));
*p = 42;

int *p = malloc(sizeof(int));
*p = 42;

int *p = malloc(sizeof(int));
if(p) *p = 42;

int *p = malloc(sizeof(int));
*p = 42;

int *p = malloc(sizeof(int));
if(p) *p = 42;

int *p = malloc(sizeof(int));
if(p) *p = 42;

3/4
deref

1/4
deref

[Mitchell’15]

Spring 1398 Ce 874 - Program Analysis

Sanitize integers before use

Linux: 125 errors, 24 false; BSD: 12 errors, 4 false

array[v]
while(i < v)
 …

v.clean Use(v)v.tainted

Syscall
param

Network
 packet

copyin(&v, p, len)

 any<= v <= any

memcpy(p, q, v)
copyin(p,q,v)
copyout(p,q,v)

 ERROR

Warn when unchecked integers from untrusted
sources reach trusting sinks

[Mitchell’15]

Spring 1398 Ce 874 - Program Analysis

Example security holes

/* 2.4.9/drivers/isdn/act2000/capi.c:actcapi_dispatch */ 
isdn_ctrl cmd;  
...  
while ((skb = skb_dequeue(&card->rcvq))) { 
 msg = skb->data;  
 ...  
 memcpy(cmd.parm.setup.phone,
 msg->msg.connect_ind.addr.num,  
 msg->msg.connect_ind.addr.len - 1);

• Remote exploit, no checks

[Mitchell’15]

Spring 1398 Ce 874 - Program Analysis

Example security holes

/* 2.4.5/drivers/char/drm/i810_dma.c */

if(copy_from_user(&d, arg, sizeof(arg)))
 return –EFAULT;
if(d.idx > dma->buf_count)
 return –EINVAL;
buf = dma->buflist[d.idx];
Copy_from_user(buf_priv->virtual, d.address, d.used);

• Missed lower-bound check:

[Mitchell’15]

Spring 1398 Ce 874 - Program Analysis

Results for BSD and Linux

• All bugs released to implementers; most serious fixed

Gain control of system 18 15 3 3
Corrupt memory 43 17 2 2
Read arbitrary memory 19 14 7 7
Denial of service 17 5 0 0
Minor 28 1 0 0
Total 125 52 12 12

 Linux BSD
Violation Bug Fixed Bug Fixed

[Mitchell’15]

Spring 1398 Ce 874 - Program Analysis

This is all very nice, but how do you analyze the
actual code?

Spring 1398 Ce 874 - Program Analysis

How to find all code?

• `find . –name “*.c” ’ ?

• Lots of random things. Don’t know command line or includes.

• Replace compiler?

• “No.”

• Better: intercept and rewrite build commands

• In theory: see all compilation calls and all options etc.

• Worked fine for a few customers.

• Then: “make?”

• Then: “Why do you only check 10K lines of our 3MLOC system?”

• “Why do I have to re-install my OS from CD after I run your tool

[Engler’08]

Spring 1398 Ce 874 - Program Analysis

Some cursory experiences
• Bugs are everywhere

• Initially worried we’d resort to historical data…

• 100 checks? You’ll find bugs (if not, bug in analysis)

• People don’t fix all the bugs

• Finding errors often easy, saying why is hard

• Have to track and articulate all reasons.

[Engler’02]

Spring 1398 Ce 874 - Program Analysis

Two big open questions

• How to find the most important bug?

• Main metric is bug counts or type

• How to flag the 2-3 bugs that will really kill system?

• Do static tools really help?

Bugs found

Bugs that
matteredThe hope

Bugs found

Bugs that
mattered

The null hypothesis

Bugs found

Bugs that
mattered

A Possibility [Engler’02]

Spring 1398 Ce 874 - Program Analysis

Acknowledgments/References (1/2)

• [Naik’18] IS 700: Software Analysis and Testing, Mayur Naik, Upenn Fall 2018.

• [Levin’18] ENEE457/CMSC498E Computer Systems Security, Dana

Dachman-Soled, UMD, Fall 2017

• [Jana’17] COMS W4995: Secure Software Development: Theory and Practice,

Sumana Jana, Columbia Univ, Spring 2017.

• [Aldrich’11] 17-654: Analysis of Software Artifacts, Jonathan Aldrich, CMU,

Spring 2011.

• [Thornton’05] CS5204 Operating Systems course presentation by Matthew

Thornton, Fall 2005.

• [Engler’02] Finding bugs with system-specific static analysis, Dawson Engler,

PASTE 2002.

• [Mitchell’15] CS155 Computer and Network Security, John Mitchell, Stanford,

Spring 2017.

�87

Spring 1398 Ce 874 - Program Analysis

Acknowledgments/References (2/2)

• [Engler’08] A couple billion lines of code later: static checking in the real
world, Dawson Engler, Slides from Usenix Security 2008.

�88

