
TO APPEAR IN INTERNET MEASUREMENT CONFERENCE 2003 1

Bitmap algorithms for counting active flows on high
speed links

Cristian Estan, George Varghese, Mike Fisk
Computer Science and Engineering Department

University of California San Diego
cestan,varghese,mfisk@cs.ucsd.edu

Abstract—
In this paper we present a family of bitmap algorithms that address the

problem of counting the number of distinct header patterns (flows) seen on
a high speed link. Such counting can be used to detect DoS attacks and port
scans, and to solve measurement problems. Counting is especially hard
when processing must be done within a packet arrival time (8 nsec at OC-
768 speeds) and, hence, must require only a small number of accesses to
limited, fast memory. A naive solution that maintains a hash table requires
several Mbytes because the number of flows can be more than a million. By
contrast, our new probabilistic algorithms take very little memory and are
fast. The reduction in memory is particularly important for applications
that run multiple concurrent counting instances. For example, we used one
of our new algorithms to replace the port scan detection component of the
popular intrusion detection system Snort. This reduced the memory usage
on a ten minute trace from 50 Mbytes to 5.6 Mbytes while maintaining a
99.77% probability of alarming on a scan within 6 seconds of when the
large-memory algorithm would. The best known prior algorithm (proba-
bilistic counting) takes 4 times more memory on port scan detection and
8 times more memory on a measurement application. Fundamentally, this
is because our algorithms can be customized to take advantage of special
features of applications such as a large number of instances that have very
small counts or prior knowledge of the likely range of the count.

I. I NTRODUCTION

Internet links operate at high speeds, and past trends predict
that these speeds will continue to increase rapidly. Routers and
intrusion detection devices that operate at up to OC-768 speeds
(40 Gigabits/second) are currently being developed. While the
main bottlenecks (e.g., lookups, classification, quality of ser-
vice) in a traditional router are well understood, what are the
corresponding functions that should be hardwired in the brave
new world of security and measurement? Ideally, we wish to
abstract out functions that are common to several security and
measurement applications. We also wish to study efficient al-
gorithms for these functions, especially those with a compact
hardware implementation.

Toward this goal, this paper isolates and provides solutions
for an important problem that occurs in various networking ap-
plications: counting the number of active flows among packets
received on a link during a specified period of time.A flow is
defined by a set of header fields; two packets belong to distinct
flows if they have different values for the specified header fields
that define the flow. For example, if we define a flow by source
and destination IP addresses, we can count the number of dis-
tinct source-destination IP address pairs seen on a link over a
given time period. Our algorithms measure the number of active
flows using a very small amount of memory that can easily be
stored in on-chip SRAM or even processor registers. By con-
trast, naive algorithms described below would require massive
amounts of memory necessitating the use of slow DRAM.

For example, a naive method to count source-destination pairs
would be to keep a counter together with a hash table that stores
all the distinct 64 bit source destination address pairs seen thus
far. When a packet arrives with source and destination addresses
say< S, D >, we search the hash table for< S, D >; if there
is no match, the counter is incremented and< S, D > is added
to the hash table. Unfortunately, given that backbone links can
have up to a million flows [5] today, this naive scheme would
minimally require 64 Mbits of high speed memory1. Such large
SRAM memory is expensive or not feasible for a modern router.

There are more efficient general-purpose algorithms for
counting the number of distinct values in a multiset. In this pa-
per we not only present a general-purpose counting algorithm
– multiresolution bitmap– that has better accuracy than the
best known prior algorithm, probabilistic counting [6], but in-
troduce a whole family of counting algorithms that further im-
prove performance by taking advantage of particularities of the
specific counting application. Ouradaptive bitmap, using the
fact that the number of active flows doesn’t change very rapidly,
can count the number of distinct flows on a link that contains
anywhere from 0 to 100 million flows with an average error of
less than 1% using only 2 Kbytes of memory. Ourtriggered
bitmap, optimized for running multiple concurrent instances of
the counting problem, many of which have small counts, is suit-
able for detecting port scans and uses even less memory than
running adaptive bitmap on each instance.

A. Problem Statement

A flow is defined by anidentifiergiven by the values of cer-
tain header fields2. The problem we wish to solve is counting
the number of distinct flow identifiers (flow IDs) seen in a spec-
ified measurement interval. For example, an intrusion detection
system looking for port scans could count for each active source
address the flows defined by destination IP and port and sus-
pect any source IP that opens more than 3 flows in 12 seconds
of performing a port scan. Other applications such as packet
scheduling could prefer an alternate way of defining the number
of active flows without using measurement interval: consider ac-
tive the flows that have at least one packet in a queue that packets
are added to and removed from dynamically. In this paper we
mainly focus on the definition based on measurement intervals.

Also, while many applications define flows at the granularity

1It must at least store the flow identifier, which in this example is 64 bits, for
each of a million flows.

2We can also generalize by allowing the identifier to be afunction of the
header fields (e.g., using prefixes instead of addresses, based on routing tables).

TO APPEAR IN INTERNET MEASUREMENT CONFERENCE 2003 2

of TCP connections, one may want to use other definitions. For
example when detecting DoS attacks we may wish to count the
number of distinct sources, not the number of TCP connections.
Thus in this paper we use the term flow in this more generic way.

As we have seen, a naive solution using a hash table of flow
IDs is accurate but takes too much memory. In high speed rou-
ters it is not only the cost of large, fast memories that is a prob-
lem but also their power consumption and the board space they
take up on line cards. Thus, we seek solutions that use a very
small amount of memory and have high accuracy. Usually there
is a tradeoff between memory usage and accuracy, but we want
to find algorithms where these tradeoffs are favorable. Also,
since at high speeds per packet processing time is very limited
it is important that the algorithms use few memory accesses per
packet. We describe algorithms that use only 1 or 2 memory ac-
cesses3 and are simple enough to be implemented in hardware.

B. Motivation

Why is information about the number of flows useful? We
describe five possible categories of use.

Detecting port scans:Intrusion detection systems warn of
port scans when a source opens too many connections within
a given time4. The widely deployed Snort intrusion detection
system (IDS) [15] uses the naive approach of storing a record
for each active connection. This is an obvious waste since most
of the connections are not part of a port scan. Even for actual
port scans, if the IDS only reports the number of connections we
don’t need to keep a record for each connection. Since the num-
ber of sources can be very high, it is desirable to find algorithms
that count the number of connections of each source using little
memory. Further, if an algorithm can distinguish quickly be-
tween suspected port scanners and normal traffic, the IDS need
not perform expensive operations (e.g., logging) on most of the
traffic, thus becoming more scalable in terms of memory usage
and speed. This is particularly important in the context of the
recent race to provide wire-speed intrusion detection [1].

Detecting denial of service (DoS) attacks:FlowScan by
David Plonka [14] is a popular tool for visualizing network traf-
fic. It uses the number of active flows (see Figure 1) to detect
ongoing denial of service attacks. While this works well at the
edge of the network (i.e., the link between a large university
campus and the rest of the Internet) it doesn’t scale to the core.
Also it relies on massive intermediate data (NetFlow) to com-
pute compact results – could we obtain the useful information
more directly? Mahajan et al. propose a mechanism that al-
lows backbone routers to limit the effect of (distributed) DoS
attacks [10]. While the mechanism assumes that these routers
can detect an ongoing attack it does not give a concrete algo-
rithm for it. Estan and Varghese present algorithms that can de-
tect destination addresses or prefixes that receive large amounts
of traffic [3]. While these can identify the victims of attacks it
also gives many false positives because many destinations have

3Actually, larger numbers of memory accesses are perfectly feasible at high
speeds using SRAM and pipelining, but this increases the cost of the solution.

4While distributed port scans are possible, they are harder because the attacker
has to control many endhosts it can scan from. If the number of hosts is not very
large, each will have to probe many port-destination combinations thus running
the risk of being detected.

Fig. 1. The flow count provided by Dave Plonka’s FlowScan is used to detect
denial of service attacks.

large amounts of legitimate traffic. To differentiate between le-
gitimate traffic and an attack we can use the fact that DoS tools
use fake source addresses chosen at random5. If for each sus-
pected victim we count the number of sources of packets that
come from some networks known to be sparsely populated, a
large count is a strong indication that a DoS attack is in progress.

General measurement:Counting the number of active con-
nections and the number of connections associated with each
source and destination IP address is part of the CoralReef [9]
traffic analysis suite. Other ways of counting the number of dis-
tinct values in given header fields can also provide useful data.
One could measure the number of sources using a protocol ver-
sion or variant to get an accurate image of protocol deployment.
Alternatively, by counting the number of connections associated
with each of the protocols generating significant traffic we can
compute the average connection length for each protocol thus
getting a better view of its behavior. Dimensioning the various
caches in routers (packet classification caches, multicast route
caches for source-group (S-G) state, and ARP caches) also ben-
efits from prior measurements of typical workload.

