TO APPEAR IN INTERNET MEASUREMENT CONFERENCE 2003 1

Bitmap algorithms for counting active flows on high
speed links

Cristian Estan, George Varghese, Mike Fisk
Computer Science and Engineering Department
University of California San Diego
cestan,varghese,mfisk@cs.ucsd.edu

Abstract— For example, a haive method to count source-destination pairs
In this paper we present a family of bitmap algorithms that address the would be to keep a counter together with a hash table that stores
problem of counting the number of distinct header patterns (flows) seen on all the distinct 64 bit source destination address pairs seen thus
a high speed link. Such counting can be used to detect DoS attacks and port . . o
scans, and to solve measurement problems. Counting is especially hardfar. When a packet arrives with source and destination addresses
when processing must be done within a packet arrival time (8 nsec at OC- say< S, D >, we search the hash table farS, D >; if there
768 speeds) and, hence, must require only a small number of accesses t9g no match, the counter is incremented and, D > is added
limited, fast memory. A naive solution that maintains a hash table requires to the hash table. Unfort tel . that t; Kb link
several Mbytes because the number of flows can be more than a million. By 0 the hash ta e nfortunately, glven_ a . ackbone links can
contrast, our new probabilistic algorithms take very litle memory and are = have up to a million flows [5] today, this naive scheme would
fast. The reduction in memory is particularly important for applications minimally require 64 Mbits of high speed memb.r;Such large

that run multiple concurrent counting instances. For example, we used one ; ; ;
of our new algorithms to replace the port scan detection component of the SRAM memory is expensive or not feasible for a modern router.

popular intrusion detection system Snort. This reduced the memory usage ~ 1here are more efficient general-purpose algorithms for
on a ten minute trace from 50 Mbytes to 5.6 Mbytes while maintaining a counting the number of distinct values in a multiset. In this pa-
99.77% probability pf alarming on a scan within 6_sec0nd§ of when the per we not onIy present a general—purpose counting algorithm
large-memory algorithm would. The best known prior algorithm (proba- . . .
bilistic counting) takes 4 times more memory on port scan detection and — Multiresolution bitmap- that has better accuracy than the
8 times more memory on a measurement application. Fundamentally, this best known prior algorithm, probabilistic counting [6], but in-
is because our algorithms can be customized to take advantage of specialiroduce a whole family of counting algorithms that further im-
features of applications such as a large number of instances that have very . . .
small counts or prior knowledge of the likely range of the count. pl’OV? .perform_ance by.tak_mg advantagg of ParthUIa_”tles of the
specific counting application. Owdaptive bitmapusing the
fact that the number of active flows doesn’t change very rapidly,

[. INTRODUCTION can count the number of distinct flows on a link that contains

Internet links operate at high speeds, and past trends pre@f&ywhere from 0 to 100 million flows with an average error of
that these speeds will continue to increase rapidly. Routers afge than 1% using only 2 Kbytes of memory. Quggered
intrusion detection devices that operate at up to OC-768 spegﬁg]ap OPt'm'Zed for running mult_|ple concurrent mstanc;es O.f
(40 Gigabits/second) are currently being developed. While tH) counting problem, many of which have small counts, is suit-
main bottlenecks (e.g., lookups, classification, quality of sétP!€ for detecting port scans and uses even less memory than
vice) in a traditional router are well understood, what are tfenning adaptive bitmap on each instance.
corresponding functions that should be hardwired in the braye Problem Statement
new world of security and measurement? Ideally, we wish to
abstract out functions that are common to several security andA flow is defined by aridentifiergiven by the values of cer-
measurement applications. We also wish to study efficient &in header fields The problem we wish to solve is counting
gorithms for these functions, especially those with a compabe number of distinct flow identifiers (flow IDs) seen in a spec-
hardware implementation. ified measurement intervaFor example, an intrusion detection

Toward this goal, this paper isolates and provides solutioBg¢stem looking for port scans could count for each active source
for an important problem that occurs in various networking agddress the flows defined by destination IP and port and sus-
plications: counting the number of active flows among packe€ct any source IP that opens more than 3 flows in 12 seconds
received on a link during a specified period of time.flowis of performing a port scan. Other applications such as packet
defined by a set of header fields; two packets belong to distiseheduling could prefer an alternate way of defining the number
flows if they have different values for the specified header fiel@éactive flows without using measurementinterval: consider ac-
that define the flow. For example, if we define a flow by sourdde the flows that have at least one packetin a queue that packets
and destination IP addresses, we can count the number of éke added to and removed from dynamically. In this paper we
tinct source-destination IP address pairs seen on a link ovanainly focus on the definition based on measurement intervals.
given time period. Our algorithms measure the number of activeAlso, while many applications define flows at the granularity
flows using a very small amount of memory that can easily be
stored in on-chip SRAM or even processor registers. By Con{It must at least store the flow identifier, which in this example is 64 bits, for

each of a million flows.

trast, naive algorithms described below would require MassiVeé\ye can also generalize by allowing the identifier to b&uaction of the

amounts of memory necessitating the use of slow DRAM. header fields (e.g., using prefixes instead of addresses, based on routing tables).

TO APPEAR IN INTERNET MEASUREMENT CONFERENCE 2003 2

of TCP connections, one may want to use other definitions. FO campus 1/0 by TP Protocol, Flows, +outhound/-inbound

example when detecting DoS attacks we may wish to count th 40k
number of distinct sources, not the number of TCP connections ad
Thus in this paper we use the term flow in this more generic way ok
As we have seen, a naive solution using a hash table of flov
IDs is accurate but takes too much memory. In high speed rou Tok
ters it is not only the cost of large, fast memories that is a prob: _ BT
lem but also their power consumption and the board space the § -1.0k
take up on line cards. Thus, we seek solutions that use a vel f 2.0k
small amount of memory and have high accuracy. Usually ther¢ 2 __
is a tradeoff between memory usage and accuracy, but we wai £
to find algorithms where these tradeoffs are favorable. Also, * ok
since at high speeds per packet processing time is very limite =00k
it is important that the algorithms use few memory accesses pe 8.0 k
packet. We describe algorithms that use only 1 or 2 memory ac 2.0 [
cesse$and are simple enough to be implemented in hardware. ok
B. MOtivation 1200 00 a0 0 00 1200

B TCP out O M2AST out O ULk out W ICHP out W ToTAL out
Why is information about the number of flows useful? We BT in BMAsT in B ek in W cue in @ ToTAL in
describe five possible categories of use.
Detecting port scans:Intrusion detection systems warn ofFig. 1. The flow count provided by Dave Plonka’s FlowScan is used to detect
port scans when a source opens too many connections withirflenial of service attacks.
a given timé. The widely deployed Snort intrusion detection

system (IDS) [15] uses the naive approach of storing a rec%g

; h acti tion. This | byi e si e amounts of legitimate traffic. To differentiate between le-
or €ach active connection. This 1S an obvious waste since m Eﬁ”nate traffic and an attack we can use the fact that DoS tools
of the connections are not part of a port scan. Even for act

" it the IDS onl tsth ber of i e fake source addresses chosen at rahddfor each sus-
por ,scans, ihe only reports the hUMbEr ot CONNECUONS W o g yictim we count the number of sources of packets that
don’t need to keep a record for each connection. Since the n

T)) i me from some networks known to be sparsely populated, a
ber of sources can be very high, Itis desirable to find alg_()nthrpil?ge countis a strong indication that a DoS attack is in progress.
that count the number of connections of each source using little

: . . ; General measurement:Counting the number of active con-
memory. Further, if an algorithm can distinguish quickly be- = . : .
ng&hons and the number of connections associated with each

tween suspected pqrt scanners and normal t_rafnc, the IDS NSGtirce and destination IP address is part of the CoralReef [9]
not perform expensive operations (e.g., logging) on most of the .. : : . :
. ; N raffic analysis suite. Other ways of counting the number of dis-
traffic, thus becoming more scalable in terms of memory usagée o . :
h) . . ct values in given header fields can also provide useful data.

and speed. This is particularly important in the context of t :
: . . . A ne could measure the number of sources using a protocol ver-

recent race to provide wire-speed intrusion detection [1].

- . . sion or variant to get an accurate image of protocol deployment.
Detecting denial of service (DoS) attacksFlowScan by 9 9 P ploy

David Plonka 1141 lar 1ol for visualizi work t fAIternativer, by counting the number of connections associated
Javid Fion a[14]is a popu ar too’ for visualizing Nework raly, ., a5cn of the protocols generating significant traffic we can
fic. It uses the number of active flows (see Figure 1) to det

%%tmpute the average connection length for each protocol thus

oggomi] :ihenlal tc\)/{/ sirv!ce att;acllfs.kvk\)/htlle this W?rks We"_ at thgztting a better view of its behavior. Dimensioning the various
edge of the network (i.e., the link between a large univers| ches in routers (packet classification caches, multicast route

campus and the rest of the Internet) it doesn't scale to the cQlg., .« 1o, source-group (S-G) state, and ARP caches) also ben-

Also it relies on massive intermediate data (NetFlow) to COMsits from prior measurements of typical workload

pute compact results — could we obtain the useful information Estimating the spreading rate of a worm: From Aug 1

) " .) i
more directly? Mahajan et al. propose a mechanism that é Aug 12 2001, while trying to track the Code Red worm [11],

lows backbone routers to limit the effect of (distributed) Do . .

