
Payload Attribution via Hierarchical Bloom Filters

Kulesh
Shanmugasundaram
kulesh@isis.poly.edu

Hervé Brönnimann
hbr@poly.edu

Nasir Memon
memon@poly.edu

Department of Computer Science
Polytechnic University
Brooklyn, New York

ABSTRACT
Payload attribution is an important problem often encoun-
tered in network forensics. Given an excerpt of a payload,
finding its source and destination is useful for many secu-
rity applications such as identifying sources and victims of
a worm or virus. Although IP traceback techniques have
been proposed in the literature, these techniques cannot help
when we do not have the entire packet or when we only have
an excerpt of the payload.

In this paper, we present a payload attribution system
(PAS) that attributes reasonably long excerpts of payloads
to their source and/or destination hosts. The system we
propose is based on a novel data structure called a Hierar-
chical Bloom Filter (HBF). An HBF creates compact digests
of payloads and provides probabilistic answers to member-
ship queries on the excerpts of payloads. We also present
the performance analysis of the method and experimental
results from a prototype demonstrating the practicality and
efficacy of the system. The system can reliably work with
certain packet transformations and is flexible enough to be
used if the query string is spread across several packets. The
system, however, can be evaded by splitting or by “stuffing”
the payload. Future work focuses on making the system
robust against such evasions.

Categories and Subject Descriptors: C.2.0 [Computer-
Communication Networks]: General- Security and protec-
tion.

General Terms: Algorithms, Performance, Security

Keywords: Payload attribution, Hierarchical Bloom Fil-
ters, ForNet, Security

1. INTRODUCTION
In networking, “attribution” is the problem of determin-

ing the source and/or the destination of some instance of
traffic. For IP networks, this problem arises both at the level
of individual packets and at the higher level of payloads. At

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’04,October 25-29, 2004, Washington, DC, USA.
Copyright 2004 ACM 1-58113-961-6/04/0010 ...$5.00.

the level of packets, attribution of source is difficult because
the source IP can be spoofed. At the level of payloads, deter-
mining which source sent or received a particular sequence
of data is difficult because of the lack of reliable logging
mechanisms in networks. Attackers often use “zombie” or
“stepping stone” hosts as intermediaries. Therefore, being
able to attribute traffic to a particular source host is not
a panacea. It does, however, bring us a step closer to the
attacker, making it a valuable start in tracing attackers.

Several packet marking schemes have been proposed to
meet the first hurdle [28, 25, 10, 4, 14, 15]. These tools, how-
ever, require a set of network packets to do traceback and are
not useful when one does not have the packets but only an
excerpt of the payload. In order to meet the second hurdle,
tools have been developed that can record the entire network
traffic and archive them for short periods of time [1,12,20,3].
Since the means of cybercrimes are usually not known a pri-
ori, for example signature of a new worm, we would like to
store the network traffic for weeks or even months so that we
can go back in time to investigate incidents. Unfortunately,
recording raw network traffic not only makes it infeasible
to archive the traffic for prolonged periods of time but also
raises serious privacy issues thereby limiting the usefulness
of these tools.

In this paper, we look at one aspect of attribution where
given a payload (or a significant portion of payload hence-
forth referred to as an excerpt) and a time interval we iden-
tify the senders and/or the receivers of the payload. We
call this process payload attribution. Whereas payload attri-
bution may not be useful with flooding-like attacks, where
the packets can be empty or always the same, it is useful
when incidents cannot be characterized by superficial fea-
tures such as packet headers, packet rate, or a fixed length
prefix of the payload. For example, with viruses, worms,
and vulnerability exploits, it is often difficult to distinguish
a benign packet from a malicious one by simply logging and
analyzing these superficial features. A worm exploiting a re-
mote vulnerability in a web server, for instance, would send
a request to port 80 much like any legitimate web browser.
By the time the worm’s signature becomes available to In-
trusion Detection Systems, the worm has already infected
most of the network. In this scenario, a payload attribution
system can help us identify hosts that received the worm and
hosts that propagated the worm. This information can be
useful for a network administrator to quarantine or clean-up
infected hosts.

Our contribution. We describe and analyze a compact
hash-based payload digesting data structure, which we call
a Hierarchical Bloom Filter (HBF). We then describe and
implement a simple payload attribution system that utilizes
HBFs to compactly store payload digests and is capable of
attributing excerpts of payloads. Note that unlike previ-
ous schemes, the proposed attribution system does not re-
quire an entire packet for attribution but only a reasonably
long excerpt (for example, 128 bytes) of a packet’s payload.
Compared to recording raw network traffic, the proposed
solution has lesser storage requirements and provides better
privacy guarantees. We should point out that the system as
presented can be evaded by generating packets with small
payloads (for example, 64 bytes) or by “stuffing” the pay-
loads and future work is necessary to make the system robust
against such evasions.

A prototype system using HBF has been implemented in
software. It performs very well on a moderate-speed network
(intranets, medium-bandwidth links). The prototype mon-
itors network traffic, creates hash-based digests of payload,
and archives them periodically. A query mechanism pro-
vides the interface to answer postmortem questions about
the payload. The accuracy of attribution increases with the
length of the excerpt and specificity of the query. While the
error rates of the individual Bloom filters are fairly high,
combined together in the hierarchical structure they achieve
low overall false positive rates. With the proper extension,
the solution is effective even if the excerpt spans several
packets: it will be detected with the same low false positive
rate. The method is robust against packet transformations
that don’t manipulate payloads, such as packet encapsula-
tion, fragmentation, or re-packetization. The query string
known to the analyst may also appear in the payload in a
compressed or encoded form. If the transformation is known
(e.g. base64, uuencode, gzip, or encryption with known key)
then we may be able to transform the excerpt appropriately
to query the system. The low false positive rate ensures
that if there is a match, it is very likely the excerpt has
been transmitted under that form. Of course, it may be
impossible to attribute an encrypted payload with an un-
known encryption key and other streaming transformations.
We report on its performance in Section 5, both in terms of
the systems parameters as well as in a real-life experiment.
Hardware implementation and feasibility of a payload attri-
bution system on high-speed networks are beyond the scope
of this paper and are part of our future work.

The rest of this paper is organized as follows: the following
section discusses related work in detail. Section 3 presents
Hierarchical Bloom Filters followed by the description of the
design and implementation of a Payload Attribution System
in Section 4. We present the experiments and results of the
prototype in Section 5 and conclude in Section 6 with a
summary and future work.

2. RELATED WORK
Work related to the one presented in this paper falls into

two categories: work related to Bloom filters and work re-
lated to attribution systems.