Estimating the spreading rate of a worm: From Aug 1
to Aug 12 2001, while trying to track the Code Red worm [11],
collecting packet headers for Code Red traffic on a /8 network
produced 0.5 GB per hour of compressed data. In order to de-
termine the rate at which the virus was spreading, it was neces-
sary to count the number of distinct Code Red sources passing
through the link. This was actually done using a large log and
a hash table which was expensive in time and also inaccurate
(because of losses in the log).

Packet scheduling:Many scheduling algorithms try to en-

5If the attack uses a small number of source addresses than it can be easily
filtered out once those addresses are identified. Identifying those addresses can
be done using previous techniques [3] because those few source addresses must
send a lot of traffic each for the attack to be effective.

TO APPEAR IN INTERNET MEASUREMENT CONFERENCE 2003 3

sure that all flows can send at the current “fair share” of the
available bandwidth. At high speeds it is not feasible to keep
per-flow state. While there are scheduling algorithms that com-
pute the fair share without using per-flow state (e.g., CSFQ [17],
XCP [8]), they require explicit cooperation of edge routers or
end hosts. Being able to count the number of distinct flows that
have packets in the queue of the router might allow the router
to estimate the “fair share” without outside help and could lead
to scheduling algorithms that are less vulnerable to misbehaving
end hosts or edge routers.

Thus, while counting the number of flows is usually insuffi-
cient by itself, it can provide a useful building block for com-
plex tasks that range from detecting DoS attacks to fair packet
scheduling.

II. RELATED WORK

The networking problem of counting the number of distinct
flows has a well-studied equivalent in the database community:
counting the number of distinct database records (or distinct val-
ues of an attribute). Thus, the major piece of related work is a
seminal algorithm calledprobabilistic counting, due to Flajo-
let and Martin [6], introduced in the context of databases. We
use probabilistic counting as a base to compare our algorithms
against. Whang et al. address the same problem and propose
an algorithm [18] that is equivalent to the simplest algorithm we
describe (direct bitmap).

The insight behind probabilistic counting is to compute a met-
ric of how uncommon a certain record is and keep track of the
most uncommon record seen. If the algorithm sees very uncom-
mon records, it concludes that the number of records is large.
More precisely, for each record the algorithm computes a hash
function that maps it to anL bit string (L is configurable). It
then counts the number of consecutive zeroes starting from the
least significant position of the hash result. If the algorithm sees
records that hash to values ending in 0, 1 and 2 zeroes it con-
cludes that the number of distinct records wasc22 (c is a sta-
tistical correction factor), if it also sees hash values ending in 3
zeroes it estimatesc23 and so on. This basic form can have an
accuracy of at most50% because possible estimates are a factor
of 2 from each other. By dividing the hash values intonmap
groups (nmap is configurable), and running a separate instance
of the basic algorithm for each group and averaging over the
estimates for the count provided by each of them, probabilistic
counting reduces the error of its final estimate. We describe a
family of algorithms that each outperforms probabilistic count-
ing by an order of magnitude by exploiting application-specific
characteristics.

In networking, there are general-purpose traffic measurement
systems such as Cisco’s NetFlow [12] or LFAP [13] that report
per-flow records for very fine-grained flows. This is useful for
traffic measurement. The information can be used to count flows
(and this is what FlowScan [14] does), but is not optimized for
such a purpose. Besides the large amount of memory needed,
in modern, high-speed routers updating state on every packet
arrival is infeasible at high speeds. Ideally, such state should be
in high speed SRAM (which is expensive and limited) to allow
wire-speed forwarding.

Because NetFlow state is so large, Cisco Routers write Net-

Flow state to slower DRAM which slows down packet process-
ing. For high speeds sampling needs to be turned on: only the
sampled packets result in updates to the flow cache that keeps
the per flow state. Unfortunately, sampling has problems of its
own since it affects the accuracy of the measurement data. Sam-
pling works reasonably for estimating the traffic sent by large
flows or large traffic aggregates, but has extremely poor accu-
racy for estimating the number of flows. This is because uniform
sampling produces more samples of flows that send more traffic,
thereby biasing any simple estimator that counts the number of
flows in the sample and applies a correction.

Duffield et al. present two scalable methods for counting the
number of active TCP flows based on samples of the traffic [2].
They rely on the fact that TCP turns the SYN flag on only for
the packets starting a connection. The estimates are based on
counts of the number of flows with SYN packets and the number
of flows with non-SYN packets in the sampled data. While this
is a good solution for TCP connections it cannot be applied to
UDP or when we use a different definition for flows (e.g., when
looking at protocol deployment statistics, we define a flow as
all packets with the same source IP). Also counting flows in the
sampled data can still be a memory-consuming operation that
needs to be efficiently implemented.

The Snort [15] intrusion detection system (IDS) uses a
memory-intensive approach similar to NetFlow to detect port
scans: it maintains a record for each active connection and
a connection counter for each source IP. More elaborate al-
gorithms have been used in other settings. When controlling
the medium access in wireless networks, some protocols rely
on an estimate of the number of senders. The GRAP proto-
col [19] uses techniques equivalent to our direct bitmap and vir-
tual bitmap to estimate this number, but has no equivalent of
our more sophisticated multiresolution, adaptive, or triggered
bitmap algorithms.

III. A FAMILY OF COUNTING ALGORITHMS

Our family of algorithms for estimating the number of active
flows relies on updating a bitmap at run time. Different mem-
bers of the family have different rules for updating the bitmap.
At the end of the measurement interval (1 second, 1 minute, or
even 1 hour), the bitmap is processed to yield an estimate for the
number of active flows. Since we do not keep per-flow state, all
of our results are estimates. However, we prove analytically and
show through experiments on traces that our estimates are close
to actual values. The family contains three core algorithms and
three derived algorithms. Even though the first two core algo-
rithms (direct and virtual bitmap) were invented previously, we
present them here because they form the basis of our new al-
gorithms (multiresolution, adaptive, and triggered bitmaps), and
because we present new applications in a networking context (as
opposed to a database or wireless context).

We start in Section III-A with the first core algorithm,di-
rect bitmap, that uses a large amount of memory. Next, in
Section III-B we present the second core algorithm calledvir-
tual bitmap that uses sampling over the flow ID space to re-
duce the memory requirements. While virtual bitmap is ex-
tremely accurate, it needs to be tuned for a given anticipated
range of the number of flows. We remove the “tuning” restric-

TO APPEAR IN INTERNET MEASUREMENT CONFERENCE 2003 4

tion of virtual bitmap with our third algorithm calledmultireso-
lution bitmap, described in Section III-C, at the cost of increased
memory usage. Finally, in Section III-D we describe the three
derived algorithms. In this section we only describe the algo-
rithms; we leave an analysis of the algorithms to Section IV.

A. Direct bitmap

The direct bitmap is a simple algorithm for estimating the
number of flows. We use a hash function on the flow ID to
map each flow to a bit of the bitmap. At the beginning of the
measurement interval all bits are set to zero. Whenever a packet
comes in, the bit its flow ID hashes to is set to 1. Note that
all packets belonging to the same flow map to the same bit, so
each flow turns on at most one bit irrespective of the number of
packets it sends.

We could use the number of bits set as our estimate of the
number of flows, but this is inaccurate because two or more
flows can hash to the same bit. In Section IV-A, we derive
a more accurate estimate that takes into account hash “colli-
sions”6. Even with this better estimate, the algorithm becomes
very inaccurate when the number of flows is much larger than
the number of bits in the bitmap and the bitmap is almost full.
The only way to preserve accuracy is to have a bitmap size that
scales almost linearly with the number of flows, which is often
impractical.

B. Virtual bitmap

The virtual bitmap algorithm reduces the memory usage by
storing only a small portion of the big direct bitmap one would
need for accurate results (see Figure 2) and extrapolating the
number of bits set. This can also be thought of as sampling
the flow ID space. The larger the number of flows the smaller
the portion of the flow ID space we cover. Virtual bitmap gen-
eralizes direct bitmap: direct bitmap is a virtual bitmap which
covers the entire flow ID space.

Unfortunately, a virtual bitmap does require tuning the “sam-
pling factor” based on prior knowledge of the number of flows.
If it differs significantly from what we configured the virtual
bitmap for, the estimates are inaccurate. If the number of flows
is too large the virtual bitmap fills up and has the same accuracy
problems as an underdimensioned direct bitmap. If the number
of flows is too small we have another problem: say the virtual
bitmap covers 1% of the flow ID space and there are 50 active
flows - if none of them hashes to the virtual bitmap, the algo-
rithm will suppose the number of flows is 0, if 1 hashes, the
algorithm will estimate 100, but it will never estimate 50. The
optimal sampling factor obtains the best tradeoff between “col-
lision errors” and “extrapolation errors”.

While, in general, one wants an algorithm that is accurate over
a wider range, we note that even an unadorned virtual bitmap
is useful. For example, consider a security application where
we wish to trigger an alarm when the number of flows crosses
a threshold. The virtual bitmap can be tuned for this threshold
and uses less memory than other algorithms that are accurate not

6We assume in our analysis that the hash function distributes the flows ran-
domly. In an adversarial setting, the attacker who knows the hash function could
produce flow identifiers that produce excessive collisions thus evading detection.
This is not possible if we use a random seed to our hash function.

just around the threshold, but over a wider range for the number
of flows.