) . ollecting packet headers for Code Red traffic on a /8 network
attacks [10]. While the mechanism assumes that these routers

. . : foduced 0.5 GB per hour of compressed data. In order to de-
can detect an ongoing attack it does not give a concrete algo- . . ; S
. . ; rmine the rate at which the virus was spreading, it was neces-
rithm for it. Estan and Varghese present algorithms that can dg-

tect destination addresses or prefixes that receive large amogAl to count the number of distinct Code Red sources passing

of traffic [3]. While these can identify the victims of attacks iﬂwough the link. This was actually done using a large log and

. " S a hash table which was expensive in time and also inaccurate
also gives many false positives because many destinations have .
ecause of losses in the log).

3Actually, larger numbers of memory accesses are perfectly feasible at high Packet scheduling:Many scheduling algorithms try to en-
speeds using SRAM and pipelining, but this increases the cost of the solution.

4While distributed port scans are possible, they are harder because the attackéf the attack uses a small number of source addresses than it can be easily
has to control many endhosts it can scan from. If the number of hosts is not vétgred out once those addresses are identified. Identifying those addresses can
large, each will have to probe many port-destination combinations thus runnimggdone using previous techniques [3] because those few source addresses must
the risk of being detected. send a lot of traffic each for the attack to be effective.

TO APPEAR IN INTERNET MEASUREMENT CONFERENCE 2003 3

sure that all flows can send at the current “fair share” of thidow state to slower DRAM which slows down packet process-
available bandwidth. At high speeds it is not feasible to keépg. For high speeds sampling needs to be turned on: only the
per-flow state. While there are scheduling algorithms that cosempled packets result in updates to the flow cache that keeps
pute the fair share without using per-flow state (e.g., CSFQ [1#}¢e per flow state. Unfortunately, sampling has problems of its
XCP [8]), they require explicit cooperation of edge routers @wn since it affects the accuracy of the measurement data. Sam-
end hosts. Being able to count the number of distinct flows thaing works reasonably for estimating the traffic sent by large
have packets in the queue of the router might allow the roufaws or large traffic aggregates, but has extremely poor accu-
to estimate the “fair share” without outside help and could leadcy for estimating the number of flows. This is because uniform
to scheduling algorithms that are less vulnerable to misbehavsamnpling produces more samples of flows that send more traffic,
end hosts or edge routers. thereby biasing any simple estimator that counts the number of
Thus, while counting the number of flows is usually insuffiflows in the sample and applies a correction.
cient by itself, it can provide a useful building block for com- Duffield et al. present two scalable methods for counting the
plex tasks that range from detecting DoS attacks to fair packeimber of active TCP flows based on samples of the traffic [2].
scheduling. They rely on the fact that TCP turns the SYN flag on only for
the packets starting a connection. The estimates are based on
Il. RELATED WORK counts of the number of flows with SYN packets and the number

The networking problem of counting the number of distincﬁf flows with nqn-SYN packets in th_e sampled data. Whilg this
flows has a well-studied equivalent in the database communif;@ good solution for TCP connections it cannot be applied to
counting the number of distinct database records (or distinct veIPP or when we use a different definition for flows (e.g., when
ues of an attribute). Thus, the major piece of related work id2Pking at protocol deployment statistics, we define a flow as
seminal algorithm callegrobabilistic counting due to Flajo- all packets with the same source IP). Also cou_ntlng flows_ in the
let and Martin [6], introduced in the context of databases. V§@mpled data can still be a memory-consuming operation that
use probabilistic counting as a base to compare our algorithRds to be efficiently implemented.
against. Whang et al. address the same problem and proposé'® Short [15] intrusion detection system (IDS) uses a
an algorithm [18] that is equivalent to the simplest algorithm w8€mory-intensive approach similar to NetFlow to detect port
describe (direct bitmap). scans: it _mamtalns a record for each active connection and

The insight behind probabilistic counting is to compute a me& connection counter for each source IP. More elaborate al-
ric of how uncommon a certain record is and keep track of ti§@rithms have been used in other settings. When controlling
most uncommon record seen. If the algorithm sees very uncdfie medium access in wireless networks, some protocols rely
mon records, it concludes that the number of records is larg#. @n estimate of the number of senders. The GRAP proto-
More precisely, for each record the algorithm computes a hd<¥ [19] uses techniques equivalent to our direct bitmap and vir-
function that maps it to ad bit string (L is configurable). It tual bitmap to estimate this number, but has no equivalent of
then counts the number of consecutive zeroes starting from f{§ more sophisticated multiresolution, adaptive, or triggered
least significant position of the hash result. If the algorithm seB&map algorithms.
records that hash to values ending in 0, 1 and 2 zeroes it con-
cludes that the number of distinct records was (c is a sta-
tistical correction factor), if it also sees hash values ending in 30ur family of algorithms for estimating the number of active
zeroes it estimate®2® and so on. This basic form can have afiows relies on updating a bitmap at run time. Different mem-
accuracy of at mogt0% because possible estimates are a factbers of the family have different rules for updating the bitmap.
of 2 from each other. By dividing the hash values int@ap At the end of the measurement interval (1 second, 1 minute, or
groups @map is configurable), and running a separate instanegen 1 hour), the bitmap is processed to yield an estimate for the
of the basic algorithm for each group and averaging over thember of active flows. Since we do not keep per-flow state, all
estimates for the count provided by each of them, probabilist€our results are estimates. However, we prove analytically and
counting reduces the error of its final estimate. We describestaow through experiments on traces that our estimates are close
family of algorithms that each outperforms probabilistic counte actual values. The family contains three core algorithms and
ing by an order of magnitude by exploiting application-specifitiree derived algorithms. Even though the first two core algo-
characteristics. rithms (direct and virtual bitmap) were invented previously, we

In networking, there are general-purpose traffic measuremenésent them here because they form the basis of our new al-
systems such as Cisco’s NetFlow [12] or LFAP [13] that repogbrithms (multiresolution, adaptive, and triggered bitmaps), and
per-flow records for very fine-grained flows. This is useful fdpecause we present new applications in a networking context (as
traffic measurement. The information can be used to count flosysposed to a database or wireless context).

(and this is what FlowScan [14] does), but is not optimized for We start in Section Ill-A with the first core algorithnalj-
such a purpose. Besides the large amount of memory needed{ bitmap that uses a large amount of memory. Next, in
in modern, high-speed routers updating state on every packettion Il1-B we present the second core algorithm callied
arrival is infeasible at high speeds. Ideally, such state shouldtbal bitmapthat uses sampling over the flow ID space to re-
in high speed SRAM (which is expensive and limited) to allowluce the memory requirements. While virtual bitmap is ex-
wire-speed forwarding. tremely accurate, it needs to be tuned for a given anticipated

Because NetFlow state is so large, Cisco Routers write Nethge of the number of flows. We remove the “tuning” restric-

Ill. A FAMILY OF COUNTING ALGORITHMS

TO APPEAR IN INTERNET MEASUREMENT CONFERENCE 2003 4

tion of virtual bitmap with our third algorithm callethultireso- just around the threshold, but over a wider range for the number
lution bitmap described in Section III-C, at the cost of increaseaf flows.
memory usage. Finally, in Section Ill-D we describe the three In Section IV we derive formulae for the average error of the
derived algorithms. In this section we only describe the alguirtual bitmap estimates. The analysis also provides insight for
rithms; we leave an analysis of the algorithms to Section IV. choosing the right sampling factor. Perhaps surprisingly, the
analysis also indicates that the average error depends only on
A. Direct bitmap the number of bits and not on the number of flows as long as the
The direct bitmap is a simple algorithm for estimating th&ling factor is set to an optimal value. For example with 215
number of flows. We use a hash function on the flow ID teytes the average error is 3%.
map each flow to a bit of the bitmap. At the beginning of the _ . _
measurement interval all bits are set to zero. Whenever a padketMultiresolution bitmap
comes in, the bit its flow ID hashes to is set to 1. Note that The virtual bitmap is simple to implement, uses little mem-
all packets belonging to the same flow map to the same bit, &g, and gives very accurate results, but requires us to know in
each flow turns on at most one bit irrespective of the numberadvance a reasonably narrow range for the number of flows. An
packets it sends. immediate solution to this shortcoming is to use many virtual
We could use the number of bits set as our estimate of thigmaps, each using the same number of bits of memory, but dif-
number of flows, but this is inaccurate because two or mokgrent sampling factors, so that each is accurate for a different
flows can hash to the same bit. In Section IV-A, we deriveange of the number of active flows (different “resolutions”).
a more accurate estimate that takes into account hash “coflie union of all these ranges is chosen to cover all possible val-
sions’®. Even with this better estimate, the algorithm becomees for the number of flows. When we compute our estimate,
very inaccurate when the number of flows is much larger thaye use the virtual bitmap that is most accurate based on a sim-
the number of bits in the bitmap and the bitmap is almost fulple rule that looks at the number of bits set. The “lowest reso-
The only way to preserve accuracy is to have a bitmap size thaton” bitmap is a direct bitmap that works well when there are
scales almost linearly with the number of flows, which is oftevery few flows. The “higher resolution” bitmaps cover a smaller

impractical. and smaller portion of the flow ID space and work well when
) the number of flows is larger. The problem with the naive ap-
B. Virtual bitmap proach of using several virtual bitmaps of differing granularities