2.1 Bloom Filters
Ever since Bloom filters were introduced by Burton Bloom

in [5] they have been used in a variety of contexts. Here
we present work related to Bloom filters in the context of

network monitoring and security and refer the readers to [6]
for a comprehensive survey on the subject.

A Bloom filter is a simple, space-efficient, randomized
data structure for representing a set in order to support
membership queries. It uses a set of k hash functions of
range m and a bit vector of length m. Initially, the bit vec-
tor is set to 0. An element in the set is inserted into the
Bloom filter by hashing the element using the k hash func-
tions and setting the corresponding bits in the bit vector to
1. To test whether an element was inserted into the filter,
we simply hash the element with the same hash functions
and if all corresponding bits are set to 1 then the element
is said to be present in the filter. The space efficiency of a
Bloom filter is achieved at the cost of a small probability
of false positives as defined by Equation 1, where n is the
number of elements in the set [13].

FP =
“
1− (1− 1

m
)kn

”k

≈ (1− e−kn/m)k. (1)

As far as we know, Bloom filters were first used in the con-
text of security in OPUS [29]. OPUS uses a Bloom filter to
store the list of dictionary words in a space-efficient manner
to eliminate weak passwords. In [27] Bloom filters have been
used in the Source Path Isolation Engine (SPIE) to trace IP
packets over networks. SPIE creates hash-digests of packets
and stores them in a router using Bloom filters. With wide
deployment, SPIE is capable of tracking a single packet to
its source on the Internet. A SPIE-equipped router creates a
packet digest for every packet it processes using the packet’s
non-mutable header fields and a prefix of the payload. These
digests are then kept at the network component for a preset
amount of time. When an attack is detected by a security
component, such as a firewall or an intrusion detection sys-
tem, it can present the offending packet to SPIE to trace the
packet’s path and the originator of a packet can be identi-
fied by launching enough queries along the packet’s network
path. With SPIE, any single packet can be traced back to its
origin as long as all the nodes on the packet’s path have not
yet discarded the packet digest. This also makes the system
unsuitable for forensics applications where information may
be needed from a significantly distant past. Our payload
attribution method described in the following section is sim-
ilar to SPIE in that both are digesting schemes. However,
whereas SPIE is a packet digesting scheme, the method we
propose in this paper is a payload digesting scheme. This
key difference between them is explained by the fact that
SPIE requires that we present the whole packet, or at least
the non-mutable headers and prefix of the payload, to do
traceback. However, in most cases we may not have the
exact packet that carried a certain payload.

More recently in [16] the authors propose a novel tech-
nique, called Space Code Bloom Filters, for approximate
measurement of traffic flows. Unlike previous measurement
schemes, a novel Bloom filter based data structure, known
as Space-Code Bloom Filter enables the method to track all
traffic flows instead of just “heavy hitters.”

Finally, Dharmapurikar et al. [11] propose to use Bloom
filters for intrusion detection by matching known signatures
to the payload. The problem they tackle, often referred to as
deep packet inspection, involves detection of predefined sig-
nature strings or keywords starting at an arbitrary location
in the payload. Their system uses very similar principles
but proceeds on the other end (the Bloom filter contains

the signatures) and for a different purpose (intrusion detec-
tion). Hence archiving and storing the Bloom filters is not a
concern for them, while they face the challenge of perform-
ing their query at line speed over all possible alignments and
various block lengths.

2.2 Attribution Systems
Over the past few years extensive research has been done

in developing feasible solutions to trace back network traffic
to its source on the Internet. Traceback systems can gener-
ally be grouped into three broad categories: 1) Traceback of
single packets (e.g. SPIE) 2) Traceback of network floods 3)
Traceback of connection chains. We already described SPIE
in the previous sub-section. We now briefly summarize work
in the other two areas below.

Distributed denial of service attacks create large uncor-
related network flows towards a particular host or a set of
hosts. Since source IP addresses usually spoofed the trace-
back of the attack to its source a non-trivial task. Re-
searchers have proposed some clever solutions to the prob-
lem of tracing IP packets back to their source (IP trace-
back) [27,25,28,4,10,8,18]. Most of this work can be grouped
into two main categories: one in which no extra network
packets are generated [27,25,28,10,8] and the other in which
a few extra network packets are generated [4, 18]. These
mechanisms, however, are not effective against attacks that
require a relatively smaller amount of packets. An encod-
ing strategy proposed in [14,15] requires that border routers
establish a trusted region and encode the router’s IP in all
egress traffic. A destination host can then decode the IP
address of the closet border router to source of a packet
from the IP fragment-id field. None of these methods can
be used against malicious network events that can only be
defined by a packet’s payload, like for example, uploading a
company’s intellectual property to a public FTP site.

A related problem, at a different level of abstraction how-
ever, is tracing connection chains. Attackers often obscure
their identity and location by forming a connection chain
by logging into a set of compromised systems before at-
tacking a target– known as stepping stones. Tracing the
attack from the victim takes us only to the last link in the
chain but not to the location of the attacker. In [30, 31],
methods are proposed to trace intruders through stepping-
stones. The method proposed in [30] creates “thumb-prints”
of connections using packet content which can be compared
to determine whether two connections contain the same text
and are therefore likely to be part of the same connection
chain. However, the method fails when the connections are
encrypted. To address the problem [31] proposes an al-
gorithm that doesn’t rely on traffic content, instead relies
on packet sizes, packet intervals, etc. to identify stepping
stones.

3. HIERARCHICAL BLOOM FILTERS
In this section we introduce a data structure, which we

call a Hierarchical Bloom Filter (HBF), that can be used
for payload attribution. In later sections we describe the
design and implementation of a payload attribution system
based on an HBF. A naive method to design a payload at-
tribution system that consumes a small amount of storage
and also provides some privacy guarantees, is to simply store
hashes of payloads instead of the actual payloads. This ef-
fectively reduces the amount of data to be stored per packet

to about 20 bytes (using SHA1, for example). Using a stan-
dard Bloom filter [5,6] with k hash functions, we can further
reduce this space at the cost of a small false positive rate
as defined by Equation 1. For a specific space usage of m
bits, n strings (packets) inserted into the Bloom filter, the
optimum value for FP is achieved for k = ln 2 · (m/n) and

FP ≈ 0.6185m/n. So, for example, storage per packet can
be reduced from 20 bytes to 21 bits at a false positive rate of
4.27×10−5. Compared to simple hashes, the only advantage
of using standard Bloom filters is the space saving.

Unfortunately the approaches above restrict the queries
to the whole payload. Attributing excerpts of payload is
more useful and a simple approach to support queries on
excerpts is to hash blocks of the payload instead. Indeed
we present such a data structure in the next section. Two
issues arise however: if the chosen block size is too small
we get too many collisions as there are not enough unique
patterns, yet too large a block size and there isn’t enough
granularity to answer queries smaller than a payload. In
addition, one needs a mechanism to determine when two
blocks appear consecutively in the same payload, or if their
presence is merely an artifact of the blocking mechanism. In
section 3.2, we propose a data structure that resolves these
two issues simultaneously.