In Section IV we derive formulae for the average error of the
virtual bitmap estimates. The analysis also provides insight for
choosing the right sampling factor. Perhaps surprisingly, the
analysis also indicates that the average error depends only on
the number of bits and not on the number of flows as long as the
sampling factor is set to an optimal value. For example with 215
bytes the average error is 3%.

C. Multiresolution bitmap

The virtual bitmap is simple to implement, uses little mem-
ory, and gives very accurate results, but requires us to know in
advance a reasonably narrow range for the number of flows. An
immediate solution to this shortcoming is to use many virtual
bitmaps, each using the same number of bits of memory, but dif-
ferent sampling factors, so that each is accurate for a different
range of the number of active flows (different “resolutions”).
The union of all these ranges is chosen to cover all possible val-
ues for the number of flows. When we compute our estimate,
we use the virtual bitmap that is most accurate based on a sim-
ple rule that looks at the number of bits set. The “lowest reso-
lution” bitmap is a direct bitmap that works well when there are
very few flows. The “higher resolution” bitmaps cover a smaller
and smaller portion of the flow ID space and work well when
the number of flows is larger. The problem with the naive ap-
proach of using several virtual bitmaps of differing granularities
is that instead of updating one bitmap for each packet, we need
to update several, causing more memory accesses.

The main innovation in multiresolution bitmap is to main-
tain the advantages of multiple bitmaps configured for vari-
ous ranges while performing asingle updatefor each incoming
packet. Figure 2 illustrates the direct bitmap, virtual bitmap,
multiple bitmaps and multiresolution bitmap. Before explaining
how the multiresolution bitmap works it can help to switch to
another way of thinking about how the virtual bitmap operates.
We can consider that instead of generating an integer, the hash
function covers a continuous interval. The virtual bitmap covers
a portion of this interval (the ratio of the sizes of the interval
covered by the virtual bitmap and the entire interval is the sam-
pling factor of the virtual bitmap). We divide the interval cor-
responding to the virtual bitmap into equal sized sub-intervals,
each corresponding to a bit. A bit in the virtual bitmap is set to 1
if the hash of the incoming packet maps to the sub-interval cor-
responding to the bit. The multiple bitmaps solution is shown
below the virtual bitmap solution in Figure 2.

A multiresolution bitmap is essentially a combination of mul-
tiple bitmaps of different “resolutions”, such that a single hash is
computed for each packet and only the highest resolution bitmap
it maps to is updated. Thus each bitmap loses a portion of its bits
which are covered by higher resolution bitmaps. But those bits
can easily be recovered later (during the analysis phase) from the
finer grained bitmaps by OR-ing together the bits in the higher
resolution bitmaps that correspond to individual bits in the lower
resolution bitmap. We call these regions with different resolu-
tions components of the multiresolution bitmap. When we com-
pute the estimate, based on the number of bits set in each com-
ponent, we choose one of them as “base”, estimate the number

TO APPEAR IN INTERNET MEASUREMENT CONFERENCE 2003 5

������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������

������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������

��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������

��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

�
�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�
�

Multiple bitmaps

Virtual bitmap

Direct bitmap

000* 001* 010* 011* 100* 101*

Multiresolution bitmap

Entire flow ID space

Part covered by virtual bitmap

11000*

1111000

111111111101*

Fig. 2. The multiresolution bitmap from this example uses a single 7-bit hash
function to decide which bit to map a flow to. It gives results no less accurate
than the 3 virtual bitmaps, thus covering a wide range for the number of
flows, but it performs a single memory update per packet. Note that all the
unfilled “tiles” from these bitmaps, despite their different sizes represent one
bit of memory.

of flows hashing to it and all finer components and extrapolate.
In Section IV-C we answer questions such as: how many

bits should each component have, how many components do
we need and what is the best ratio between the resolutions of
neighboring components? In the technical report version of the
paper [4] we show that multiresolution bitmaps are easy to im-
plement even in hardware that can keep up with line speeds.
Also, we compare our multiresolution bitmap to probabilistic
counting showing that while both algorithms use nearly identi-
cal hashes to set bits, they interpret the dataverydifferently, thus
the differences in the accuracy of the results.

D. Derived algorithms

In this section we describe three derived algorithms for count-
ing the number of active flows.Adaptive bitmap, described
Section III-D.1, achieves both the accuracy of virtual bitmap and
the robustness of multiresolution bitmap by combining them and
relying on the stationarity of the number of flows.Triggered
bitmapdescribed in Section III-D.2 combines direct bitmap and
multiresolution bitmap to reduce the total amount of memory
used by multiple instances of flow counting when most of the
instances count few flows. In Section III-D.3 we show how we
can adapt the core algorithms to the alternate definition of active
flows: the ones that have packets in a queue that supports ar-
bitrary additions and removals (not those that send any packets
during a fixed measurement interval).

D.1 Adaptive bitmap

It would be nice to have an algorithm that provides the best of
both worlds: the accuracy of a well tuned virtual bitmap with the
wide range of multiresolution bitmaps. Adaptive bitmap is such
an algorithm that combines a large virtual bitmap and a small
multiresolution bitmap. It relies on a simple observation: mea-
surements show that the number of active flows does not change
dramatically from one measurement interval to the other (so it is
not suitable for tracking say attacks where sudden changes are
expected). We use the small multiresolution bitmap to detect
changes in the order of magnitude of the count, and the virtual
bitmap for precise counting within the currently expected range.
The number of flows we expect is the number of flows mea-
sured in the previous measurement interval. Assuming “quasi-
stationarity”, the algorithm is accurate most of the time because
it uses the large, well-tuned virtual bitmap for estimating the
number of flows. At startup and in the very unlikely case of dra-
matic changes in the number of active flows the multiresolution
bitmap provides a less accurate estimate.

Updating these two bitmaps separately would requiretwo
memory updates per packet, but we can avoid the need for mul-
tiple updates by combining the two bitmaps into one. Specifi-
cally, we use a multiresolution bitmap in whichr adjacent com-
ponents are replaced by a single large component consisting of
a virtual bitmap (wherer is a configuration parameter). The lo-
cation of the virtual bitmap within the multiresolution bitmap
(i.e. which components it replaces) is determined by the current
estimate of the count. If the current number of flows is small,
we replace coarse components with the virtual bitmap. If the
number of flows is large, we replace fine components with the
virtual bitmap. The update of the bitmap happens exactly as in
the case of the multiresolution bitmap, except that the logic is
changed slightly when the hash value maps to the virtual bitmap
component.

D.2 Triggered bitmap

Consider the concrete example of detecting port scans. If
one used a multiresolution bitmap per active source to count
the number of connections, the multiresolution bitmap would
need to be able to handle a large number of connections because
port scans can use very many connections. The size of such a
multiresolution bitmap can be quite large. However, most of
the traffic is not port scans and most sources open only one or
two connections. Thus using a large bitmap for each source is
wasteful.

The triggered bitmap combines a very small direct bitmap
with a large multiresolution bitmap. All sources are allocated
a small direct bitmap. Once the number of bits set in the small
direct bitmap exceeds a certain trigger value, a large multireso-
lution bitmap is allocated for that source and it is used for count-
ing the connections from there on. Our estimate for the number
of connections is the sum of the flows counted by the small di-
rect bitmap and the multiresolution bitmap. This way we have
accurate results for all sources but only pay the cost of a large
multiresolution bitmap for the sources that open many connec-
tions.

As described so far, this algorithm introduces a subtle error

TO APPEAR IN INTERNET MEASUREMENT CONFERENCE 2003 6

that makes a small change necessary. If a flow is active both
before and after the large multiresolution bitmap is allocated it
gets counted by both the direct bitmap and the multiresolution
bitmap. Only using the multiresolution bitmap for our final es-
timate is not a solution either because than we would not count
the flows that were active only before the multiresolution bitmap
was allocated. To avoid this problem we change the algorithm
the following way: after the multiresolution bitmap is allocated,
we only map to it those flows that do not map to one of the bits
already set in the direct bitmap. This way if the flows that set
the bits in the direct bitmap send more packets, they will not
influence the multiresolution bitmap. It’s true that the multires-
olution bitmap doesn’t catch all the new flows, just the ones that
map to one of the bits not set in the direct bitmap. This is equiv-
alent to the “sampling factor” of the virtual bitmap and we can
compensate for it (see Section IV-A).

D.3 Handling packet removals

We said earlier that counting the the number of flows that have
packets in the queue of a router can help determine the “fair
share” used by the scheduling algorithm. In this case, we need
to not only handle the case of new packets arriving but also the
case of packets getting removed. Direct bitmap, virtual bitmap
and multiresolution bitmap can be easily modified to handle this
case by replacing every bit with a counter. The width of the
counters is given by the maximum number of packets the queue
can accommodate (which also puts a limit on the number of dis-
tinct flows that can have packets in the queue). When the queue
is empty all counters are 0. When a new packet arrives, the
counter it maps to is incremented. When a packet is removed
from the queue, the counter is decremented. We use the number
of counters with value zero to compute our estimate of the num-
ber of active flows exactly the same way we use the number of
zero bits in the case with measurement intervals. A counter will
be zero if and only if no active flows map to it.