The virtual bitmap algorithm reduces the memory usage I§ythat instead of updating one bitmap for each packet, we need
storing only a small portion of the big direct bitmap one woultP update several, causing more memory accesses.
need for accurate results (see Figure 2) and extrapolating thdhe main innovation in multiresolution bitmap is to main-
number of bits set. This can also be thought of as samplitign the advantages of multiple bitmaps configured for vari-
the flow ID space. The larger the number of flows the smalleus ranges while performingsingle updatdor each incoming
the portion of the flow ID space we cover. Virtual bitmap gerpacket. Figure 2 illustrates the direct bitmap, virtual bitmap,
eralizes direct bitmap: direct bitmap is a virtual bitmap whicfultiple bitmaps and multiresolution bitmap. Before explaining
covers the entire flow ID space. how the multiresolution bitmap works it can help to switch to
Unfortunately, a virtual bitmap does require tuning the “sangnother way of thinking about how the virtual bitmap operates.
pling factor” based on prior knowledge of the number of flowdVe can consider that instead of generating an integer, the hash
If it differs significantly from what we configured the virtualfunction covers a continuous interval. The virtual bitmap covers
bitmap for, the estimates are inaccurate. If the number of flo@sportion of this interval (the ratio of the sizes of the interval
is too large the virtual bitmap fills up and has the same accur&gyvered by the virtual bitmap and the entire interval is the sam-
problems as an underdimensioned direct bitmap. If the numipéng factor of the virtual bitmap). We divide the interval cor-
of flows is too small we have another problem: say the virtuegsponding to the virtual bitmap into equal sized sub-intervals,
bitmap covers 1% of the flow ID space and there are 50 act®ach corresponding to a bit. A bitin the virtual bitmap is set to 1
flows - if none of them hashes to the virtual bitmap, the algd-the hash of the incoming packet maps to the sub-interval cor-
rithm will suppose the number of flows is 0, if 1 hashes, thigsponding to the bit. The multiple bitmaps solution is shown
algorithm will estimate 100, but it will never estimate 50. Th&elow the virtual bitmap solution in Figure 2.
optimal sampling factor obtains the best tradeoff between “col-A multiresolution bitmap is essentially a combination of mul-
lision errors” and “extrapolation errors”. tiple bitmaps of different “resolutions”, such that a single hash is
While, in general, one wants an algorithm that is accurate owstmputed for each packet and only the highest resolution bitmap
a wider range, we note that even an unadorned virtual bitmi&maps to is updated. Thus each bitmap loses a portion of its bits
is useful. For example, consider a security application wheadich are covered by higher resolution bitmaps. But those bits
we wish to trigger an alarm when the number of flows crossean easily be recovered later (during the analysis phase) from the
a threshold. The virtual bitmap can be tuned for this threshdiaer grained bitmaps by OR-ing together the bits in the higher
and uses less memory than other algorithms that are accurate'@®lution bitmaps that correspond to individual bits in the lower
resolution bitmap. We call these regions with different resolu-
5We assume in our analysis that the hash function distributes the flows rgigyng components of the multiresolution bitmap. When we com-

domly. In an adversarial setting, the attacker who knows the hash function could

produce flow identifiers that produce excessive collisions thus evading detectiBH.te the estimate, based on the number of bits set in each com-

This is not possible if we use a random seed to our hash function. ponent, we choose one of them as “base”, estimate the number

TO APPEAR IN INTERNET MEASUREMENT CONFERENCE 2003 5

Direct bitmap D.1 Adaptive bitmap

It would be nice to have an algorithm that provides the best of
both worlds: the accuracy of a well tuned virtual bitmap with the
Virtual bitmap wide range of multiresolution bitmaps. Adaptive bitmap is such
Entire flow ID space an algorithm that combines a large virtual bitmap and a small
multiresolution bitmap. It relies on a simple observation: mea-
surements show that the number of active flows does not change
| dramatically from one measurementinterval to the other (so it is

Part covered by virtual bitmap not suitable for tracking say attacks where sudden changes are
Multiple bitmaps expected). We use the small multiresolution bitmap to detect
changes in the order of magnitude of the count, and the virtual
bitmap for precise counting within the currently expected range.
The number of flows we expect is the number of flows mea-
sured in the previous measurement interval. Assuming “quasi-
stationarity”, the algorithm is accurate most of the time because
it uses the large, well-tuned virtual bitmap for estimating the
number of flows. At startup and in the very unlikely case of dra-
matic changes in the number of active flows the multiresolution
bitmap provides a less accurate estimate.

11000* 11101* 1111111 . . .

| Updating these two bitmaps separately would reqtive
memory updates per packet, but we can avoid the need for mul-
tiple updates by combining the two bitmaps into one. Specifi-

000* 001 00+ o0* 100+ 100 1111000 cally, we use a multiresolution bitmap in whiectadjacent com-
ponents are replaced by a single large component consisting of
Fig. 2. The multiresolution bitmap from this example uses a single 7-bit haghvirtual bitmap (where is a configuration parameter). The lo-
function to decide which bit to map a flow to. It gives results no less accuragation of the virtual bitmap within the multiresolution bitmap
than the 3 virtual bitmap_s, thus covering a wide range for the number ﬁfe which components it replaces) is determined by the current

flows, but it performs a single memory update per packet. Note that all the .. .

unfilled “tiles” from these bitmaps, despite their different sizes represent oRetimate of the count. If the current number of flows is small,

bit of memory. we replace coarse components with the virtual bitmap. If the
number of flows is large, we replace fine components with the

virtual bitmap. The update of the bitmap happens exactly as in

of flows hashing to it and all finer components and extrapolatéhe case of the multiresolution bitmap, except that the logic is

In Section IV-C we answer questions such as: how mamhanged slightly when the hash value maps to the virtual bitmap
bits should each component have, how many componentsadmponent.
we need and what is the best ratio between the resolutions of
neighboring components? In the technical report version of tBe2 Triggered bitmap

paper [4] we show that multiresolution bitmaps are easy to Im_Consider the concrete example of detecting port scans. If

plement even in hardware that can keep up with line Speedﬁ'e used a multiresolution bitmap per active source to count
Also, we compare our multiresolution bitmap to probabilisti bDp

counting showing that while both algorithms use nearly iden H—eeeg??S:;&Lig%g?ﬁ;;ggsl’a:hi mﬂgsfgiug?nnngg&iz l\;veocuallﬂse
cal hashes to set bits, they interpret the datydifferently, thus 9

the differences in the accuracy of the results. port scans can use very many connections. The size of such a
multiresolution bitmap can be quite large. However, most of

the traffic is not port scans and most sources open only one or

two connections. Thus using a large bitmap for each source is

In this section we describe three derived algorithms for counasteful.

ing the number of active flows.Adaptive bitmap described The triggered bitmap combines a very small direct bitmap

Section 111-D.1, achieves both the accuracy of virtual bitmap avdth a large multiresolution bitmap. All sources are allocated

the robustness of multiresolution bitmap by combining them aadsmall direct bitmap. Once the number of bits set in the small
relying on the stationarity of the number of flow3riggered direct bitmap exceeds a certain trigger value, a large multireso-
bitmapdescribed in Section I11-D.2 combines direct bitmap anigition bitmap is allocated for that source and it is used for count-
multiresolution bitmap to reduce the total amount of memoifig the connections from there on. Our estimate for the number
used by multiple instances of flow counting when most of ttef connections is the sum of the flows counted by the small di-

instances count few flows. In Section I11-D.3 we show how wegct bitmap and the multiresolution bitmap. This way we have

can adapt the core algorithms to the alternate definition of act@ecurate results for all sources but only pay the cost of a large
flows: the ones that have packets in a queue that supportsragtiresolution bitmap for the sources that open many connec-
bitrary additions and removals (not those that send any packéess.

during a fixed measurement interval). As described so far, this algorithm introduces a subtle error