3.1 Block-Based Bloom Filter (BBF)
In order to extend support for attributions based on ex-

cerpts, we block the payload of each packet into a set of
blocks of size s. Each block is then appended its offset in
the payload: (content||offset), where content is the block
content, 0 ≤ offset ≤ q = dp/se, and p is the size of the en-
tire payload. It is then hashed and inserted into a standard
Bloom filter. We call such a data structure a block-based
Bloom filter (BBF) with offsets. See Figure 1(a).

ABRACADABRACADARACABA ...

0 1 2 3

 Offset
 Alignment 0 1 2 3 4 5 6 ...
1. BRA CAD AB X X X X X X X
2. BR ACA DAB YY X X X X X
3. B RAC ADA B X YY YY X YX

4 5 6
(a)

(b)

Figure 1: (a) Inserting the string “ABRACADABRA-

CABARACABA...” into a BBF with s=3. (b) Querying

with “BRACADAB”: the various blocks and offset com-

binations. Each line corresponds to an alignment, the

letters in red do not get certified by the BBF; hence

each alignment only gives two blocks to check. An X

marks a mismatch of a block, and a Y marks a match; in

case the first block is a match, the second block is tested,

and so on. The YY in line 2, offset 1, is a real match. On

the last line, the YY in offset 2 is a double false positive

of the BBF, in offset 3 is a real match (both blocks), and

in offset 5, the YX means the first block is a match but

the second isn’t, hence the combination isn’t a match.

Given an excerpt x, a query proceeds as follows: since the
excerpt may not start exactly on a block boundary, queries

should try all possible offsets (based on maximum packet
size) with all possible first blocks (at most s− 1) of the ex-
cerpt. To do this, we slide a window of size s through x and
find matching block with confidence level FP as determined
by Equation 1, where n is the number of blocks stored in
the BBF. As soon as a match is found for the first block,
the query can proceed with the next block at the next off-
set until all blocks are matched. It is also easy to extend
the search over multiple packets. In the event that the ex-
cerpt x spans multiple packets, we must also check all the
prefixes of each block; if a prefix of a block is found in the
packet, then the query proceeds with the next block starting
exactly where the prefix left off, at the offset 0. A possible
query is depicted in Figure 1(b). For each packet of length
p, a BBF method requires (m/n) × dp/se bits as oppose
to only (m/n) bits required by the standard Bloom filter.
At the cost of extra storage, a BBF allows us to fine tune
the granularity of excerpt attribution by way of the block
size in the queries. For example, decreasing the block size
s increases the amount of space required but provides bet-
ter support to excerpt queries by reducing the granularity
of the block. Unlike the standard Bloom Filter, a BBF re-
quires dq/se×(loffset−dq/se) queries where loffset is the
largest offset in the BBF and q is the length of the excerpt.

Note that if blocks of a given string occur in different
packets at the appropriate offsets (an event we call offset
collision), this method will see the set of substrings as if
the whole string had occurred together in a single packet
even if it did not. For example, for two packets made of
blocks S0S1S2S3S4 and S0S2S3S1S4 (note the reordering),
BBF would identify the string “S2S1” as if it occurred in a
single packet when in fact it did not. This ambiguity is a
result of inserting string (S2‖2) from packet (a) and string
(S1‖3) from packet (b) into the BBF. The BBF could not
recognize the fact that the strings in fact occurred in two
different packets. For a BBF to work properly over multiple
packets a unique packet identifier must be associated with
each substring (content||offset||packetID). This, however,
severely increases the number of queries required for attri-
bution as it is not known a priori which packet contains the
query string. Also note that we may have to maintain up to
three Bloom filters to answer queries, one for (content), one
for (content||offset), and one for (content||offset||packetID).
Next we describe a simple technique that decreases the false
positive rate due to collisions and fuses all three Bloom 5fil-
ters into one.

3.2 Hierarchical Bloom Filter
A Hierarchical Bloom filter (HBF) is simply a collection of

BBFs for geometrically increasing block sizes. For instance,
we may choose powers of two times the block size. A string
is inserted into the hierarchy from bottom-up. A string of
length p is broken into dp/se blocks which are inserted into
the HBF at level 0. At the next level, two subsequent blocks
are concatenated and inserted into the HBF at level 1 and so
on. Figure 2 illustrates a simple example of such a hierarchy.
In this example, string “S0S1S2S3” is blocked into blocks of
size (s = 1) at the bottom of the hierarchy. Then “S0S1”
and “S2S3” are inserted at level 1, and “S0S1S2S3” at level
2. Thus, even if substrings have occurred at the appropriate
offsets, going one level up in the hierarchy allows us to verify
whether the substrings occurred together in the same or
different packets.

Figure 2: Inserting string “S0S1S2S3” into a Hierar-
chical Bloom Filter.

Aggregating results from multiple queries within a par-
ticular level and from the levels above in the hierarchy we
can improve the confidence of the result and reduce the
impact of collisions. Verifying an excerpt of length q on
an HBF requires

P
(dq/sie × (loffset/2i − dq/sie)) queries

where loffset is the largest offset in the HBF and i is the
level at which the excerpt is being evaluated hence 0 ≤ i ≤
log dq/se.

Note, however, that not all strings may be of exact length
to fit in the hierarchy. For example, with d levels in the
hierarchy, if

`
p �

`
s× 2d

´´
we may not be able to store the

entire string in the hierarchy as it is not deep enough. On the
other hand, if for many packets

`
p �

`
s× 2d

´´
then Bloom

filters higher in the hierarchy will be underutilized. Imple-
menting the hierarchy using a single Bloom filter with the
offset of each element concatenated to it during insertion,
like (content‖offset), improves the space utilization. For ex-
ample, in order to store string “S0S1S2S3” in the hierarchy,
we need to insert the following strings into the Bloom filter
{(S0S1S2S3‖0), (S0S1‖0), (S2S3‖1), (S0‖0), (S1‖1), (S2‖2),
(S3‖3)}. Having a single Bloom filter allows us to maximize
its space utilization as we can determine the optimal number
of elements inserted into it a priori.