IV. A LGORITHM ANALYSIS

In this section we provide the analyses of the statistical be-
havior of the bitmaps used by our algorithms. We focus on three
types of results. In Section IV-A, we derive formulae for esti-
mating the number of active flows based on the observed bit-
maps. In Section IV-B, we analytically characterize the accu-
racy of the algorithms by deriving formulae for the average error
of the estimates. In Section IV-C, we use the analysis to derive
rules for dimensioning the various bitmaps so that we achieve
the desired accuracy over the desired range for the number of
flows.

A. Estimate Formulae

Direct bitmap: To derive a formula for estimating the num-
ber of active flows for a direct bitmap we have to take into ac-
count collisions. Letb be the size of the bitmap. The probability
that a given flow hashes to a given bit isp = 1/b. Assum-
ing that n is the number of active flows, the probability that
no flow hashes to a given bit ispz = (1 − p)n ≈ (1/e)n/b.
By linearity of expectation this formula gives us the expected
number of bits not set at the end of the measurement interval
E[z] = bpz ≈ b(1/e)n/b. If the number of zero bits isz,

ESTIMATEFLOWCOUNT
1 base = c− 1
2 while base > 0 andbitsSet(component[base]) ≤ setmax

3 base = base− 1
4 endwhile
5 base = base + 1
6 if base == c andbitsSet(component[c]) > setlastmax)
7 if bitsSet(component[c]) == blast

8 return “Cannot give estimate”
9 else
10 warning “Estimate might be inaccurate”
11 endif
12 endif
13 m = 0
14 for i = base to c− 1
15 m = m + b ln(b/bitsZero(component[i]))
16 endfor
17 m = m + blast ln(blast/bitsZero(component[c]))
18 factor = kbase−1

19 returnfactor ∗m

Fig. 3. Algorithm for computing the estimate of the number of active flows for a
multiresolution bitmap. We first pick the base component that gives the best
accuracy then add together the estimates for the number of flows hashing to
it and all higher resolution components and finally extrapolate.

Equation 1 gives our estimatên for the number of active flows.
Whang et al. also show that this is the maximum likelihood es-
timator for the number of active flows [18].

n̂ = b ln

(
b

z

)
(1)

Virtual bitmap: Let α be the “sampling factor” (the ratio of
the sizes of the interval covered by the virtual bitmapb and the
entire hash spaceh). The probability for a given flow to hash to
the virtual bitmap is equal to the sampling factorpv = α = b/h.
Let m be the number of flows that actually hash to the virtual
bitmap. Its probability distribution is binomial with an expected
value ofE[m] = αn. We can use Equation 1 to estimatem
and based on that we obtain Equation 2 for the estimate of the
number of active flowsn.

n̂ =
1
α

b ln

(
b

z

)
= h ln

(
b

z

)
(2)

Multiresolution bitmap: The multiresolution bitmap is a
combination of many components, each tuned to provide accu-
rate estimates over a particular range. When we compute our
estimate we don’t know in advance which component is the
one that provides the most accurate estimate (we call this the
base component). As we will see in Section IV-B, we obtain
the smallest error by choosing as the base component the coars-
est component that has no more thansetmax bits (lines 1 to 5
in Figure 3). setmax is a precomputed threshold based on the
analysis from Section IV-B. Once we have the base component,
we estimate the number of flows hashing to the base and all the
higher resolution ones using Equation 1 and add them together
(lines 13 to 17 in Figure 3). To obtain the result we only need

TO APPEAR IN INTERNET MEASUREMENT CONFERENCE 2003 7

to perform the multiplication corresponding to the sampling fac-
tor (lines 18 and 19). Other parameters used by this algorithm
are the ratiok between the resolutions of neighboring compo-
nents andblast the number of bits in the last component (which
is different fromb).

Adaptive bitmap: The algorithm for adaptive bitmap is very
similar to multiresolution bitmap. The main difference is that we
use different threshold for selecting the big component as base.
For brevity, we omit the algorithm.

Triggered bitmap: If the triggered bitmap did not allocate a
multiresolution bitmap, we simply use the formula for direct bit-
maps (Equation 1). Let’s useg for the number of bits that have
to be set in the direct bitmap before the multiresolution bitmap is
allocated andd for the total number of bits in the direct bitmap.
If the multiresolution bitmap is deployed, we use the algorithm
from Figure 3 to compute the number of flows hashing to the
multiresolution bitmap, multiply that byd/(d − g) and add the
estimate of the direct bitmap.

B. Accuracy

To determine the accuracy of these algorithms we look at the
standard error of our estimatên, that is the standard deviation of
the ration̂/n. We also refer to this quantity as the average (rel-
ative) errorSD[n̂/n] = SD[n̂]/n. One parameter that is useful
in these analyses is the flow densityρ defined as the average
number of flows that hash to a bit.

Direct bitmap: While our formula for estimating the num-
ber of active flows accounts for the expected collisions it doesn’t
always give exact results because the number of collisions is
random. Equation 3 approximates the average error of a direct
bitmap based on the Taylor expansion of Equation 1 as derived
by Whang et al. [18]. The result is not exact because because
less significant terms of the Taylor expansion were omitted.
Whang et al. also show that the approximation does not lead
to serious inaccuracies for configurations one expects to see in
practice. They also show that the distribution of the number of
bits set is asymptotically normal so errors much larger than the
standard error are very unlikely [18]. For example, for a di-
rect bitmap configured to operate at an average error of 10% for
flow densities up to 2, the value of the average error we get by
including the next term of the Taylor series is only 2% away
from the approximation (i.e., the actual average error can be at
most 10.2% instead of 10%). The inaccuracy introduced by the
approximation decreases further as the number of bits increases.

SD

[
n̂

n

]
≈
√

eρ − ρ− 1
ρ
√

b
(3)

Virtual bitmap: Besides the randomness in the collisions,
there is another source of error for the virtual bitmap: we as-
sume that the ratio between the number of flows that hash to
the physical bitmap and all flows is exactly the sampling factor
while due to the randomness of the process the number can dif-
fer. In Appendix A we analyze these two errors and how they
interact. Equation 4 takes into account their cumulative effect
on the result. When the flow density is too large the error in-
creases exponentially because of the collision errors. When it is
too small, the error increases as the sampling errors take over.

1 2 3 4

Flow density (flows/bit)

0.04

0.05

0.06

A
ve

ra
ge

 (
re

la
tiv

e)
 e

rr
or

Measured error
Predicted error

Effect of the flow density on accuracy

Fig. 4. When the flow density is too low, the “sampling error” takes over, when
it is too high “collision error” is the main factor. We get the best accu-
racy for a flow density of aroundρ = 1.6. The estimate from Equation 4
matches well the experimental results being slightly conservative (larger).
See Section V-A for details on the experiment that produced this result.

Our analysis also shows that the terms ignored by the approx-
imations do not contribute significantly and that the bound is
tight. Figure 4 presents a typical result comparing the mea-
sured average error from simulations on traces of actual traffic
to the value from Equation 4.

SD

[
n̂

n

]
/

√
eρ − 1
ρ
√

b
(4)

Multiresolution bitmap: To compute the average error of
the estimate of the multiresolution bitmap, we should take into
account separately the collision errors of all components finer
than the base. This would result for a different formula for
each component that would be used as base. Equation 5 is
a slightly weaker bound that holds for all components but the
last one as long as the number of bits in the last component
blast is large enough. The details of its derivation can be found
in Appendix A. Equation 5 bounds quite tightly the average er-
ror for a normal component. For the last component of the mul-
tiresolution bitmap we use Equation 4 directly.