Multiresolution bitmap

D. Derived algorithms

TO APPEAR IN INTERNET MEASUREMENT CONFERENCE 2003

that makes a small change necessary. If a flow is active b&hTIMATEFLOWCOUNT

before and after the large multiresolution bitmap is allocatedlit
gets counted by both the direct bitmap and the multiresolutién
bitmap. Only using the multiresolution bitmap for our final es3
timate is not a solution either because than we would not codnt
the flows that were active only before the multiresolution bitmap
was allocated. To avoid this problem we change the algorittin
the following way: after the multiresolution bitmap is allocated!
we only map to it those flows that do not map to one of the bits
already set in the direct bitmap. This way if the flows that sé&t
the bits in the direct bitmap send more packets, they will nd®
influence the multiresolution bitmap. It's true that the multirest1
olution bitmap doesn't catch all the new flows, just the ones thb&
map to one of the bits not set in the direct bitmap. This is equi¥3
alent to the “sampling factor” of the virtual bitmap and we cah4

compensate for it (see Section IV-A). 15
16
D.3 Handling packet removals 17

We said earlier that counting the the number of flows that hav8
packets in the queue of a router can help determine the “f4R
share” used by the scheduling algorithm. In this case, we need
to not only handle the case of new packets arriving but also the
case of packets getting removed. Direct bitmap, virtual bitm&s-
and multiresolution bitmap can be easily modified to handle this

base =c—1
whilebase > 0 andbitsSet(component[base]) < setmaq
base = base — 1
endwhile
base = base + 1
if base == c andbitsSet(component|c]) > setlastmaz)
if bitsSet(component|c]) == bjust
return “Cannot give estimate”
else
warning “Estimate might be inaccurate”
endif
endif
m =20
fori = basetoc—1
m = m + blin(b/bitsZero(component|i]))
endfor
m = m + bygst In(bygst/bitsZero(component|c]))
factor = kbase=1
returnfactor * m

3. Algorithm for computing the estimate of the number of active flows for a
multiresolution bitmap. We first pick the base component that gives the best
accuracy then add together the estimates for the number of flows hashing to

case by replacing every bit with a counter. The width of the itand all higher resolution components and finally extrapolate.

counters is given by the maximum number of packets the queue
can accommodate (which also puts a limit on the number of dis-

tinct flows that can have packets in the queue). When the quéiation 1 gives our estimagefor the number of active flows.
is empty all counters are 0. When a new packet arrives fdhang et al. also show that this is the maximum likelihood es-
counter it maps to is incremented. When a packet is remoJifgator for the number of active flows [18].

from the queue, the counter is decremented. We use the number

of counters with value zero to compute our estimate of the num-
ber of active flows exactly the same way we use the number of

(1)

ﬁzbln(é)
z

zero bits in the case with measurement intervals. A counter will Virtual bitmap: Let « be the “sampling factor” (the ratio of

be zero if and only if no active flows map to it.

the sizes of the interval covered by the virtual bitmbegnd the

entire hash spade). The probability for a given flow to hash to

IV. ALGORITHM ANALYSIS

the virtual bitmap is equal to the sampling factor= o = b/h.

In this section we provide the analyses of the statistical beet m be the number of flows that actually hash to the virtual
havior of the bitmaps used by our algorithms. We focus on threémap. Its probability distribution is binomial with an expected
types of results. In Section IV-A, we derive formulae for estivalue of E[m] = an. We can use Equation 1 to estimate
mating the number of active flows based on the observed fd based on that we obtain Equation 2 for the estimate of the
maps. In Section IV-B, we analytically characterize the accaumber of active flows.

racy of the algorithms by deriving formulae for the average error
of the estimates. In Section IV-C, we use the analysis to derive
rules for dimensioning the various bitmaps so that we achieve

(@)

ﬁ:lbln(é) :hln<é)
o z z

the desired accuracy over the desired range for the number of\iultiresolution bitmap: The multiresolution bitmap is a

flows.

A. Estimate Formulae

combination of many components, each tuned to provide accu-
rate estimates over a particular range. When we compute our
estimate we don't know in advance which component is the

Direct bitmap: To derive a formula for estimating the num-one that provides the most accurate estimate (we call this the
ber of active flows for a direct bitmap we have to take into abase component). As we will see in Section IV-B, we obtain
count collisions. Leb be the size of the bitmap. The probabilitthe smallest error by choosing as the base component the coars-
that a given flow hashes to a given bitjis= 1/b. Assum- est component that has no more thaty,, . bits (lines 1 to 5
ing thatn is the number of active flows, the probability thain Figure 3). set,,.. iS a precomputed threshold based on the

no flow hashes to a given bitjs. = (1 — p)" ~ (1/e)"/".

analysis from Section IV-B. Once we have the base component,

By linearity of expectation this formula gives us the expectaesle estimate the number of flows hashing to the base and all the
number of bits not set at the end of the measurement intertiéher resolution ones using Equation 1 and add them together

E[z] = bp. =~ b(1/e)™/". If the number of zero bits is,

(lines 13 to 17 in Figure 3). To obtain the result we only need

TO APPEAR IN INTERNET MEASUREMENT CONFERENCE 2003 7

to perform the multiplication corresponding to the sampling f Effect of the flow density on accuracy
tor (lines 18 and 19). Other parameters used by this algori
are the ratiok between the resolutions of neighboring comp
nents and;,s; the number of bits in the last component (whic 0,06 r
. . Predicted errof
is different fromb).

Adaptive bitmap: The algorithm for adaptive bitmap is ver
similar to multiresolution bitmap. The main difference is thaty
use different threshold for selecting the big componentas b
For brevity, we omit the algorithm.

Triggered bitmap: If the triggered bitmap did not allocate .
multiresolution bitmap, we simply use the formula for direct b
maps (Equation 1). Let's usgefor the number of bits that have
to be setin the direct bitmap before the multiresolution bitma)
allocated and for the total number of bits in the direct bitmay
If the multiresolution bitmap is deployed, we use the algoritt e - B—
from Figure 3 to compute the number of flows hashing to Flow density (flows/bit
multiresolution bitmap, multiply that bg/(d — ¢) and add the
estimate of the direct bitmap. Fig. 4. When the flow density is too low, the “sampling error” takes over, when

it is too high “collision error” is the main factor. We get the best accu-
B. Accuracy racy for a flow density of around = 1.6. The estimate from Equation 4
matches well the experimental results being slightly conservative (larger).

To determine the accuracy of these algorithms we look at the See Section V-A for details on the experiment that produced this result.
standard error of our estimaigthat is the standard deviation of
the ration/n. We also refer to this quantity as the average (re

ative) errorSD[A/n] = SD[A]/n. One parameter that is usefu 5ur analysis also shows that the terms ignored by the approx-

in these analyses is the flow densjtydefined as the average'mations do not contribute significantly and that the bound is

number of flows that hash to a bit. tight. Figure 4 presents a typlcgl result comparing the mea-
. . . . N sured average error from simulations on traces of actual traffic
Direct bitmap: While our formula for estimating the num-

ber of active flows accounts for the expected collisions it doesF1c’tthe value from Equation 4.

0.05

Average (relative) error

0.04]

always give exact results because the number of collisions is =~ —
. . . n ver —1
random. Equation 3 approximates the average error of a direct SD " S Vb 4)
P

bitmap based on the Taylor expansion of Equation 1 as derived
by Whang et al. [18]. The result is not exact because becauseMultiresolution bitmap: To compute the average error of
less significant terms of the Taylor expansion were omittetthe estimate of the multiresolution bitmap, we should take into
Whang et al. also show that the approximation does not leaccount separately the collision errors of all components finer
to serious inaccuracies for configurations one expects to se¢han the base. This would result for a different formula for
practice. They also show that the distribution of the number ehch component that would be used as base. Equation5 is
bits set is asymptotically normal so errors much larger than theslightly weaker bound that holds for all components but the
standard error are very unlikely [18]. For example, for a diast one as long as the number of bits in the last component
rect bitmap configured to operate at an average error of 10% dgy., is large enough. The details of its derivation can be found
flow densities up to 2, the value of the average error we get inyAppendix A. Equation 5 bounds quite tightly the average er-
including the next term of the Taylor series is only 2% awaipr for a normal component. For the last component of the mul-
from the approximation (i.e., the actual average error can beietsolution bitmap we use Equation 4 directly.

most 10.2% instead of 10%). The inaccuracy introduced by the
approximation decreases further as the number of bits increases.

~ k1 ko /K2 _
D L (e +erl/k —2) +er 1
n Vel —p—1 SD [_] S \/ (5)
SD |- |~ —F— 3) n py/ 2
n pvV/b R1

Virtual bitmap: Besides the randomness in the collisions, Adaptive bitmap: The error of the estimates of the adap-
there is another source of error for the virtual bitmap: we aive bitmap depends strongly on the number of flows: the errors
sume that the ratio between the number of flows that hasha@ much larger if the number of flows is unexpectedly large or
the physical bitmap and all flows is exactly the sampling factesmall. The exact formulas, omitted for brevity are not very dif-
while due to the randomness of the process the number can tifent from the ones seen so far. We give an example instead.
fer. In Appendix A we analyze these two errors and how thdigure 5 gives the average error as predicted by our formulae for
interact. Equation 4 takes into account their cumulative effettte adaptive bitmap we use in for measurements (Section V-C).
on the result. When the flow density is too large the error ifwe first represent the average error of the original multireso-
creases exponentially because of the collision errors. When iluion bitmap and then the average error we obtain by replac-
too small, the error increases as the sampling errors take oiurgg.various groups of 8 consecutive components with the virtual