It is intuitively clear that, HBF allows us to process ex-
cerpt queries with a higher accuracy than a BBF. Note that
HBF does not rely on a packet identifier to resolve the offset
collisions. The hierarchical nature of the HBF resolves colli-
sions automatically. Furthermore, HBFs can also do limited
pattern matching. Suppose we would like to verify if we
have actually seen a string of the form “S0S1 ∗ S3”. As in
BBF, the string is broken down into three individual query
strings {S0, S1, S3}. By trying all possible offsets at the bot-
tom of the hierarchy we can verify the existence of strings
{(S0‖i), (S1‖i + 1), (S3‖i + 3) with false positive rate FP .
Since ‘S0’ and ‘S1’ are subsequent in the query string we
can improve the confidence of the results by verifying query
string (S0S1‖i) at the level above. Now if we can make in-
telligent guesses for ‘∗’ and when a match Sx is found, we
can verify the match at different levels of the hierarchy.

For example, we can verify the whole string “S0S1SxS3” all
the way to the top of the hierarchy consequently improving
the confidence of the result at each level.

4. PAYLOAD ATTRIBUTION VIA HBF
Although an HBF can be used for any string matching

application, here we focus on its application to the payload
attribution problem. In this section we describe the payload
attribution problem, discuss the challenges faced in building
a reliable payload attribution system, and how to adapt an
HBF for such a system. Before we proceed, we would like
to make a note on terminology. For the sake of brevity, in
the rest of the paper, unless specified otherwise, we use the
term payload when we actually mean some arbitrary excerpt
from the payload.

Payload Attribution. Given a payload, a payload attri-
bution system reduces the uncertainty that we have about
the actual source and destination(s) of the payload, within
a given target time interval. The more this uncertainty
can be reduced, the better the attribution system. More
specifically, let S = {s1, s2, . . . , sm} be the set of all pos-
sible hosts that could have originated a payload and let
D = {d1, d2, . . . , dm} be the set of all possible hosts that
could have received it. Now, given a payload P and a time
interval (ti, tj), a source attribution system S, returns a can-
didate subset X of S such that any element not in this subset
is definitely not the source. Any element in the subset that
is not an actual source is a false positive. We can define a
destination attribution system in a similar manner and also
a full attribution system which reduces the uncertainty of
both source and destination. Ideally a PAS would have no
uncertainty in its association. However, any practical de-
sign of a PAS faces some serious challenges that need to be
overcome.

4.1 Design Challenges of PAS
An implementation of a payload attribution system has

two main components: a payload processing component and
a query processing component. In payload processing, a pay-
load is examined, transformed in some manner and trans-
ferred to a permanent storage device. Depending on the ap-
plication, it can process every single packet it sees or it can
selectively process packets. In the query processing compo-
nent, a query is received, appropriate data is retrieved from
storage, interpreted and attributions are sent back. Each
component presents its own set of challenges. For example,
during payload processing, the system must process packets
at line-speed and store the results to a much slower perma-
nent storage device. During the query phase, the system
must be aware of and comply with accuracy and privacy re-
quirements set forth by the security policies that govern a
network. Although the following do not represent any hard-
and-fast design rules, we believe a reliable payload attribu-
tion system should at least exhibit these basic properties:

1. Succinct Representation of Payload: Storing raw pay-
load presents three major hurdles. First, it requires a
lot of memory in the network component itself. Sec-
ond, transferring raw network data to permanent stor-
age creates a bottleneck due to slower speeds of cur-
rent storage devices. Third, longevity of stored data
depends on the capacity of the storage device. Capac-
ity of storage devices is still a limiting factor for stor-

ing raw network data for a prolonged period of time.
In order to overcome these hurdles, payloads must be
represented in a succinct form.

2. Efficient Utilization of Resources: Processing of pay-
load should ideally be done at line-speed so that it does
not create any bottlenecks. Moreover, fast memory is a
scarce resource therefore processing should utilize the
memory efficiently.

3. Robustness Against Transformations: Packets can go
through two types of transformations: (1) network-
induced transformations (2) malicious transformations.
Packet encapsulation, and fragmentation are examples
of network-induced transformations. Although such
transformations are rare [19], a payload attribution
system must handle them and NAT translations con-
sistently such that results are not impacted negatively.
Malicious transformation, on the other hand, is a more
serious threat to the reliability of the system [23].

4. Accuracy of Results: Depending on the data struc-
tures and algorithms used to store payload and an-
swer queries, results from the system may at best be
probabilistic. Therefore, the system must be able to
quantify the confidence in its results and preferably
send it along with the results. Acceptable accuracy of
attribution depends on how the results from the sys-
tem are used. For instance, to be used in a court of law
we would like to have the highest level of accuracy pos-
sible whereas to be used for network troubleshooting
we might not require such a high level of accuracy.

5. Privacy: Obviously, examining and storing payload
raises many privacy concerns. Therefore, a payload
attribution system must have proper mechanisms in
place to guarantee the privacy of users in the network
where it is deployed. Also, proper authorization mech-
anisms must be in place to ensure information is dis-
closed only to authorized parties. Necessary precau-
tions must also be taken to minimize the exposure of
information in the event system itself is compromised.

6. Compatibility with Existing Systems: Although a pay-
load attribution system can function independent of
any traceback mechanisms, from a pragmatic point of
view it is useful if the system can complement many
proposed traceback systems. (See Section 4.3 for de-
tails.)

4.2 Adapting HBF for Payload Attribution
In this section we describe in detail a payload attribution

system that we have designed and implemented, using an
HBF that meets some of the design challenges.

Adapting HBF. Note that the construction of an HBF de-
scribed in Section 3 can only verify whether a string queried
was seen by the HBF or not. However, if we would like
to attribute an excerpt to a host then payloads must be
tied to a particular host (or a pair of hosts). This is ac-
complished by inserting an additional substring of the form
(content‖offset‖hostID) for each block inserted into HBF,
where hostID could be a string that identifies the host that
originated or received the payload. For most practical pur-
poses hostID can simply be (SourceIP, DestinationIP).
During attribution if the source and destination hosts are
not known or if there is any uncertainty about them (See
Section 4.3) then the attribution system needs a list of candi-
date hostIDs from which it can choose a set of possible attri-

butions. For this purpose, a list of (SourceIP, DestinationIP)
can either be maintained by the PAS itself or be obtained
from connection records maintained by firewalls, intrusion
detection systems or hosts themselves.

(block||offset||packetID)

Disk

Network Data

Offset
Digest (HBF)

Payload
Digest (HBF)

For every block
in HBF block
decomposition

regularly
flushed to

a forensics server

(block||offset)

(packet) Network
Node

Packet or
host identifier

Figure 3: A high level view of the system, with em-
phasis on packet processing and HBF. The optional
block digest is not represented.

As depicted in Figure 3, the system is organized in sev-
eral tiers. The system sniffs the network and produces the
blocks in the hierarchical block decomposition of the packet
payload. For every such block, the information (content,
offset, hostID) is available, and the system maintains:

1. a block digest (optional): a HBF storing the hashes
of blocks of payload, (content).