SD

[
n̂

n

]
/

√
k−1

k

(
eρ + eρ/k − 2

)
+ eρ/k2 − 1

ρ
√

bk
k−1

(5)

Adaptive bitmap: The error of the estimates of the adap-
tive bitmap depends strongly on the number of flows: the errors
are much larger if the number of flows is unexpectedly large or
small. The exact formulas, omitted for brevity are not very dif-
ferent from the ones seen so far. We give an example instead.
Figure 5 gives the average error as predicted by our formulae for
the adaptive bitmap we use in for measurements (Section V-C).
We first represent the average error of the original multireso-
lution bitmap and then the average error we obtain by replac-
ing various groups of 8 consecutive components with the virtual

TO APPEAR IN INTERNET MEASUREMENT CONFERENCE 2003 8

1000 10000 1e+05 1e+06 1e+07 1e+08

Number of flows

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

A
ve

ra
ge

 e
rr

or

Multiresolution bitmap
Virtual bitmap replaces 9 to 16
Virtual bitmap replaces 10 to 17
Virtual bitmap replaces 11 to 18

Accuracy for an adaptive bitmap

Fig. 5. The large virtual bitmap replaces 6 of the components of the multireso-
lution bitmap. The size of the normal components isb = 64 bits and the size
of the large virtual bitmap isv = 1627 bits. The adaptive bitmap guarantees
an average error of at most 10% over the whole range, but if the number of
flows falls into the “sweet spot” the average error can be as low as 3.1%

Algorithm Memory (bits)

Direct bitmap > N/ln(Nε2 + 1)
Virtual bitmap 1.54413865/ε2

Multiresolution bmp. 0.9186ln(Nε2)/ε2 + ct.
Adaptive bitmap ' 1.54413865/ε2

TABLE I

THE SIZE OF THE DIRECT BITMAP SCALES SUBLINEARLY WITHN BUT

WORSE THANN/ln(Nε2 + 1), THE SIZE FOR THE VIRTUAL BITMAP IS

PROPORTIONAL TO THE INVERSE OF THE SQUARE OF THE AVERAGE

ERROR, THE SIZE OF THE MULTIRESOLUTION BITMAP SCALES THE THE

LOGARITHM OF THE NUMBER OF FLOWS OVER THE SQUARE OF THE

AVERAGE ERROR AND THE ADAPTIVE BITMAP DELIVERS UNDER CERTAIN

ASSUMPTIONS THE ACCURACY OF THE VIRTUAL BITMAP BY ADAPTING

DYNAMICALLY TO THE NUMBER OF ACTIVE FLOWS.

bitmap. It is apparent from this figure that by changing which
components are replaced by the virtual bitmap we can change
the range for which the adaptive bitmap is accurate.

C. Configuring the bitmaps

In this section we address the configuration details and im-
plicitly the memory needs of the bitmap algorithms. All mea-
surement results are in Section V. The two main parameters we
use to configure the bitmaps are the maximum number of flows
one wants them to countN and the acceptable averagerelative
errorε. We base our computations on the formulas of the previ-
ous section.

Direct bitmap: If we would keepρ = N/b constant asN
increasedε would improve proportionally to1/

√
N (which is

proportional to1/
√

b). So asN increases the flow density that
gives us the desired accuracy also increases. Therefore by ig-
noring the constant term under the square root in Equation 3 we
get a tight bound on howb scales. ε2 / (eρ − ρ)/(ρ2b) so
ε2N + 1 / eρ/ρ < eρ. From hereρ < ln(ε2N + 1) and thus

k ρmin ρmax coefficientf(k) f(k)/ln(k)
2 1.3372 2.6744 0.6367 0.9186
3 0.9750 2.9250 1.0318 0.9392
4 0.7856 3.1426 1.3470 0.9717

TABLE II

THE OPERATING RANGE OF THE COMPONENTS OF THE MULTIRESOLUTION

BITMAP IS BETWEENρmin AND ρmax . THE COEFFICIENT AND THE

DESIRED ACCURACY DETERMINE THE SIZE OF THE COMPONENTS

b = f(k)/ε2 . THE LARGER THE RATIO BETWEEN THE RESOLUTIONS OF

NEIGHBORING COMPONENTSk, THE WIDER THE RANGE COVERED BY A

SINGLE COMPONENT AND THE LARGER THE COMPONENT.

b > N/ln(ε2N + 1). We claim that for large values ofN while
this closed form bound is not tight it is not very far off either.
For example forN = 1, 000, 000 andε = 10% the bound gives
108,572 bits while the actual value is 85,711 bits. Of course, for
configuring a direct bitmap we recommend solving Equation 3
numerically forb (with ρ replaced byN/b).

Virtual bitmap: The average error of the virtual bitmap
given by Equation 4 is minimized by a certain value of the flow
density. Solving numerically we getρoptimal = 1.593624 and
this corresponds to around20.3% of the bits of the bitmap be-
ing not set. By substituting, we obtain the average error for this
“sweet spot” flow densityε / 1.242633756330/

√
b. By invert-

ing this we obtain the formula from Table I for the number of
bits of physical memory we need to achieve a certain accuracy.
When we need to configure the virtual bitmap as a trigger, we
set the sampling factor such that at the threshold the flow density
is 1.593624. For this application, if we have 155 bits, the aver-
age error of our estimate is at most 10% no matter how large the
threshold is. If we have 1,716, the average error is at most 3%,
and if we have 15,442 it is at most 1%. If we want the virtual
bitmap to have at most a certain error for a range of flow counts
betweenNmin andNmax, we need to solve the problem numer-
ically by finding aρmin < ρoptimal and aρmax > ρoptimal so
that ρmax/ρmin = Nmax/Nmin andρmin andρmax produce
the same error. Once we have these values, we can compute the
sampling factor for the virtual bitmap and the number of bits.

Multiresolution bitmap: For the multiresolution bitmap,
we have to ensure that the average error doesn’t exceed the de-
sired value over the whole range from0 to N . We divide the
range among components. Configuring a component is very
much like configuring a virtual bitmap for a range, except we
use Equation 5. We find two flow densitiesρmin andρmax that
give the same error under the constraint thatρmax/ρmin = k
(k is the ratio between the resolutions of neighboring compo-
nents). We choose the bitmap sizeb for the normal compo-
nents (all except the last one) such that atρmin andρmax the
we get the desired accuracyb = f(k)/ε2 where the coeffi-
cientf(k) depends onk. Table II contains the values ofρmin,
ρmax and the coefficient used for determining the bitmap size
for three useful values fork. The base component is the one
with a flow density betweenρmin andρmax, so the threshold
used by the algorithm (Figure 3) to select the base component is
setmax = b(1− e−ρmax).

TO APPEAR IN INTERNET MEASUREMENT CONFERENCE 2003 9

r v/b improvement

2 2.3626 1.1725
3 4.4861 1.4488
4 8.0603 1.8468
5 14.3252 2.4029
6 25.5510 3.1709
7 45.9411 4.2265
8 83.3330 5.6754
9 152.4217 7.6641
10 280.8654 10.3959
11 520.9068 14.1524
12 971.5300 19.3240

TABLE III

AS WE INCREASE THE NUMBER OF COMPONENTSr REPLACED BY THE

VIRTUAL BITMAP , THE SIZE OF THE VIRTUAL BITMAPv ALMOST DOUBLES

FOR EACH NEW COMPONENT REPLACED. THE RATIO BETWEEN THE

AVERAGE ERROR OF THE LARGE VIRTUAL BITMAP AND THE

MULTIRESOLUTION BITMAP ALSO INCREASES EXPONENTIALLY, BUT AT A

SLOWER RATE THAN THE SIZE OF THE VIRTUAL BITMAP.

We can choose the number of components such that the last
normal component (the penultimate overall) covers the end of
the rangeN : c = 2 + dlogk(N/(ρmaxb))e. The total size of
the multiresolution bitmap isMem = b ∗ (c − 1) + blast, thus
ignoring the additive constants, the asymptotic memory usage
is Mem ≈ ln(Nε2)/ε2f(k)/ln(k). By allocating more bits
to the last component than what it needs in order to make the
penultimate component accurate atρmax, it can also provide ac-
curate enough estimates and this allows us to reduce the number
of components in the bitmap. The algorithm for computing the
optimal configuration7 is long but not very complicated: it eval-
uates some choices forblast andc and picks the best one.

The ratiof(k)/ln(k) gives the asymptotic memory usage for
a certain choice ofk and we can see from Table II thatk = 2
is the best choice8. The algorithm is very easy to implement in
hardware ifk, bk/(k − 1) andblast are powers of two. Under
these constraints, sometimes the choice ofk = 4 gives a smaller
memory usage because the sizeb of the components it needs to
achieve the desired average errorε “fits better” the powers of
two. Therefore when configuring the algorithm for a hardware
implementation that has these limitations it is best to check both
values ofk = 2 andk = 4. 9

Adaptive bitmap: For brevity we omit the detailed discus-
sion of the configuration of the adaptive bitmap. In Table III
we report the costs and benefits of the adaptive bitmap. The first
column lists the numberr of normal components we replace
with the large one. The next column lists the number of bits
the large component needs to have (compared to the number of
bits of a normal component) to ensure that the adaptive bitmap
never has a worse average error than the original multiresolution

7The full algorithm is presented in the technical report version [4].
8There are some very rare cases whenk = 3 gives a slightly smaller memory

usage. This is because the number of components cannot be fractional and the
components fork = 3 “fit better” to the givenN andε.

9We found no set of parametersN ,ε for whichk = 8 worked better than both
k = 2 andk = 4

Name No. of flows Length Encr.
(min/avg/max) (s)

MAG+ 93,437/98,424/105,814 4515 no
MAG 99,264/100,105/101,038 90 no
COS 17,716/18,070/18,537 90 yes
IND 1,964/2,164/2,349 90 yes

TABLE IV

THE TRACES USED FOR OUR MEASUREMENTS

bitmap. The third column lists the ratio between the average er-
ror of multiresolution bitmap and the “sweet spot” average error
of the adaptive bitmap. The memory usage reported in Table I
is derived based on the observation that most of the memory of
the adaptive bitmap is used by the “virtual bitmap” component.