TO APPEAR IN INTERNET MEASUREMENT CONFERENCE 2003 8

Accuracy for an adaptive bitmap | k | Drmin | Dma | coefficientf(k) | f(k)/ln(k) |
0.12 \ \ T 2| 1.3372| 2.6744 0.6367 0.9186
011 7 3| 0.9750| 2.9250 1.0318 0.9392
IIRANNANNANANANNNANNNNAT 4 0.7856]| 3.1426 1.3470 0.9717
0.09- VoA o B
_oo8- NI ;‘ Pt TABLE Il
S | i
£ 0.07— —
o ," THE OPERATING RANGE OF THE COMPONENTS OF THE MULTIRESOLUTION
2 0.06— [—
f oo [BITMAP IS BETWEEN pynin AND pPmaz. THE COEFFICIENT AND THE
.05— i i —
<004 . DESIRED ACCURACY DETERMINE THE SIZE OF THE COMPONENTS
— Multiresolution bitmap ool b= f(k)/€e?. THE LARGER THE RATIO BETWEEN THE RESOLUTIONS OF
0.03— Virtual bitmap replaces 9 to 1 Rt =
0,021 |~ Virtual bitmap replaces 10 to 17 i NEIGHBORING COMPONENTSk, THE WIDER THE RANGE COVERED BY A
: --= Virtual bitmap replaces 11 to 18
o001 prew i SINGLE COMPONENT AND THE LARGER THE COMPONEN.T
mi I i | | | L
1000 10000 1e+05 1e+06 1le+07 1le+08

Number of flows

9 . .
Fig. 5. The large virtual bitmap replaces 6 of the components of the multiresb%-,> N/ln(e N+ 1)' We _Clalm that fo,r 'Iarge values of Whll,e
lution bitmap. The size of the normal components is 64 bits and the size this closed form bound is not tight it is not very far off either.
of the large virtual bitmap is = 1627 bits. The adaptive bitmap guaranteesFor example forV = 1, 000, 000 ande = 10% the bound gives
an average error of at most 10% over the whole range, but if the number1q§8 572 bits while the actual value is 85.711 bits. Of course. for
flows falls into the “sweet spot” the average error can be as low as 3.1% ’ .]
configuring a direct bitmap we recommend solving Equation 3

| Algorithm | Memory (bits) | numerically forb (with p replaced byN/b).
= - > Virtual bitmap: The average error of the virtual bitmap
Direct bitmap > N/in(Ne +21) given by Equation 4 is minimized by a certain value of the flow
Virtual bitmap 1.54413865) ¢ density. Solving numerically we g@tptima = 1.593624 and

Multiresolution bmp. 0.9186In(Ne?)/€? + ct. this corresponds to arourt).3% of the bits of the bitmap be-
Adaptive bitmap % 1.54413865/¢ ing not set. By substituting, we obtain the average error for this
“sweet spot” flow density S 1.242633756330/ vb. By invert-
ing this we obtain the formula from Table | for the number of
bits of physical memory we need to achieve a certain accuracy.
When we need to configure the virtual bitmap as a trigger, we
set the sampling factor such that at the threshold the flow density
is 1.593624. For this application, if we have 155 bits, the aver-
age error of our estimate is at most 10% no matter how large the
threshold is. If we have 1,716, the average error is at most 3%,
and if we have 15,442 it is at most 1%. If we want the virtual
bitmap to have at most a certain error for a range of flow counts
betweenV,,;, andN,,.., we need to solve the problem numer-
ica”y by flndlng APmin < Poptimal and APmaz > Poptimal SO
Ctrl?at pmam/pmin = NmaT/Nmzn and Pmin and Pmazx prOdUCE
rghg same error. Once we have f[hese values, we can compute the
s%mphng factor for the virtual bitmap and the number of bits.

Multiresolution bitmap: For the multiresolution bitmap,
we have to ensure that the average error doesn’t exceed the de-
sired value over the whole range fraimo N. We divide the

In this section we address the configuration details and immnge among components. Configuring a component is very
plicitly the memory needs of the bitmap algorithms. All meamuch like configuring a virtual bitmap for a range, except we
surement results are in Section V. The two main parameters wg Equation 5. We find two flow densities ;,, andp,,.. that
use to configure the bitmaps are the maximum number of flogive the same error under the constraint that../pmin = k
one wants them to cou¥ and the acceptable averagdative (k is the ratio between the resolutions of neighboring compo-
errore. We base our computations on the formulas of the previents). We choose the bitmap sizdor the normal compo-
ous section. nents (all except the last one) such thapat, and p,.q. the

Direct bitmap: If we would keepp = N/b constant asV we get the desired accurady = f(k)/e?> where the coeffi-
increased: would improve proportionally td /+/N (which is cient f(k) depends ork. Table Il contains the values @f,;,,
proportional tol /v/b). So asN increases the flow density thatp,,., and the coefficient used for determining the bitmap size
gives us the desired accuracy also increases. Therefore byfagy-three useful values fok. The base component is the one
noring the constant term under the square root in Equation 3 wigh a flow density betweep,,;, and p.m...., So the threshold
get a tight bound on how scales. ¢? 5 (e” — p)/(p®b) so used by the algorithm (Figure 3) to select the base component is
N +1 5 e”/p < ef. From herep < In(e2N + 1) and thus setyap = b(1 — e Pmer).

TABLE |
THE SIZE OF THE DIRECT BITMAP SCALES SUBLINEARLY WITHN BUT
WORSE THANN/In(Ne? + 1), THE SIZE FOR THE VIRTUAL BITMAP IS
PROPORTIONAL TO THE INVERSE OF THE SQUARE OF THE AVERAGE
ERROR, THE SIZE OF THE MULTIRESOLUTION BITMAP SCALES THE THE
LOGARITHM OF THE NUMBER OF FLOWS OVER THE SQUARE OF THE
AVERAGE ERROR AND THE ADAPTIVE BITMAP DELIVERS UNDER CERTAIN
ASSUMPTIONS THE ACCURACY OF THE VIRTUAL BITMAP BY ADAPTING
DYNAMICALLY TO THE NUMBER OF ACTIVE FLOWS.

bitmap. It is apparent from this figure that by changing whi
components are replaced by the virtual bitmap we can cha
the range for which the adaptive bitmap is accurate.

C. Configuring the bitmaps

TO APPEAR IN INTERNET MEASUREMENT CONFERENCE 2003 9

[r] v/b | improvement| Name No. of flows Length | Encr.
2 2.3626 1.1725 (min/avg/max) (s)
3 4.4861 1.4488 MAG+ | 93,437/98,424/105,814 4515 no
4 8.0603 1.8468 MAG | 99,264/100,105/101,038 90 no
5 14.3252 2.4029 COS 17,716/18,070/18,537) 90 yes
6 25.5510 3.1709 IND 1,964/2,164/2,349 a0 yes
7 459411 4.2265
8 83.3330 5.6754 TABLE IV
9 152.4217 7.6641 THE TRACES USED FOR OUR MEASUREMENTS
10 | 280.8654 10.3959
11 | 520.9068 14.1524
12 | 9715300 19.3240 bitmap. The third column lists the ratio between the average er-

ror of multiresolution bitmap and the “sweet spot” average error
of the adaptive bitmap. The memory usage reported in Table |
is derived based on the observation that most of the memory of
the adaptive bitmap is used by the “virtual bitmap” component.

TABLE Il
AS WE INCREASE THE NUMBER OF COMPONENTS REPLACED BY THE
VIRTUAL BITMAP, THE SIZE OF THE VIRTUAL BITMAPv ALMOST DOUBLES
FOR EACH NEW COMPONENT REPLACEDTHE RATIO BETWEEN THE
AVERAGE ERROR OF THE LARGE VIRTUAL BITMAP AND THE V. MEASUREMENT RESULTS
MULTIRESOLUTION BITMAP ALSO INCREASES EXPONENTIALLYBUT AT A

SLOWER RATE THAN THE SIZE OF THE VIRTUAL BITMAR We group our measurements into 4 sections corresponding to

the 4 important algorithms presented: virtual bitmap, multireso-
lution bitmap, adaptive bitmap and triggered bitmap. Part of the
measurements are geared toward checking the correctness of the
We can choose the number of components such that the |@idictions of our theoretical analysis and part are geared toward
normal component (the penultimate overall) covers the endg@mparing the performance of our algorithms with probabilistic
the rangeN: ¢ = 2 + [logx(N/(pmazb))]. The total size of counting or other existing solutions.
the multiresolution bitmap id7em = b * (c — 1) + biast, thus For our experiments, we used 3 packet traces, an unencrypted
ignoring the additive constants, the asymptotic memory usa@ge from CAIDA captured on the 6th of August 2001 on an
is Mem =~ In(Ne?)/e*f(k)/In(k). By allocating more bits OC-48 backbone link and two encrypted traces from the MOAT
to the last component than what it needs in order to make th&ject of NLANR captured on the 11th of November 2002 on
penultimate component accuratepgt..., it can also provide ac- the connection points of two university campuses to the Inter-
curate enough estimates and this allows us to reduce the numigr The unencrypted trace is very long; for some experiments
of components in the bitmap. The algorithm for computing thge also used a 90 second slice of the unencrypted trace as a
optimal configuratiohis long but not very complicated: it eval-fourth trace. We usually set the measurement interval to 5 sec-
uates some choices for,s; andc and picks the best one. onds. We chose 5 seconds because it appears to be a plausible
The ratiof (k) /In(k) gives the asymptotic memory usage fofnterval someone would use when looking at the number of ac-
a certain choice of and we can see from Table Il that= 2 tjve flows: it is larger than the round-trip times we can expect
is the best choice The algorithm is very easy to implement inn the Internet and it is above the rate a slow modem link sends
hardware ifk, bk/(k — 1) andb,,; are powers of two. Under packets. In all experiments we defined the flows by the 5-tuple
these constraints, sometimes the choick ef 4 gives a smaller of source and destination IP addresses, ports, and protocol. Ta-
memory usage because the siz#f the components it needs tople |V gives a summary description of the traces we used. All
achieve the desired average eredffits better” the powers of algorithms used equivalent CRC-based hash functions with ran-
two. Therefore when configuring the algorithm for a hardwagom generator functions.
implementation that has these limitations it is best to check both
values ofk = 2 andk = 4. ° A. Virtual bitmap