2. an offset digest: a HBF storing the hashes of content
concatenated with its offset in the payload, (content‖offset).

3. a payload digest: a HBF storing, for every block
(content‖offset) in the offset digest, the corresponding
(content‖offset‖hostID).

One may use a BBF instead of an HBF but HBF leads
to fewer false positives. The main advantage of using a
block digest is to have better accuracy answering whether
a block has been seen at all (without knowing the offset).
Without it, one must query the offset digest with all possible
offsets: although the extra space afforded by not having a
block digest increases the accuracy of the offset digest, the
testing of every offset gives both designs roughly equivalent
accuracy (see Section 5.1). So, we can omit the block digest
and save storage to increase the accuracy of the offset digest.
Nevertheless, if there are lots of queries for small excerpts,
it may be beneficial to keep a block digest.

Payload Processing. Based on network load, required
accuracy and granularity of attribution, FPo, block size, and
time-interval to flush an HBF to disk are determined a priori.
When deployed PAS maintains an HBF of offset digests and
payload digests. It may also maintain a list of hostIDs if
necessary. Upon the predetermined time-interval, the HBF
and the list of hostIDs for the interval are flushed to disk.
Our implementation of PAS maintains a list of hostIDs of
the form (SourceIP, DestinationIP) for each HBF.

Query Processing. Now given an excerpt and a time in-
terval, the PAS first retrieves the HBF’s and list of hostIDs
that fall within the target time interval from the disk. Then
we would first like to verify whether the excerpt was seen by

the HBF. In order to achieve this we need to try all possible
sliding windows and offsets (as in Figure 1). For each possi-
ble alignment, simply block the excerpt and verify if all the
blocks are present in the HBF. If any of the blocks cannot be
found, then the query string has not been seen by the HBF.
If every single block is verified by the HBF, then we need
to make sure they appear in the same order as in the query
string. To verify the order, we append all possible offsets to
the strings (content‖offset) and verify their positions. Based
on their offset we may be able to go to a higher level in the
HBF hierarchy and increase the confidence as described ear-
lier. Now, in order to attribute the query string we simply
append the hostIDs from the list being maintained by our
PAS for the particular HBF being queried and verify the
(content‖offset‖hostID). Figure 4 depicts how a query is
processed in such a setup.

Figure 4: Query Processing in HBF. The block di-
gest will filter out some of the alignments, but it can
be omitted (as proposed in the text). In that case,
all alignments and offset combinations are passed
directly to the offset digest.

4.3 Deployment Challenges of PAS
Now the obvious question is where and how do we deploy a

PAS in a network? Ideally, deploying the system at a traffic
concentration point of a network would be enough. How-
ever, source IP addresses can be spoofed which means the
PAS will not be able to attribute an excerpt to its rightful
owner. Note, however, PAS is concerned with attributing
payload. This can be anything from a mundane web session
to a single-packet UDP worm. Thanks to randomization of
TCP initial sequence numbers it is difficult to spoof a useful
TCP session when the hosts are in different broadcast do-
mains. Only blind-attacks can succeed by spoofing. A good
example would be a worm like Slammer which uses single
UDP packet to propagate blindly across networks. Keeping
this in mind we can divide the attribution process into four
different scenarios. What follows is a discussion of various
deployment strategies that accommodates spoofing on the
Internet and applications of PAS.
Destination Attribution: In this case we would like to
use a PAS to attribute an excerpt to its destination. Since
it is not possible (or more precisely, useless) to spoof a desti-
nation IP address, deploying a PAS at a traffic concentration

point in the local network is sufficient. Viruses and worms
spread so fast they often infect most of the network before
an administrator can obtain enough information to contain
them. With the help of PAS the administrator can look at
past network traffic to identify hosts that have received a
particular worm and quarantine them. In this scenario, we
only need to maintain a list of destination addresses within
our networks. In addition, destination attribution is not
affected by spoofing in anyway.

Local Source Attribution: We can also use a PAS to at-
tribute an excerpt to a local source. Since source addresses
can easily be spoofed, in order to make the attribution reli-
able PAS has to be deployed in the local network on every
subnet. This would help us narrow down the source to its
subnet. Also note that the HBF parameters (space vs. ac-
curacy) can be tuned to optimize space utilization in this
hierarchical deployment. For example, a PAS at the edge
of the network which sees lot of traffic can maintain HBFs
with coarse parameters to save space whereas the ones in
the subnets can have more accurate HBFs. Local source at-
tributions are useful to prove or disprove an alleged policy
violation like, uploading a file that contains trade secrets.

Foreign Source Attribution: Foreign source attribution
is when we use a PAS to attribute an excerpt to a source
beyond the network boundary where PAS is installed. De-
ploying PAS at the core of a network to make source IP
reliable is impractical. We can, however, use some of the
source attribution techniques proposed for flooding attacks
at the core. For example, SPIE can be used to trace an ex-
cerpt to a foreign source if a PAS maintains MD5 hashes of
“non-mutable headers” of packets instead of (SourceIP,
DestinationIP). When the trace reaches the edge of the
network this MD5 hashes can then be used by SPIE to trace
the excerpt to its actual source through the core of the net-
work. Effectiveness of this method relies on the ability of
SPIE to keep the MD5 hashes for a prolonged period of
time. Another method, is to use a packet marking scheme
proposed in [14,15] which does not require any storage at the
core. When using this method a PAS (or a firewall for that
matter) can simply replace the source address of a packet
with the IP address encoded in the packet’s Fragment-Id
field. Then, the source can be traced to the closest router
that employs this address encoding scheme. In both cases,
note that PAS only needs to be deployed in the traffic con-
centration point of the destination network. Again, such
an elaborate setup is needed only when we need to trace-
back an excerpt involved in a blind-attack, like the Slam-
mer worm. Excerpts of most connection oriented sessions
can be attributed to its source just by using the PAS at the
destination network.

Full Attribution: For the sake of completeness, full attri-
bution is simply a combination destination attribution and
one of the source attributions. Therefore, deployment strat-
egy is a superset of the ones discussed above.

4.4 Attacks, Evasions, & Possible Defenses
Now let us look at how an adversary can evade the system

and how we can mitigate the effects. In general, attacks on
PAS can be grouped into four major categories:
Malicious Transformations: As discussed in the Design
Challenges malicious transformation is one of the biggest
threats to any system processing payloads. An attacker,
for example, can choose a rather low TCP segment sizes

(MSS) to send packets smaller than the block size chosen
for the HBF. PAS will not be able to perform attributions
because the payloads are smaller than the block size. One
of the solutions to this problem is to make the PAS stateful
so that it reassembles packets to a minimum size, say 128-
bytes, prior to processing. Another approach is to use value-
based hashing [24]. In this method, the block size depends
on the content as determined by a finger printing algorithm
such as Rabbin Fingerprints as oppose to a fixed block size.
The dynamic block sizes makes the evasion harder as the
attacker not only needs to break up the payload into smaller
blocks but also need to beat the odds of triggering the finger
printing algorithm. Both of these methods incur additional
memory and processing penalties.