V. M EASUREMENT RESULTS

We group our measurements into 4 sections corresponding to
the 4 important algorithms presented: virtual bitmap, multireso-
lution bitmap, adaptive bitmap and triggered bitmap. Part of the
measurements are geared toward checking the correctness of the
predictions of our theoretical analysis and part are geared toward
comparing the performance of our algorithms with probabilistic
counting or other existing solutions.

For our experiments, we used 3 packet traces, an unencrypted
one from CAIDA captured on the 6th of August 2001 on an
OC-48 backbone link and two encrypted traces from the MOAT
project of NLANR captured on the 11th of November 2002 on
the connection points of two university campuses to the Inter-
net. The unencrypted trace is very long; for some experiments
we also used a 90 second slice of the unencrypted trace as a
fourth trace. We usually set the measurement interval to 5 sec-
onds. We chose 5 seconds because it appears to be a plausible
interval someone would use when looking at the number of ac-
tive flows: it is larger than the round-trip times we can expect
in the Internet and it is above the rate a slow modem link sends
packets. In all experiments we defined the flows by the 5-tuple
of source and destination IP addresses, ports, and protocol. Ta-
ble IV gives a summary description of the traces we used. All
algorithms used equivalent CRC-based hash functions with ran-
dom generator functions.

A. Virtual bitmap

We performed experiments to check the validity of
Equation 3 for various configurations on many traces. Figure 4
shows a typical result. More results can be found in the techni-
cal report version of the paper [4]. Our measurements confirm
that Equation 3 gives a tight and slightly conservative bound
on the average error (conservative in the sense that actual errors
are usually somewhat smaller than predicted by the formula).
The results also confirm that we get the best average error for a
virtual bitmap of a given size when the flow density is around
ρ = 1.6.

We also compare the average error of the virtual bitmap to
probabilistic counting using the same amount of memory for a
variety of configurations and traces. Because our major contri-

TO APPEAR IN INTERNET MEASUREMENT CONFERENCE 2003 10

butions are the remaining schemes, we provide here only one
sample result. For the COS Trace, using 1,716 bits our analysis
predicts an expected error 3%. Over 20 runs, for the 18 mea-
surement intervals, the actual average error (computed as square
root of the average of squares) for virtual bitmap is only 2.773%
with a maximum of 9.467%. This is not just a further confirma-
tion that Equation 3 gives a tight bound on the average error,
but it also shows that errors much larger than the average er-
ror are very unlikely. On the other hand, probabilistic counting
configured to handle up to 100,000 flows had an average error
of 6.731% with a maximum of 27.336%. While this is an un-
fair comparison in general (virtual bitmap requires knowing in
advance the range of final count values), it does fairly indicate
our major message: a problem-specific counting method for a
specific problem like threshold detection can significantly out-
perform a one-size-fits-all technique like probabilistic counting.

B. Multiresolution bitmap

This set of experiments compares the average error of the
multiresolution bitmap and probabilistic counting. A meaning-
ful comparison is possible if we compare the two algorithms
over the whole range for the number of flows. Since our traces
have a pretty constant number of flows, we use a synthetic trace
for this experiment. We used the actual packet headers from the
MAG+ trace to generate a trace that has a different number of
flows in each measurement interval: from 10 to 1,000,000 in in-
crements of 10% with a jitter of 1% added to avoid any possible
effects of “synchronizations” with certain series of numbers.

We ran experiments with multiresolution bitmaps tuned to
give an average error of 1%, 3% and 10% for up to 1,000,000
flows and probabilistic counting configured for the same range
with the same amount of memory. We had 500 runs for each
configuration of both algorithms with different hash functions.

Figures 6 to 8 show the results of the experiments. We can see
that in all three experiments, the average error of the multireso-
lution bitmap is better than predicted for small values, because
we have no “sampling error” when the number of flows is small.
We explain the periodic “fluctuations” of average error from fig-
ure 6 by occasional incorrect choice of the base component. The
peaks correspond to where components are least accurate and
hand off to each other. The peaks are more pronounced in this
figure than the others because due to the small number of bits in
each component, it happens more often that not the best compo-
nent is used as a base for the estimation. In Figure 7 and espe-
cially in Figure 8 there is a visible decrease in the error for the
multiresolution bitmap when the number of flows approaches
the upper limit. The reason is that the last component is much
larger than the normal ones and provides more accurate results.

Probabilistic counting is worse than the multiresolution
bitmap, especially for small values. We show in the technical
report version of the paper [4] that the data collected by the two
algorithms is equivalent, so it might be surprising that their ac-
curacies are so different. We attribute the large errors of prob-
abilistic counting for low values to the way it evaluates the col-
lected data. The ability of multiresolution bitmap to be accurate
on the low end of the range too can lead to simpler, more robust
systems. We attribute the worse error of probabilistic counting
for higher values mostly to the suboptimal dimensioning of the

10 100 1000 10000 1e+05 1e+06

Number of flows (log scale)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

A
ve

ra
ge

 e
rr

or

Multiresolution bitmap (b=64, c=12)
Probabilistic counting (nmap=47, L=19)

Fig. 6. Configured for an average error of 10%

10 100 1000 10000 1e+05 1e+06

Number of flows (log scale)

0

0.01

0.02

0.03

0.04

0.05

A
ve

ra
ge

 e
rr

or

Multiresolution bitmap (b=708, c=8)
Probabilistic counting (nmap=496, c=15)

Fig. 7. Configured for an average error of 3%

10 100 1000 10000 1e+05 1e+06

Number of flows (log scale)

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

A
ve

ra
ge

 e
rr

or

Multiresolution bitmap (b=6367, c=5)
Probabilistic counting (nmap=4779, L=12)

Fig. 8. Configured for an average error of 1%

Trace Adaptive bitmap Probabilistic counting
(min/avg/max) (min/avg/max)

MAG+ -4.402/1.066/4.717% -9.525/2.820/13.262%
COS -1.879/0.748/1.950% -6.946/2.759/7.621%
IND -1.767/0.601/1.772% 2.400/10.214/17.724%

TABLE V

COMPARISON OF ADAPTIVE BITMAP AND PROBABILISTIC COUNTING,

EACH USING16KBITS OF MEMORY

algorithm (as recommended in [6]).

TO APPEAR IN INTERNET MEASUREMENT CONFERENCE 2003 11

C. Adaptive bitmap

The experiments from this section compare adaptive bitmap
and probabilistic counting on all three traces. The results are
presented in Table V. All of the algorithms were configured
to use 16 Kbits of memory. For each algorithm we report the
largest errors in both directions and the average error based on
20 runs with different hash functions.

The algorithms were configured to give the best possible av-
erage error and work up to 100,000,000 flows. For the adaptive
bitmap we used as a base a multiresolution bitmap with an aver-
age error of10% with k = 2, b = 64, c = 19 andblast = 169.
The virtual bitmap component is15, 063 bits large and replaces
9 components of the multiresolution bitmap. For the adaptive
bitmap we did not include in our computations the first mea-
surement interval when the adaptive bitmap was not tuned to
the traffic. For the probabilistic counting we usednmap = 744
bitmaps ofL = 22 bits each. Adaptive bitmap is roughly 3
times more accurate than probabilistic counting. For the IND
trace which has a very small number of active flows probabilis-
tic counting has very bad error and is actually biased towards
overestimating. This is the same as the problem we noticed the
previous section. The major message here is that an adaptive
bitmap can achieve almost the same benefits of virtual bitmap
(e.g., order of magnitude reduction in memory for same accu-
racy) when the number of flows does not vary dramatically, as
seems common in many networking applications.

D. Triggered bitmap

So far, all our measurements have focused on one instance of
the counting problem to be used as a building block for solving
more complex problems. The experiments from this section give
a better image of how using one of our algorithms can affect the
resource consumption of an entire system.

We first address port scan detection that uses a large number
(one per source) of instances of the counting problem multiply-
ing the impact of any memory our algorithm can save. We use a
definition of a port scan equivalent to the definition in the default
Snort configuration: a source is flagged as a port scanner if it has
at least 4 connections in a 12 second measurement interval. In
the second experiment we extend the measurement interval to 10
minutes to evaluate the algorithms against this more demanding
definition. We ignore many of the details of the operation of
Snort (e.g., reliance on TCP flags to classify connections) and
concentrate on the core task of counting connections.

For the triggered bitmap we chose a configuration that is con-
venient to implement on a 32-bit machine: a direct bitmap of
4 bytes and a multiresolution bitmap with 11 components of 4
bytes each (except the last one which is 8 bytes). The multireso-
lution bitmap is allocated after 8 bits are set in the direct bitmap.
By our analysis the multiresolution bitmap should ensure an av-
erage error of at most 14.1% for up to 43,817 connections and
at most 15.5% for up to 175,269 connections.