Adaptive bitmap: For brevity we omit the detailed discus- We performed experiments to check the validity of

sion of the configuration of the adaptive b|tr_nap._ In Table ”é uation 3 for various configurations on many traces. Figure 4
we report the costs and benefits of the adaptive bitmap. The fifgl s 5 typical result. More results can be found in the techni-
CQ:#Thn |'|Sts the nun_wrier of r:ornral colrntpo?ﬁ nts Web repl:u;acal report version of the paper [4]. Our measurements confirm
V;']' | € large one. € cr;ex (;]O umn QIsts ednun;] ero b'[ﬁa{ Equation 3 gives a tight and slightly conservative bound
t_e arge component needs to have (comparedto t € NUMDES Ote average error (conservative in the sense that actual errors
bits of a normal component) to ensure that.the adapt|.ve b'tmﬁfé usually somewhat smaller than predicted by the formula).
never has a worse average error than the original mult|resolut|ﬁqe results also confirm that we get the best average error for a

"The full algorithm is presented in the technical report version [4]. virtual bitmap of a given size when the flow density is around
8There are some very rare cases wkes 3 gives a slightly smaller memory p = 1.6.
usage. This is because the number of components cannot be fractional and tt\we also compare the average error of the virtual bitmap to
components fok = 3 “fit better” to the givenN ande. I . .
probabilistic counting using the same amount of memory for a

9We found no set of parameter$,e for which k = 8 worked better than both ! - ; ! ’
k=2andk =4 variety of configurations and traces. Because our major contri-

TO APPEAR IN INTERNET MEASUREMENT CONFERENCE 2003

butions are the remaining schemes, we provide here only one
sample result. For the COS Trace, using 1,716 bits our analysis
predicts an expected error 3%. Over 20 runs, for the 18 mea-
surement intervals, the actual average error (computed as square
root of the average of squares) for virtual bitmap is only 2.773%
with a maximum of 9.467%. This is not just a further confirma-
tion that Equation 3 gives a tight bound on the average error,
but it also shows that errors much larger than the average er-
ror are very unlikely. On the other hand, probabilistic counting
configured to handle up to 100,000 flows had an average error
of 6.731% with a maximum of 27.336%. While this is an un-
fair comparison in general (virtual bitmap requires knowing in
advance the range of final count values), it does fairly indicate
our major message: a problem-specific counting method for a
specific problem like threshold detection can significantly out-
perform a one-size-fits-all technigue like probabilistic counting.

B. Multiresolution bitmap

This set of experiments compares the average error of the
multiresolution bitmap and probabilistic counting. A meaning-
ful comparison is possible if we compare the two algorithms
over the whole range for the number of flows. Since our traces
have a pretty constant number of flows, we use a synthetic trace
for this experiment. We used the actual packet headers from the
MAG+ trace to generate a trace that has a different number of
flows in each measurement interval: from 10 to 1,000,000 in in-
crements of 10% with a jitter of 1% added to avoid any possible
effects of “synchronizations” with certain series of numbers.

We ran experiments with multiresolution bitmaps tuned to
give an average error of 1%, 3% and 10% for up to 1,000,000
flows and probabilistic counting configured for the same range
with the same amount of memory. We had 500 runs for each
configuration of both algorithms with different hash functions.

Figures 6 to 8 show the results of the experiments. We can see
that in all three experiments, the average error of the multireso-
lution bitmap is better than predicted for small values, because
we have no “sampling error” when the number of flows is small.
We explain the periodic “fluctuations” of average error from fig-
ure 6 by occasional incorrect choice of the base component. The
peaks correspond to where components are least accurate and
hand off to each other. The peaks are more pronounced in this
figure than the others because due to the small number of bits in
each component, it happens more often that not the best compo-
nent is used as a base for the estimation. In Figure 7 and espe-

Average error
o
&

— Multiresolution bitmap (b=64, c=12) B
-~ Probabilistic counting (hmap=47, L=19)

0.05,

| C il | | L
10 100 1000 10000 1le+05 1e+06

Number of flows (log scale)

Fig. 6. Configured for an average error of 10%

0.04

Average error
=4
o
@

o
o
N}

— Multiresolution bitmap (b=708, c=8) 7
-~ Probabilistic counting (nmap=496, c=15)

0
1

0.02,

| Ll Lol Lol L
0 100 1000 10000 1e+05 1le+06

Number of flows (log scale)

Fi

g. 7. Configured for an average error of 3%

0.018;

0.016¢

0.014

oS
o
2
1Y)

ge error

Avera

— -~ Probabilistic counting (nmap=4779, L=12]

0.008,

— Multiresolution bitmap (b=6367, c=5) 1\ !
)|

| C il | | L
0 100 1000 10000 1le+05 1e+06

Number of flows (log scale)

Fig. 8. Configured for an average error of 1%

10

cially in Figure 8 there is a visible decrease in the error for th
multiresolution bitmap when the number of flows approaches

Trace

Adaptive bitmap
(min/avg/max)

Probabilistic counting
(min/avg/max)

the upper limit. The reason is that the last component is muc

"MAG+

-4.402/1.066/4.717% -9.525/2.820/13.2629

D

larger than the normal ones and provides more accurate resul
Probabilistic counting is worse than the multiresolution

> COS

-1.879/0.748/1.950% -6.946/2.759/7.621%

IND

-1.767/0.601/1.772% 2.400/10.214/17.7249

bitmap, especially for small values. We show in the technical
report version of the paper [4] that the data collected by the two

algo”thms IS eqU|Va|ent, sot mlght be Surpns'ng that thelr ac- COMPARISON OF ADAPTIVE BITMAP AND PROBABILISTIC COUNTING

curacies are so different. We attribute the large errors of prob-
abilistic counting for low values to the way it evaluates the col-
lected data. The ability of multiresolution bitmap to be accurate
on the low end of the range too can lead to simpler, more robust
systems. We attribute the worse error of probabilistic counting

TABLE V

EACH USING16KBITS OF MEMORY

for higher values mostly to the suboptimal dimensioning of tregorithm (as recommended in [6]).

TO APPEAR IN INTERNET MEASUREMENT CONFERENCE 2003 11

C. Adaptive bitmap Measuremen{ Snort Prob. | Triggered
interval count. bmp.
12 sec 1,968K | 2,474K 381K
600 sec 50,791K| 22,876K| 5,725K

The experiments from this section compare adaptive bitmap
and probabilistic counting on all three traces. The results are
presented in Table V. All of the algorithms were configured
to use 16 Kbits of memory. For each algorithm we report the
largest errors in both directions and the average error based
20 runs with different hash functions.

The algorithms were configured to give the best possible av-
erage error and work up to 100,000,000 flows. For the adaptive

bitmap we used as a base a multiresolution bitmap with an avgén using the naive algorithm would have to allocate: 8 bytes
age error ofl0% with k = 2, b = 64, ¢ = 19 andbjase = 169. for the IP address and a counter for each source and 9 bytes (des-
The virtual bitmap component i5, 063 bits large and replacestination IP, source port, destination port, type) for the identifier
9 components of the multiresolution bitmap. For the adaptiv each active connection. We also compute the memory usage
bitmap we did not include in our computations the first megt a solution directly applying probabilistic counting with a con-
surement interval when the adaptive bitmap was not tunedf{guration similar to our multiresolution bitmap (48 bytes for the
the traffic. For the probabilistic counting we usethap = 744 zigorithm + 4 bytes for the IP address for each source). Our trig-
bitmaps of L = 22 bits each. Adaptive bitmap is roughly 3gered bitmap algorithm consumes 8 bytes for each active source
times more accurate than probabilistic counting. For the INkhe |P address + the direct bitmap) plus the additional 48 bytes
trace which has a very small number of active flows probabiligr the sources that trigger the allocation of the multiresolution
tic counting has very bad error and is actually biased towargﬁnap_

overestimating. This is the same as the problem we noticed thgyve used two configurations, one with a 12 second prefix and
previous section. The major message here is that an adap§ie with a 600 second prefix of the MAG trace. For each config-
bitmap can achieve almost the same benefits of virtual bitmagtion we had 20 runs of with the triggered bitmap algorithm,
(e.g., order of magnitude reduction in memory for same acqysing different random hash functions. The average of the er-
racy) when the number of flows does not vary dramatically, @sr for flows that had at least 4 connections was 13'8%ur

n TABLE VI
PHE MEMORY USAGE OF PORT SCAN DETECTION ALGORITHM$KBYTES)

seems common in many networking applications. algorithm reported 84.6% of the sources with 4 connections as
_ _ reaching the threshold, 98.1% of those with 5, and all (100%) of
D. Triggered bitmap the sources that had at least 8 connections. In Table VI we report

So far, all our measurements have focused on one instancl§fmaximumof triggered bitmap over the 20 runs. Triggered
the counting problem to be used as a building block for solvirj{map uses roughly 5 times less memory than snort with the
more complex problems. The experiments from this section giJest configuration. For the more ambitious second configura-

a better image of how using one of our algorithms can affect tfjan the gain increases to a factor of 9. With both configurations
resource consumption of an entire system. triggered bitmap used less memory than probabilistic counting.