Stuffing: An attacker may stuff a packet with no-ops and
escape characters such that the application view of the pay-
load is different from that of the network layer. If the excerpt
is obtained from the application layer PAS would not be
able to attribute the excerpt as the network view is different
from the application view. In comparison to simply hashing
the whole payload, HBF is more robust against stuffing be-
cause with HBFs, an adversary has to affect multiple blocks
(32-bytes, in our experiments) to instead of just the end or
beginning of the packet.

Exploiting Collisions: There are two types of collisions
involved in HBF: hash collisions in Bloom filter and offset
collisions in blocks. An attacker may exploit the collisions of
hash functions used by the PAS to create false attributions.
Using strong hash functions, such as MD5, can resist hash
collision attacks at the expense of performance. Besides,
choosing a random seed for each HBF created can help resist
the attack further. The offset collisions can be easily solved
if the query string is long enough. Since the whole packet
is also digested by the HBF, if the query string overlaps the
colliding blocks the HBF can easily detect the collisions.

Traffic Injection: An adversary may send a specially-
crafted packet with incriminating content to frame an inno-
cent host. For example, an adversary could spoof a packet
with incriminating data. Although a valid session may not
have been established by the packet and the host did not
really receive any data, PAS would indicate otherwise. Such
attacks are possible because PAS is not aware of the under-
lying protocol context and can be fooled. In such situations
we need to rely on corroborating sources, such as firewall
connection records, to verify the context in which the events
took place.

Denial of Service: Much like any system that monitors
a network our PAS is also vulnerable to flooding attacks.
However, the system would withstand more flooding than a
traditional packet logger (for the same amount of storage)
as there is considerable data reduction thanks to HBF. How-
ever, PAS suffers from denial of service attack as an attacker
can overflow the list of host IDs used for full attribution.

5. EXPERIMENTS & RESULTS
In this section we discuss some experiments to evaluate

the effectiveness of the prototype PAS we have implemented.
As noted before, HBF and BBF are constructed on top of
a standard Bloom filter. Decomposing the payloads into
blocks gives us the ability to query excerpts and also im-
proves the effective false positive rate. In the rest of the pa-
per we refer to the false positive rate of the standard Bloom

filter upon which our extensions are built as basic false pos-
itive rate (FPo) and refer to the false positive rate resulting
from our extensions as effective false positive rate (FPe). An
analysis of the relationship between the false positive rates
can be found in [7], where we show that HBF is always bet-
ter than BBF. In the experiments, we will confirm this and
show that FPe � FPo for reasonably large excerpts.

We first evaluate the effective false positive rate of the
HBF (FPe) so that we can determine the appropriate op-
erational parameters to the system, such as the basic false
positive rate (FPo), block size, minimum length of query
string, storage and processing requirements. Finally, we ex-
periment with a real network incident by tracing the prop-
agation of a mass-mailing virus.

5.1 Experimental Evaluation of the Effective
FP rate FPe

In this section we test the effective false positive rates of
HBF and BBF. For this purpose we used a packet trace of
all email-related traffic (IMAP, SMTP, and POP3) between
pairs of 1, 500 hosts for a 24-hour period. The trace was
about 1.5GB and contains approximately 3.3 million pack-
ets and is large enough to estimate the quantities involved.
Also, the results are independent from the nature of the traf-
fic. The trace was digested with HBFs whose block size was
32 bytes, for varying base false positive rates (FPo). We
manufactured queries by taking excerpts of actual payloads
and perturbing everything but the first 6 bytes of the query.
We removed any duplicates and made sure the queries did
not represent strings inserted into the HBFs. Although an
HBF is capable of producing partial matches for a given
query, in order to clearly quantify the results of our experi-
ments a query string was considered “matched” if and only
if all blocks queried by the HBF for the string returned true.
For this experiment every such match contributed to FPe.
Table 1 lists the FPe rates of the HBF determined using
100, 000 queries each, for various lengths and FPo.

The first thing that one notices is the extremely good FPe,
even with a FPo as low as 0.2370. If FPo is set to a moder-
ate value of 0.1090 then a query that is at least four blocks
long has an effective false positive rate of only 2×10−5. For
an HBF block size of 32 bytes, this means that if we can
capture at least 192 bytes, then we are guaranteed (no mat-
ter how they are aligned) to have at least 4 blocks in the
query and thus an effective false positive rate of less than
2× 10−5. As we can see the effective false positive rate de-
pends on (1) the FPo and (2) the length of the query string.
The FPo decreases the effective false positive rate as each
query made on the Bloom filter would return more accurate
answer. Queries that are at least 3 blocks long traverse the
hierarchy of the HBF. At each level of the hierarchy, queries
performed at lower levels are evaluated again. Such a re-
peated evaluation eliminates the false positives found in the
lower levels and contributing to better effective false positive
rates in HBFs.

It should be noted that excerpts of length exactly one
block result in higher effective false positive rates than the
basic false positive rate. This is due to the fact that the our
HBF implementation does not insert block content without
the offset (i.e just (content)). Therefore, to find a single
block the HBF has to try the excerpt with all possible offsets.

In order to evaluate the benefits of the hierarchical struc-
ture we did measure the effective false positive rate of BBF

and HBF with identical memory footprint: given that HBF
stores about twice as many blocks as BBF for the same block
size, we took FP ′ =

√
FP for both FPo and FPp, where

FP ′ is the basic FP rate of the HBF, and FP that of the
BBF. Table 2 lists the measured false positive rates of the
digests under various sizes of queries. HBF has a clear ad-
vantage over BBF of identical memory footprint in almost
all cases, as is suggested by the analysis (included in the
Appendix).

5.2 Resource Requirements
The following table lists the storage size of HBFs (includ-

ing hostIDs in the form of a list of unique (source, destina-
tion) IP address pairs) of various basic false positive rates
and block sizes for the trace. With a moderate FPo of 0.109
and a block size of 128 bytes we achieve a 136 : 1 data reduc-
tion by using an HBF while the effective false positive rate
is as low as 2× 10−5 (for query string of 512 bytes). Such a
block size is good enough to trace worms and viruses on the
Internet. Even if we reduce the block size to 32 bytes we
get a reduction of 39:1. Even comparing to the compressed
email trace (at 684MB) we achieve an order of magnitude
reduction in storage space. To further minimize storage of
the archive contents, a natural strategy is to compress the
filters. The randomized nature of Bloom filters makes them
difficult to compress. By populating the bit-vector sparsely
(by choosing k � m/n), however, it would possible to com-
press the Bloom filters better and at the same time improve
the false positive rates [21] at the cost of more high-speed
memory at the network component.

