
In the name of God

Sharif University of Technology

Department of Computer Engineering

CE 874: Secure Software Systems
Mehdi Kharrazi Farvardin 17th, 1398

Homework 2
*

1 BAT: Binary Analysis Tool

Part III: Disassembling elves with Capstone

1.1 Instructions

For simplicity, you only need to handle ELF executables for the rest of this assignment.

In the previous assignment, we made a disassembler for executables in Windows and Linux, now
we are going to make use of that to disassemble to plot the callgraph of a program. To do this, we
need to track ”call” and ”ret” instructions. Is there anyway this would change? (Try playing with
optimization levels to see if it makes a difference).

The task expected of you in this assignment, is to add a module to BAT, which gets a
binary as input and outputs the callgraph in DOT format .

1.2 Syscalls

How are syscalls called? You can check out this blog post for a good guide on how syscalls are called
from assembly. Detect all the syscalls of a program, in each function. So that in your callgraph,
each node, which represents a function also holds this piece of data: the list of syscalls called from
that functions.

1.3 Policy Based Vulnerability Detection

One of the methods for detecting suspicious programs, is policy based detection. An anti-virus has
a big database of rules, and checks a binary against those rules and flags the binary as a threat if
it violates those rules. Implement policy-checking in BAT: your program should take a set of rules
and check a binary to see if those rules are violated.

The rules we want to handle are simple and are only of the following types: 1) Checking whether
a sequence of functions can be called. (e.g. f1() -> f2() -> f3() can happen in the program) 2)
Checking whether a sequence of syscalls can happen. (e.g. syscall 101 -> syscall 202)

*Acknowledgement: This homework was developed by Iman Hosseini and Solmaz Salimi

https://en.wikipedia.org/wiki/DOT_(graph_description_language)
 https://medium.com/@jain.sm/invoking-a-system-call-via-assembly-84c9f8832105


CE 874 — Farvardin 17th, 1398 Homework 2 2

Figure 1: Call Graph

A simple use-case is double free bugs, if you detect that a resource is freed twice, that means
trouble.

1.4 Delivery

You should submit a report, explaining your program. You should also submit your code and explain
how to run it.

2 Source Code Analysis

2.1 Instructions

In this part of assignment, you get familiar with Source Code Analysis and its application in
Vulnerability Detection.

Imagine, that you are given the following code:

#include <stdioh.h>

int random_func (int arg0 , int arg1 , ..., int argn) {

int var0 = random_number;

int var1 = random_number;

.

.

.

int varm = random_number;

/*

aritmetics with + - / *

*/

return return_value ;;

}

int main (int argc , char∗∗ argv) {

int data = random_func (random_number0 , ..., random_numbern);

printf("%d",data);

return 0;

}

We can statically parse this code and find a Symbolic formula for each variable. Then we can
decide how the value of this varaible changes based on input arguments.



CE 874 — Farvardin 17th, 1398 Homework 2 3

In this part of assignment, first you parse the source code and find symbolic formula for each
variable. Based on this formula you can report a domain in which the variable is vulnerable to either
Division by zero or Integre overflow.
Then you can check how the main calls the random function and solve the formula with the given
argument during function call, you can solve the symbolic formula for these input and calculate the
exact value for each varible and report Division by zero and Integre overflow vulnerabilities.
You can use any availble parser, or deveope your own C parser. You can find sample C files in
handouts repos.

2.2 Delivery

You should submit your code which takes a C file as input and prints variables’ symbolic formulas
(sorted alphabetically based on variables names) and exact values. If you detect any vulnerability
you should print the variable’s name related to it.


	 BAT: Binary Analysis Tool
	Instructions
	Syscalls
	Policy Based Vulnerability Detection
	Delivery

	Source Code Analysis
	Instructions
	Delivery