We first address port scan detection that uses a large numb hat do these result.s mean o a security a.nalyst? Snort, of
(one per source) of instances of the counting problem muItiplflgurse’ uses the_ classical measure of deteatisgnnections
ing the impact of any memory our algorithm can save. We us h a maximum inter-event spacmgt_)fo default,. Sr?‘?” USes
definition of a port scan equivalent to the definition in the defaff!u®s such as n=4, t=3. Our Fechnllqug uses significantly less
Snort configuration: a source is flagged as a port scanner if it fagmory at the expense of possibly missing por_t scanners. How-
at least 4 connections in a 12 second measurement interval SYf" the probabll!ty of a port scanner not being .dete.cted de-
the second experiment we extend the measurementinterval t Hgpses exponentially W't_h th_e number of connections it opens.
minutes to evaluate the algorithms against this more demand example, the probaplllty IS 1'§7% ’C.lt 5 connectlons, 0'2.3%
definition. We ignore many of the details of the operation &to, 0.03% at 7, etc. Using Snort's timing requirements, a fifth

Snort (e.g., reliance on TCP flags to classify connections) a%ent mu;s_t arnveTv;uhm - Sdsi'cotnds of :_he fourth even_:rllf theb
concentrate on the core task of counting connections. scan continues. 1hus, we detect a continuing scan with proba-

o O Ot
For the triggered bitmap we chose a configuration that is ¢ bility 98.13% within 3 seconds and 99.77% within 6 seconds.

venient to implement on a 32-bit machine: a direct bitmapcﬂme also that port scans are usually the result of a brute-force

4 bytes and a multiresolution bitmap with 11 components oanFtWork exploration such as Nmap [7] or Code Red [11]. Such

S .~ tools frequently touch not just a handful of addresses, but an
bytes each (except the last one which is 8 bytes). The multireso-. . o

. . ; . ' . .. ___entire block of contiguous addresses. Thus, it is reasonable to
lution bitmap is allocated after 8 bits are set in the direct bitm

ap. .
By our analysis the multiresolution bitmap should ensure an a%gpect a scan to continue after 4 events,

erage error of at most 14.1% for up to 43,817 connections an © aI;o note he're prehmmary r.esults on the use of trlggergd
o - ifmap in an application computing per-IP source and desti-
at most 15.5% for up to 175,269 connections. . L . ' .
na}lon statistics that is part of the CoralReef traffic analysis
We compute memory usage of Snort based on the number o
sources and connections active durmg the measurement intervalhis is an average over all sources. We did notice some “peculiarities”: for

What we actually use is a not an accurate model of the actegHrces that had 4 connections the average error was around 10.5% , for those
with 5 around 11%, for those with 6 connections it was 18%, for those with 8

memor){ usgge of Snort (which l'!s_es inefficient St_rUCtures SWrblund 11.5% while for all others the averages were roughly in the range 14%-
as multiple linked lists) but the minimum that any implementas.5%. We explain these as effects of having such a small direct bitmap.

TO APPEAR IN INTERNET MEASUREMENT CONFERENCE 2003 12

| Setting | Algorithm | Application |
General counting Multiresolution bitmap| Tracking virus infections
Accuracy important only Virtual bitmap Triggers (e.g. for
over a narrow range detecting DoS attacks)
Count is probably in a Adaptive bitmap Measurement
narrow range (stationarity|
Small memory usage as| Triggered bitmap Detecting port scans
long as count is small
Flows dynamically added Increment-decrement Scheduling
and deleted algorithms
TABLE VII

THE FAMILY OF BITMAP COUNTING ALGORITHMS: EACH ALGORITHM IS BEST SUITED FOR A DIFFERENT SETTING

suite [9]. The implementation and measurements reported heresolution algorithm works under the same assumptions and
are the work of Ken Keys with contribution from David Mooreprovides an error orders of magnitude lower when the number of
both from Caida. On a 10 minute OC-48 trace, the original apflews is small and is slightly better for higher values. However,
lication uses 316 megabytes of main memory. The improveat believe our biggest contribution is as follows. By exposing
version used a triggered bitmap with a 128 bit direct bitmahe simple building blocks and analysis behind multiresolution
that allocated a multiresolution bitmap configured for an erropunting, we have provided a family efistomizableounting
of 5% after 4 bits were set. The memory usage decreasedltgorithms (Table VII) that application and hardware designers
44 megabytes while the average error was 4.41%. The average use to reduce memory even further by exploiting application
running time was 349 seconds which is 29% below the runniegaracteristics.
time of the original application (491 seconds). Thus, virtual bitmap is well-suited for triggers such as de-
Finally, note that because our algorithms reduce the memdegting DoS attacks, and uses 215 bytes to achieve an error
usage by as much as an order of magnitude, they also enablead€-773% compared to 2,076 bytes for probabilistic counting.
tection of stealthy slow scans using the same amount of memédaptive bitmap is suited to flow measurement applications and
that naive algorithms use for fast scans. Because the memoryaxploits stationarity to require 8 times less memory than prob-
quired for each source is greatly reduced with our algorithmailistic counting on sample traces. Triggered bitmap is suited
we can afford to count more sources at a time. As a resuf,running multiple instances of counting where many instances
we can avoid timing-out state as aggressively as Snort and kéewpe small count values (e.g., port scanning) requiring only 5.6
counting sources with longer inter-arrival times between evenlidbytes on a 10 minute trace compared to the 49.6 Mbytes re-
By doing so, we can detect more stealthy port scans, a goaboired by the naive algorithm and 22.3 Mbytes required by prob-

many detection systems [16]. abilistic counting. Using triggered bitmap resulted in a reduc-
tion by 29% in the running time and a factor of seven in the
VI. CONCLUSIONS total memory usage of a traffic analysis application from the

goraIReef suite. Given that low-memory counting appears to be

Using a suitably general definition of a flow, counting th
number of active flows is at the core of a wide variety of Séj_seful in applications beyond networking which have different
racteristics, we hope that the base algorithms in this paper

curity and networking applications such as detecting port sca) . . ; . .
and denial of service attacks, tracking virus infections, calibra: be combined in other interesting ways in architecture, oper-
ing caching, etc. In this paper we provide a family of bitmaBtlng systems, and even databases.
algorithms solving the flow counting problem using extremely
small amounts of memory. Most of the algorithms can be im-
plemented at wire speeds (8 nsec per packet for OC-768) usWe thank Vern Paxson, David Moore, Philippe Flajolet, Mar-
ing SRAM since they access at most one memory location paane Durand, Alex Snoeren and K. Claffy, Stefan Savage and
packet, and can be implemented using simple hardware (cﬁbrin Baboescu for extremely valuable conversations. This
based hash functions, multipliers, and multiplexers). With tiveork was made possible by NSF Grant ANI-0137102 and the
exception of direct and virtual bitmap, the other algorithms af&ensilla project sponsored by NIST Grant 60NANB1D0118.
introduced for the first time in this paper.

The best known algorithm for counting distinct values is prob- REFERENCES
abilistic counting. Our algorithms need less memory to produllé¢ Cisco offers wire-speed intrusion detection, ~December 2000.
results o the same accuracy. This can translate into savingg,pf (/A tisoncom evens 2000 2itrevd o
scarce, fast memory (SRAM) for hardware implementations. It tion of flow statistics from sampled packet streamsSIBCOMM Internet

can also help systems that use cheaper DRAM to allow them[?:c]o ch:/lf?&tsureénent Wogkéhobiove\r/nbet: 2002-N directions in tra

. ristian Estan an eorge varghese. ew directions In traffic measure-
scale to Iarg(_ar Instances Of_the problem.)] ment and accounting. IRroceedings of the ACM SIGCOMMugust
In comparing head-on with probabilistic counting, our mul- 2002.

VIl. ACKNOWLEDGEMENTS

TO APPEAR IN INTERNET MEASUREMENT CONFERENCE 2003 13

[4] Cristian Estan, George Varghese, and Mike Fisk. Bitmap algorithms for
counting active flows on high speed links. Technical Report 0738, CSE
Department, UCSD, March 2003.