We compute memory usage of Snort based on the number of
sources and connections active during the measurement interval.
What we actually use is a not an accurate model of the actual
memory usage of Snort (which uses inefficient structures such
as multiple linked lists) but the minimum that any implementa-

Measurement Snort Prob. Triggered
interval count. bmp.

12 sec 1,968K 2,474K 381K
600 sec 50,791K 22,876K 5,725K

TABLE VI

THE MEMORY USAGE OF PORT SCAN DETECTION ALGORITHMS(KBYTES)

tion using the naive algorithm would have to allocate: 8 bytes
for the IP address and a counter for each source and 9 bytes (des-
tination IP, source port, destination port, type) for the identifier
of each active connection. We also compute the memory usage
of a solution directly applying probabilistic counting with a con-
figuration similar to our multiresolution bitmap (48 bytes for the
algorithm + 4 bytes for the IP address for each source). Our trig-
gered bitmap algorithm consumes 8 bytes for each active source
(the IP address + the direct bitmap) plus the additional 48 bytes
for the sources that trigger the allocation of the multiresolution
bitmap.

We used two configurations, one with a 12 second prefix and
one with a 600 second prefix of the MAG trace. For each config-
uration we had 20 runs of with the triggered bitmap algorithm,
using different random hash functions. The average of the er-
ror for flows that had at least 4 connections was 13.6%.10 Our
algorithm reported 84.6% of the sources with 4 connections as
reaching the threshold, 98.1% of those with 5, and all (100%) of
the sources that had at least 8 connections. In Table VI we report
the maximumof triggered bitmap over the 20 runs. Triggered
bitmap uses roughly 5 times less memory than snort with the
first configuration. For the more ambitious second configura-
tion the gain increases to a factor of 9. With both configurations
triggered bitmap used less memory than probabilistic counting.

What do these results mean to a security analyst? Snort, of
course, uses the classical measure of detectingn connections
with a maximum inter-event spacing oft. By default, Snort uses
values such as n=4, t=3. Our technique uses significantly less
memory at the expense of possibly missing port scanners. How-
ever, the probability of a port scanner not being detected de-
creases exponentially with the number of connections it opens.
For example, the probability is 1.87% at 5 connections, 0.23%
at 6, 0.03% at 7, etc. Using Snort’s timing requirements, a fifth
event must arrive withint = 3 seconds of the fourth event if the
scan continues. Thus, we detect a continuing scan with proba-
bility 98.13% within 3 seconds and 99.77% within 6 seconds.
Note also that port scans are usually the result of a brute-force
network exploration such as Nmap [7] or Code Red [11]. Such
tools frequently touch not just a handful of addresses, but an
entire block of contiguous addresses. Thus, it is reasonable to
expect a scan to continue after 4 events.

We also note here preliminary results on the use of triggered
bitmap in an application computing per-IP source and desti-
nation statistics that is part of the CoralReef traffic analysis

10This is an average over all sources. We did notice some “peculiarities”: for
sources that had 4 connections the average error was around 10.5% , for those
with 5 around 11%, for those with 6 connections it was 18%, for those with 8
around 11.5% while for all others the averages were roughly in the range 14%-
15.5%. We explain these as effects of having such a small direct bitmap.

TO APPEAR IN INTERNET MEASUREMENT CONFERENCE 2003 12

Setting Algorithm Application

General counting Multiresolution bitmap Tracking virus infections
Accuracy important only Virtual bitmap Triggers (e.g. for

over a narrow range detecting DoS attacks)
Count is probably in a Adaptive bitmap Measurement

narrow range (stationarity)
Small memory usage as Triggered bitmap Detecting port scans
long as count is small

Flows dynamically added Increment-decrement Scheduling
and deleted algorithms

TABLE VII

THE FAMILY OF BITMAP COUNTING ALGORITHMS: EACH ALGORITHM IS BEST SUITED FOR A DIFFERENT SETTING.

suite [9]. The implementation and measurements reported here
are the work of Ken Keys with contribution from David Moore,
both from Caida. On a 10 minute OC-48 trace, the original app-
lication uses 316 megabytes of main memory. The improved
version used a triggered bitmap with a 128 bit direct bitmap
that allocated a multiresolution bitmap configured for an error
of 5% after 4 bits were set. The memory usage decreased to
44 megabytes while the average error was 4.41%. The average
running time was 349 seconds which is 29% below the running
time of the original application (491 seconds).

Finally, note that because our algorithms reduce the memory
usage by as much as an order of magnitude, they also enable de-
tection of stealthy slow scans using the same amount of memory
that naive algorithms use for fast scans. Because the memory re-
quired for each source is greatly reduced with our algorithms,
we can afford to count more sources at a time. As a result,
we can avoid timing-out state as aggressively as Snort and keep
counting sources with longer inter-arrival times between events.
By doing so, we can detect more stealthy port scans, a goal of
many detection systems [16].

VI. CONCLUSIONS

Using a suitably general definition of a flow, counting the
number of active flows is at the core of a wide variety of se-
curity and networking applications such as detecting port scans
and denial of service attacks, tracking virus infections, calibrat-
ing caching, etc. In this paper we provide a family of bitmap
algorithms solving the flow counting problem using extremely
small amounts of memory. Most of the algorithms can be im-
plemented at wire speeds (8 nsec per packet for OC-768) us-
ing SRAM since they access at most one memory location per
packet, and can be implemented using simple hardware (CRC
based hash functions, multipliers, and multiplexers). With the
exception of direct and virtual bitmap, the other algorithms are
introduced for the first time in this paper.

The best known algorithm for counting distinct values is prob-
abilistic counting. Our algorithms need less memory to produce
results of the same accuracy. This can translate into savings of
scarce, fast memory (SRAM) for hardware implementations. It
can also help systems that use cheaper DRAM to allow them to
scale to larger instances of the problem.

In comparing head-on with probabilistic counting, our mul-

tiresolution algorithm works under the same assumptions and
provides an error orders of magnitude lower when the number of
flows is small and is slightly better for higher values. However,
we believe our biggest contribution is as follows. By exposing
the simple building blocks and analysis behind multiresolution
counting, we have provided a family ofcustomizablecounting
algorithms (Table VII) that application and hardware designers
can use to reduce memory even further by exploiting application
characteristics.

Thus, virtual bitmap is well-suited for triggers such as de-
tecting DoS attacks, and uses 215 bytes to achieve an error
of 2.773% compared to 2,076 bytes for probabilistic counting.
Adaptive bitmap is suited to flow measurement applications and
exploits stationarity to require 8 times less memory than prob-
abilistic counting on sample traces. Triggered bitmap is suited
to running multiple instances of counting where many instances
have small count values (e.g., port scanning) requiring only 5.6
Mbytes on a 10 minute trace compared to the 49.6 Mbytes re-
quired by the naive algorithm and 22.3 Mbytes required by prob-
abilistic counting. Using triggered bitmap resulted in a reduc-
tion by 29% in the running time and a factor of seven in the
total memory usage of a traffic analysis application from the
CoralReef suite. Given that low-memory counting appears to be
useful in applications beyond networking which have different
characteristics, we hope that the base algorithms in this paper
will be combined in other interesting ways in architecture, oper-
ating systems, and even databases.

VII. A CKNOWLEDGEMENTS

We thank Vern Paxson, David Moore, Philippe Flajolet, Mar-
ianne Durand, Alex Snoeren and K. Claffy, Stefan Savage and
Florin Baboescu for extremely valuable conversations. This
work was made possible by NSF Grant ANI-0137102 and the
Sensilla project sponsored by NIST Grant 60NANB1D0118.

REFERENCES

[1] Cisco offers wire-speed intrusion detection, December 2000.
http://www.nwfusion.com/ reviews/ 2000/ 1218rev2.html.

[2] Nick Duffield, Carsten Lund, and Mikkel Thorup. Properties and predic-
tion of flow statistics from sampled packet streams. InSIGCOMM Internet
Measurement Workshop, November 2002.

[3] Cristian Estan and George Varghese. New directions in traffic measure-
ment and accounting. InProceedings of the ACM SIGCOMM, August
2002.

TO APPEAR IN INTERNET MEASUREMENT CONFERENCE 2003 13

[4] Cristian Estan, George Varghese, and Mike Fisk. Bitmap algorithms for
counting active flows on high speed links. Technical Report 0738, CSE
Department, UCSD, March 2003.

[5] Wenjia Fang and Larry Peterson. Inter-as traffic patterns and their impli-
cations. InProceedings of IEEE GLOBECOM, December 1999.

[6] Philippe Flajolet and G. Nigel Martin. Probabilistic counting algorithms
for data base applications.Journal of Computer and System Sciences,
31(2):182–209, October 1985.

[7] Fyodor. Remote OS detection via TCP/IP stack fingerprinting.Phrack,
(54), December 1998.

[8] Dina Katabi, Mark Handley, and Charlie Rhors. Congestion control for
high bandwidth-delay product networks. InProceedings of the ACM SIG-
COMM, August 2002.