5.3 An Actual Case: Tracking MyDoom
We now describe an actual case where we used HBF to

track the propagation of mass-mailing virus MyDoom [9] in
a large network with thousands of hosts and multiple mail-
servers. The attributions obtained as a result can be used for
containing the virus within our network and from spreading
to other networks. As noted before, with PAS we can find
instances of viruses that infected the hosts before signature
information was ever available to intrusion detection sys-
tems or virus scanners. The PAS was deployed at the traffic
concentration point of the network and was setup to moni-
tor all email related traffic (POP, IMAP, SMTP) in and out
of the network. Although we were not aware of MyDoom at
the time, we were also collecting the network traffic for the
experiments in the previous sections from the same vantage
point. It was fortunate that the events coincided. The raw
packet trace was used to determine the “actual attribution
rate” of MyDoom.

Payload Processing. Using the effective false positive
rates in Table 1 we chose 0.1090 as the FPo of Bloom filter
on which the HBF is built. Our PAS implementation uses
MD5 as the hash function for the Bloom filter. Each MD5
operation yields 4 32-bit integers and two of these are used to
achieve the required FPo. Using the email traffic statistics
of the network we concluded that on average 70, 000 blocks
will be inserted into an HBF every minute. For the chosen
false positive rate of the Bloom filter we need to commit 5
bits per block (m = 5) and the optimal number of elements
the filter can contain is 70, 000 (n = 70, 000) which in turn
translates to a filter of size 43.75KB (i.e., n×m = 43.75KB).
HBF is flushed to disk when the filter is full (70, 000 blocks
are inserted) or 60 seconds have elapsed, whichever comes

Basic False Positive Rates (FPo)
Blocks 0.3930 0.2370 0.1550 0.1090 0.0804 0.0618 0.0489 0.0397

1 1.000000 0.999885 0.996099 0.976179 0.933179 0.870477 0.798657 0.728207
2 0.063758 0.064569 0.048981 0.036060 0.026212 0.021024 0.015881 0.012538
3 0.012081 0.002620 0.000744 0.000275 0.000172 0.000046 0.000023 –
4 0.000820 0.000230 0.000060 0.000020 – – – –

> 4 – – – – – – – –

Table 1: Measured effective false positive rate (FPe) of an HBF as a function of both the basic false positive
rate (FPo) and the length of the query (in blocks; 1block=32 bytes). Note that for blocks > 4, we encountered
no false positives, hence the measured FPe is equal to 0 (indicated by –).

Query Blocks 2 3 4 5
BBF 0.049621 0.035129 0.000560 0.000088
HBF 0.016457 0.000720 0.000110 0.0

Table 2: Performance comparison of a BBF and an HBF with the same memory footprint. (Query strings of
size > 5 resulted in 0 measured false positives for both BBF and HBF, hence are not listed.)

first. The PAS also maintained a list of hostIDs of the
form (SourceIP, DestinationIP) per HBF so that the sys-
tem does not rely on other sources for candidate hostIDs.
During the experiments, we noted on average each HBF had
about 260 hostIDs. In summary, the PAS was run on a
3GHz Pentium4 machine with 1GB of RAM. The average
incoming rate of email traffic was 1MB/minute and the av-
erage HBF output, including hostIDs, was 46KB/minute.
On average, inserting a packet into the HBF took 28.6µs
including the MD5.

Query Processing. Given the HBFs of the email traffic
we now set to look for the presence of the MyDoom virus.
To query the HBF we need three parameters, namely: an
excerpt, time interval, and candidate hostIDs. Each copy of
the virus comes with a 22KB attachment part of which can
be used as the excerpt. Note, however, at the network layer
the attachment is MIME-encoded so we MIME-encoded one
of the attachments and used the first 96-bytes to 256-bytes
as the signatures of MyDoom. In email parlance, these sig-
natures are two to seven line-long excerpts. Time interval
and hostID were left open in which case the query processor
tries to attribute the excerpt using all available data over all
hostIDs. For this particular use case, the query processor
used data observed over a five day period (more precisely,
138 hours and 13 minutes) over 136, 631 unique hostIDs.
For the sole goal of quantifying the accuracy, we used the
raw packet trace and the actual attribution rate was ob-
tained by grepping the raw packet trace with ngrep for the
virus signature. In actual deployment of the PAS, the raw
packet trace is of course not needed.

Discussion. Figure 5 shows the number of MyDoom in-
stances given full attribution every hour over the five day
period whereas Figure 6 zooms in on a 24-hour period. As
we can see from the figures, the actual number of attribu-
tions forms the lower bound and the attributions using the
smallest excerpt (96-byte signature) forms the upper bound.
Figure 6 clearly illustrates how increasing the length of ex-
cerpts reduces number of false attributions. When we use
a 256-byte excerpt the number of attributions converges to
that of actual attributions. More precisely, using the 256-
byte signature correctly found all the 25328 actual attri-
butions observed during the five day period–hosts that re-

ceived at least one copy of the virus–along with 33 incorrect
attributions– hosts that did not receive the virus but was
identified as if they did because of false positives. The fol-
lowing table lists the number of incorrect attributions found
for the whole five days for various lengths of the excerpts.

Length 96 128 160 192 224 256
Incorrect 1375 932 695 500 293 33

Table 4: For a total number of 25328 actual attri-
butions of MyDoom over the five day period, the
table lists number of incorrect attributions for vary-
ing lengths of excerpts used for querying the PAS.

In conclusion, the system as deployed was quite effective
in finding all the instances of the virus in the email traffic
during a five day period, with acceptable false positive rate
and no false negatives. With the help of PAS attributions
we were also able to obtain the following facts about the
hosts that were infected by the virus. Over the five day pe-
riod 679 unique source addresses originated at least a copy of
the virus, of which only 52 machines were from our networks
and rest of the machines were outside our networks. Of 52
local machines 24 of them sent more than 50 copies of the
virus (not including 4 known mail-servers). Furthermore,
we found one particular host still live in our network which
sent out more than 5000 copies of the virus! The sources
inside our network sent copies of the virus to 2011 unique
IP addresses outside our network of which 74 got more than
50 copies of the virus. These statistics would have helped a
network administrator modify the security policies to abate
the severity of the infection. For example, network adminis-
trator could have blocked the traffic from infected machines.
Although we were lucky in collecting the packet traffic dur-
ing that time period, we only learned about the virus after
wards, and still had all the data needed for our analysis.
This is the main advantage of PAS as opposed to intrusion
detection, where we would only have been able to gather
the portion of the data after the virus was identified and its
signature isolated.