5] Wenijia Fang and Larry Peterson. Inter-as traffic patterns and their impli- ~ . ~ .
o] catiojns. InF?roceedingg of IEEE GLOBECQM)eceFr)nber 1999. P Elm] = Z P(m = d)E[fm|m = i
[6] Philippe Flajolet and G. Nigel Martin. Probabilistic counting algorithms i=0
for data base applicationsJournal of Computer and System Sciences n
31(2):182-209, October 1985. _ — 5\ — _
[7]1 Fyodor. Remote OS detection via TCP/IP stack fingerprintiftrack B Z P(m =d)i = E[m] = an
(54), December 1998. i=0
[8] Dina Katabi, Mark Handley, and Charlie Rhors. Congestion control for n
high bandwidth-delay product networks. Pnoceedings of the ACM SIG- E[ﬁﬂ] = Z P(m = Z‘)E[fﬁ2|m =i
COMM, August 2002. o
[9] Ken Keys, David Moore, R. Koga, E. Lagache, M. Tesch, and K. Claffy. =
The architecture of coralreef: an internet traffic monitoring software suite. o N b
PAM2001, Workshop on Passive and Active Measurements, RIPE, 2001. ~ Z P(m=1) (Z +0b (61 —i/b— 1))
[10] Ratul Mahajan, Steve M. Bellovin, Sally Floyd, John loannidis, Vern Pax- i=0
son, and Scott Shenker. Controlling high bandwidth aggregates in the
network. http://www.aciri.org/pushback/, July 2001. = E[mQ] +bE {em/b] — bE[m/b] — bE[1]
[11] David Moore. Personal conversation. also see caida analysis of code-
red, 2001. http://www.caida.org/ analysis/ security/
code-red/ P ’ g ! - E[mQ] +bE {em/b] ~ Bm] -b

[12] Cisco netflow.http://www.cisco.com /warp /public /732
[Tech /netflow
[13] Riverstone Netwqus. Lfap: Lightweight flow accounting proto- Tq compute? [em/b] , we use the Taylor expansionﬁ(x) _
col. http://www.riverstonenet.com/ technology/ ac- b
counting _for _profitability.shtml) e*/® around the valu&[m].
[14] David Plonka. Flowscan: A network traffic flow reporting and visualiza-
tion tool. InLISA pages 305-317, December 2000.
[15] Martin Roesch. Snort - lightweight intrusion detection for networks. In

Proceedings of the 13th Systems Administration ConferdnS&NIX,

1000, O g e/t = eEml/b %eE[m]/b(x — Em))
[16] Stuart Staniford, J. Hoagland, and J. McAlerney. Practical automated de-

tection of stealthy portscandournal of Computer Security10), 2002. +L6E[m]/b(m _ E[m])2 +
[17] lon Stoica, Scott Shenker, and Hui Zhang. Core-stateless fair queueing: 252 T

A scalable architecture to approximate fair bandwidth allocations in high 1

speed networks. IRroceedings of the ACM SIGCOMI@eptember 1998. [em/b] ~ eBlml/b —eE[m]/bE[m — E[m]]
[18] Kyu-Young Whang, Brad T. Vander-Zanden, and Howard M. Taylor. b

A linear-time probabilistic counting algorithm for database applications. 1

ACM Transactri]ons on Database Systef(2):208—229, 1990. P = B/t 4 —eE[m]/b(E[m] — Elm]) = eElml/b
[19] Ming-Young You and Cheng-Shang Chang. Resampling for wireless ac- b

cess. InProceedings of IEEE PIMRQune 1996.

To see how far off we are with this approximation, we com-

APPENDIX pute below the value of the expectation of the third term of the
|. AVERAGE ERROR FOR THE VIRTUAL AND Taylor expansion, the first term we ignore. Its ratio to our ap-
MULTIRESOLUTION BITMAPS proximate result gives some indication of how much we are off.

For example wittb = 200 which is smaller than what we expect
We first determine the variance of the estimate for the numhgrhe used in practice and a flow densityof 8 which is much
of flows hashing to the virtual bitmag AR[m]. The number of ahove the flow densities virtual bitmaps would be expected to
flows hashing to the bitma is a random variable distributedgperate accurately in, we are off by less than 2%. We also note

binomially. For this analysis we will assume that there are tWikre that the contribution of further terms is even smaller be-
independent hash functions one that decides which flows magise they have higher powershait the denominator.

the virtual bitmap and one that decides how those get mapped
to individual bit3t. Therefore the analysis of the direct bitmap
from sections IV-A and IV-B describes the conditional distribu-

tion of the random variablg: given the value ofn. E ZLerE[m]/b(x — E[m))?| = %erE[mV"E [(z — E[m])?]

L Bbml/

= —=e""™PVAR[m

Effm=1 = i 2;1)2 [m]

VAR[mlm =14 ~ b (ef/b - 1) = gz na(l — a)
E[m?m =i = E[m/m=1i?+VAR[m|m =1 < %e};[mybm _ E[;z] GElml/b
2 2
~ 2 i/b iy

i +b(e i/b 1) E [5hrePlm/b (2 — Em])?]) E[m) 0
eLlml/b 2b2 2b

To obtainV AR[m] we needE|[m] and E[m?].

T . b
1 Any reasonable hash function will make the two processes independent, S(N\OW S.Ubs“tu“ng our apprOX|mateAvaIue fﬁ'ﬂem/] we get
in practice we can use a single hash function. E[m] which we use to compufé AR[m).

TO APPEAR IN INTERNET MEASUREMENT CONFERENCE 2003 14

VAR[my] 5 b(e”” —1)=0b(e’ - 1)
E[m? ~ E[m? +beP"/b — Blm] —b VAR < bk (7 —1) = bk (ep/k N 1)
=1 _ ~2 ~12 ~ k-1 k—1
vARR = Bw] - Bl VAR[@] = VAR[m)+ VAR[my) + COV i,)]
m] = m m My, T
~ E[m’] — E[m)* + be"I"/* — E[m] —b < VAR[A"] . VAR[Af] b
= VAR[m]+be"/" —na—b e k; i
= na(l—a)+be” —na—> S b(e”—l—km(e”/k—l))
= bef —na® —b<b(ef —1)
bk k—1
= v [T T (er p/k _
] (A (e —1)+e 1)
n SD[m] SD[m]
_D — = =
S [n] no pbk/(k —1)
5 ~ A \/ﬂ(erﬂ—l)JreP/’f—l
SD [2] _ SD[m] _ b(er—1) Ver—1 D {ﬁ} < V'E ©)
n no no na/byv/b n| ™~ pr /2
ver —1

= Is the error introduced by collapsing all finer components into
pvVb a single one acceptable? To answer this question we derived
two formulas similar to Equation 6: one that maintains one finer
component and collapses all the rest (thus working with 3 bit-
) . maps) and one maintaining two finer bitmaps and collapsing the
The tightness of the bound depends on the terii. Since o (thus working with 4 bitmaps). We plugged in all three
the whole variancé AR[m] is at leastia(1 —), we are off 0,45 into the algorithm for computing the sizes of the com-
by a fac.tor of at most — «, therefore 'TO‘ is small (i.e. the onents of the multiresolution bitmaps. The more accurate (and
virtual bitmap covers only a small portion of the hash Sp?‘c"?}rore complicated) formulas always resulted in lower sizes for
this bound is tight, but as approaches 1 the bound is not tlgh{he bitmaps, but the differences were significant only for low

anymore. Indeed_ for = 1 we_have a _direct bitmap V\{hosevalues ofk. Thus the formula using 3 bitmaps reduces the
accuracy is described by Equation 3 which can be S|gn|f|canH}fmap size with respect to Equation 6 by 3% for= 2 and

lower Equation 4 when the flow density is low. 1% for k = 3. Using 4 bitmaps reduces the bitmap size (with

The multiresolution bitmap bases its estimate of the nurfESPect to the formula with 3 bitmaps) by less than 1% even for
ber of active flows on its estimat@ for the number of flows & = 2. As a tradeoff between accuracy and simplicity we de-
hashing to the base componemtd all finer ones We usenn;, C|d§d tp usein .thIS paper the fqrmula derived based on 3 bitmaps
for the number of flows hashing to the base component af{fich is Equation 5 from Section IV-B.
my for the number of flows hashing to all finer components
(m = my +my). For this analysis we do not treat the finer com-
ponents individually, but replace them with a single component:
we extend the next component after the base to cover all the finer
components, thus its size increases fiota bk /(k — 1). This
is equivalent to or-ing together the bits of all the finer compo-
nents until they are all at the granularity of the first component
after the base. The benefit of this simplification is that the re-
sult will not depend on the number of finer components, thus it
will apply no matter which component we use as base. While
it is intuitively obvious that or-ing bits together leads to loss of
information and thus increases the variancengf we prove it
too in the technical report version of this paper [4].

As with the virtual bitmap, we assume that the hash function
deciding which component a flow gets mapped to and the two
hash functions deciding to which of the bits of the component
the flow is mapped are independent. While the sampling errors
of my, andm; are correlated, the correlation is negative and its
value is small when the sampling factor is large, so we ignore
it. Because of the independence of mapping flows to bits, the
collision errors are uncorrelated.