[9] Ken Keys, David Moore, R. Koga, E. Lagache, M. Tesch, and K. Claffy.
The architecture of coralreef: an internet traffic monitoring software suite.
PAM2001, Workshop on Passive and Active Measurements, RIPE, 2001.

[10] Ratul Mahajan, Steve M. Bellovin, Sally Floyd, John Ioannidis, Vern Pax-
son, and Scott Shenker. Controlling high bandwidth aggregates in the
network. http://www.aciri.org/pushback/, July 2001.

[11] David Moore. Personal conversation. also see caida analysis of code-
red, 2001. http://www.caida.org/ analysis/ security/
code-red/ .

[12] Cisco netflow.http://www.cisco.com /warp /public /732
/Tech /netflow .

[13] Riverstone Networks. Lfap: Lightweight flow accounting proto-
col. http://www.riverstonenet.com/ technology/ ac-
counting for profitability.shtml .

[14] David Plonka. Flowscan: A network traffic flow reporting and visualiza-
tion tool. InLISA, pages 305–317, December 2000.

[15] Martin Roesch. Snort - lightweight intrusion detection for networks. In
Proceedings of the 13th Systems Administration Conference. USENIX,
1999.

[16] Stuart Staniford, J. Hoagland, and J. McAlerney. Practical automated de-
tection of stealthy portscans.Journal of Computer Security, (10), 2002.

[17] Ion Stoica, Scott Shenker, and Hui Zhang. Core-stateless fair queueing:
A scalable architecture to approximate fair bandwidth allocations in high
speed networks. InProceedings of the ACM SIGCOMM, September 1998.

[18] Kyu-Young Whang, Brad T. Vander-Zanden, and Howard M. Taylor.
A linear-time probabilistic counting algorithm for database applications.
ACM Transactions on Database Systems, 15(2):208–229, 1990.

[19] Ming-Young You and Cheng-Shang Chang. Resampling for wireless ac-
cess. InProceedings of IEEE PIMRC, June 1996.

APPENDIX

I. AVERAGE ERROR FOR THE VIRTUAL AND

MULTIRESOLUTION BITMAPS

We first determine the variance of the estimate for the number
of flows hashing to the virtual bitmapV AR[m̂]. The number of
flows hashing to the bitmapm is a random variable distributed
binomially. For this analysis we will assume that there are two
independent hash functions one that decides which flows map to
the virtual bitmap and one that decides how those get mapped
to individual bits11. Therefore the analysis of the direct bitmap
from sections IV-A and IV-B describes the conditional distribu-
tion of the random variablêm given the value ofm.

E[m̂|m = i] = i

V AR[m̂|m = i] ≈ b
(
ei/b − i/b− 1

)
E[m̂2|m = i] = E[m̂|m = i]2 + V AR[m̂|m = i]

≈ i2 + b
(
ei/b − i/b− 1

)
To obtainV AR[m̂] we needE[m̂] andE[m̂2].

11Any reasonable hash function will make the two processes independent, so
in practice we can use a single hash function.

E[m̂] =
n∑

i=0

P (m = i)E[m̂|m = i]

=
n∑

i=0

P (m = i)i = E[m] = αn

E[m̂2] =
n∑

i=0

P (m = i)E[m̂2|m = i]

≈
n∑

i=0

P (m = i)
(
i2 + b

(
ei/b − i/b− 1

))

= E[m2] + bE
[
em/b

]
− bE[m/b]− bE[1]

= E[m2] + bE
[
em/b

]
− E[m]− b

To computeE
[
em/b

]
, we use the Taylor expansion off(x) =

ex/b around the valueE[m].

ex/b = eE[m]/b +
1
b
eE[m]/b(x− E[m])

+
1

2b2
eE[m]/b(x− E[m])2 + . . .

E
[
em/b

]
≈ eE[m]/b +

1
b
eE[m]/bE[m− E[m]]

= eE[m]/b +
1
b
eE[m]/b(E[m]− E[m]) = eE[m]/b

To see how far off we are with this approximation, we com-
pute below the value of the expectation of the third term of the
Taylor expansion, the first term we ignore. Its ratio to our ap-
proximate result gives some indication of how much we are off.
For example withb = 200 which is smaller than what we expect
to be used in practice and a flow density ofρ = 8 which is much
above the flow densities virtual bitmaps would be expected to
operate accurately in, we are off by less than 2%. We also note
here that the contribution of further terms is even smaller be-
cause they have higher powers ofb at the denominator.

E

[
1

2b2
eE[m]/b(x − E[m])2

]
=

1
2b2

eE[m]/bE
[
(x− E[m])2

]
=

1
2b2

eE[m]/bV AR[m]

=
1

2b2
eE[m]/bnα(1− α)

<
1

2b2
eE[m]/bnα =

E[m]
2b2

eE[m]/b

E
[

1
2b2 eE[m]/b(x− E[m])2

]
eE[m]/b

<
E[m]
2b2

=
ρ

2b

Now substituting our approximate value forE[em/b] we get
E[m̂] which we use to computeV AR[m̂].

TO APPEAR IN INTERNET MEASUREMENT CONFERENCE 2003 14

E[m̂2] ≈ E[m2] + beE[m]/b − E[m]− b

V AR[m̂] = E[m̂2]− E[m̂]2

≈ E[m2]− E[m]2 + beE[m]/b − E[m]− b

= V AR[m] + benα/b − nα− b

= nα(1 − α) + beρ − nα− b

= beρ − nα2 − b < b (eρ − 1)

SD

[
n̂

n

]
=

SD[m̂]
nα

/

√
b (eρ − 1)

nα
=
√

eρ − 1
nα/b

√
b

=
√

eρ − 1
ρ
√

b

The tightness of the bound depends on the termnα2. Since
the whole varianceV AR[m̂] is at leastnα(1 − α), we are off
by a factor of at most1 − α, therefore ifα is small (i.e. the
virtual bitmap covers only a small portion of the hash space),
this bound is tight, but asα approaches 1 the bound is not tight
anymore. Indeed forα = 1 we have a direct bitmap whose
accuracy is described by Equation 3 which can be significantly
lower Equation 4 when the flow density is low.

The multiresolution bitmap bases its estimate of the num-
ber of active flows on its estimatêm for the number of flows
hashing to the base componentand all finer ones. We usemb

for the number of flows hashing to the base component and
mf for the number of flows hashing to all finer components
(m = mf +mb). For this analysis we do not treat the finer com-
ponents individually, but replace them with a single component:
we extend the next component after the base to cover all the finer
components, thus its size increases fromb to bk/(k − 1). This
is equivalent to or-ing together the bits of all the finer compo-
nents until they are all at the granularity of the first component
after the base. The benefit of this simplification is that the re-
sult will not depend on the number of finer components, thus it
will apply no matter which component we use as base. While
it is intuitively obvious that or-ing bits together leads to loss of
information and thus increases the variance ofm̂f , we prove it
too in the technical report version of this paper [4].

As with the virtual bitmap, we assume that the hash function
deciding which component a flow gets mapped to and the two
hash functions deciding to which of the bits of the component
the flow is mapped are independent. While the sampling errors
of m̂b andm̂f are correlated, the correlation is negative and its
value is small when the sampling factor is large, so we ignore
it. Because of the independence of mapping flows to bits, the
collision errors are uncorrelated.

V AR[m̂b] / b (eρb − 1) = b (eρ − 1)

V AR[m̂f] /
bk

k − 1
(eρf − 1) =

bk

k − 1

(
eρ/k − 1

)
V AR[m̂] = V AR[m̂b] + V AR[m̂f] + COV [m̂b, m̂f]

< V AR[m̂b] + V AR[m̂f]

/ b

(
eρ − 1 +

k

k − 1

(
eρ/k − 1

))

=
bk

k − 1

(
k − 1

k
(eρ − 1) + eρ/k − 1

)

SD

[
n̂

n

]
=

SD[m̂]
nα

=
SD[m̂]

ρbk/(k − 1)

SD

[
n̂

n

]
/

√
k−1

k (eρ − 1) + eρ/k − 1

ρ
√

bk
k−1

(6)

Is the error introduced by collapsing all finer components into
a single one acceptable? To answer this question we derived
two formulas similar to Equation 6: one that maintains one finer
component and collapses all the rest (thus working with 3 bit-
maps) and one maintaining two finer bitmaps and collapsing the
rest (thus working with 4 bitmaps). We plugged in all three
formulas into the algorithm for computing the sizes of the com-
ponents of the multiresolution bitmaps. The more accurate (and
more complicated) formulas always resulted in lower sizes for
the bitmaps, but the differences were significant only for low
values ofk. Thus the formula using 3 bitmaps reduces the
bitmap size with respect to Equation 6 by 3% fork = 2 and
1% for k = 3. Using 4 bitmaps reduces the bitmap size (with
respect to the formula with 3 bitmaps) by less than 1% even for
k = 2. As a tradeoff between accuracy and simplicity we de-
cided to use in this paper the formula derived based on 3 bitmaps
which is Equation 5 from Section IV-B.