Finally, for most practical purposes PAS can be deployed
just at a traffic concentration point of a network. Large
enterprises and broadband service providers, for example,
can use PAS to monitor network traffic and identify victims

Basic False Positive Rates (FPo)
Block Sizes 0.3930 0.2370 0.1550 0.1090 0.0804 0.0618 0.0489 0.0397

32 19.42 19.48 28.32 38.62 47.00 56.30 65.65 74.95
64 9.88 9.88 15.40 19.48 25.47 30.48 33.85 38.62
128 6.00 6.03 8.91 11.80 14.69 17.55 18.77 21.39
256 4.10 4.10 6.73 7.95 9.28 11.07 12.05 13.72

Table 3: Storage requirements (in MB) of HBF (including the hostID {source, destination IP}) for varying
basic false positive rates (FPo) and block sizes.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 20 40 60 80 100 120 140

N
um

be
r

of
 M

yD
oo

m
 In

st
an

ce
s

Time (in hours)

96-byte signature
256-byte signature

Actual Propagation Rate

Figure 5: Number of MyDoom attributions in the moni-

tored network for five days.

 150

 200

 250

 300

 350

 400

 450

 500

 35 40 45 50 55

Time (in hours)

96-byte Signature
128-byte Signature
160-byte Signature
192-byte Signature
224-byte Signature
256-byte Signature

Actual Propagation Rate

Figure 6: Zooming in on a 24-hour period in Figure 5 with

more signatures.

of worms and viruses. For such uses PAS does not rely on
any IP traceback mechanisms and the list of hostIDs that
needs to be maintained is much less than what is required
for full attribution.

6. CONCLUSION & FUTURE WORK
In this paper, we introduce the problem of payload attri-

bution in a network. Although we focused on IP networks,
our ideas apply to other types of networks as well. Un-
like previous systems, the proposed system is able to work
with arbitrary fragments or excerpts of the payload. Our
contention is that in many situations a payload based attri-
bution system is more useful as we often do not have the
complete network packets of interest but only an excerpt
thereof. For example, we may only possess a code fragment
of a virus, as shown in the use case, or the knowledge that a
particular file was transferred over the network but no idea
when, where and how. In order to construct a payload attri-
bution system that works with excerpts, we propose a novel
packet digesting mechanism, namely, a Hierarchical Bloom
filter (HBF). We show both by analysis and experimentation
that HBFs yield a performance superior to that of a simpler
block-based strategy, that involves blocking the payload and
inserting blocks along with their offsets into a Bloom filter.
Furthermore, our experimental results with actual network
data give reasonable effective false positive (FPe) rates for
reasonably long queries. Essentially, our results show that if
a query is longer than four blocks, then the FPe obtained is
much less than the basic Bloom filter FPo. This is because
an HBF consolidates many queries to the underlying Bloom

filter, and combined together these queries make up a precise
answer to the payload query. Our experimental results also
indicate that our system is practical. We observe an order
of magnitude reduction in data compared to raw network
traffic. Privacy is achieved by one-way hashes in the Bloom
filters therefore even if the system itself is compromised no
raw data is ever exposed.

The system we have described is part of a larger system for
facilitating network forensics over wide area networks [26].
The system we have implemented monitors network traffic,
creates hash-based digests of payload, and archives them
periodically. A user-friendly query mechanism provides the
interface to answer postmortem questions about the pay-
load. There are several interesting problems to address as
part of our future work. How do we handle compressed data
or encrypted data on the network? How can the system be
more robust towards various attacks proposed in the pa-
per? What are the advantages of amalgamating such a PAS
with current IDS systems [17,22,2]? Will the ability of PAS
to remember payloads of prolonged past increase the effec-
tiveness of intrusion detection systems which currently work
with a much narrower field of vision? We hope to answer
these questions in future.

7. ACKNOWLEDGMENT
We thank Vern Paxson, Adrian Perrig, and the anony-

mous reviewers for many helpful suggestions. This work
was partially supported by a NSA/DoD capacity building
grant.

8. REFERENCES
[1] Infinistream. http://www.networkgeneral.com/.

[2] Snort. http://www.snort.org/.

[3] C.J. Antonelli, M. Undy, and P. Honeyman. The
packet vault: Secure storage of network data. Santa
Clara, April 1999. Proc. USENIX Workshop on
Intrusion Detection and Network Monitoring.

[4] S. M. Bellovin, M. Leech, and T. Taylor. ICMP
traceback messages. In Internet Draft
draft-ietf-itrace-01.txt (Work in progress). IETF, Oct
2001.

[5] B. Bloom. Space/time tradeoffs in hash coding with
allowable errors. In CACM, pages 422–426, 1970.

[6] A. Broder and M. Mitzenmatcher. Network
applications of bloom filters: A survey. In Annual
Allerton Conference on Communication, Control, and
Computing, Urbana-Champaign, Illinois, USA,
October 2002.

[7] H. Brönnimann, K. Shanmugasundaram, and
N. Memon. String matching on the internet. In
Workshop on Combinatorial and Algorithmic Aspects
of Networking, Banf, Canada, August 2004.

[8] H. Burch and B. Cheswick. Tracing anonymous
packets to their approximate source. In Proc. USENIX
LISA, Dec 2000.

[9] CERT. CERT incident note in-2004-1. http:
//www.cert.org/incident_notes/IN-2004-01.html.

[10] D. Dean, M. Franklin, and A. Stubblefield. An
algebraic approach to IP traceback. In Proceedings of
NDSS, Feb 2001.

[11] S. Dharmapurikar, M. Attig, and J. Lockwood. Design
and implementation of a string matching system for
network intrusion detection using FPGA-based bloom
filters. Technical Report, CSE Dept, Washington
University, 2004. Saint Louis, MO.

[12] Sandstorm Enterprises. NetIntercept.
http://www.sandstorm.com/.

[13] L. Fan, P. Cao, J. Almeida, and A. Z. Broder.
Summary cache: A scalable wide-area web cache
sharing protocol. In Proceedings of ACM
SIGCOMM’98, 1998.

[14] I. Hamadeh and G. Kesidis. Packet marking for
traceback of illegal content distribution. In Proceedings
of International Conference on Cross-Media Service
Delivery (CMSD), Santorini, Greece, May 2003.

[15] I. Hamadeh and G. Kesidis. Performance of ip address
fragmentation strategies for ddos traceback. In
Proceedings of IEEE IPCOM, Kansas City, October
2003.

[16] Abhishek Kumar, Jun Xu, Jia Wang, Oliver
Spatschek, and Li Li. Space-code bloom filter for
efficient per-flow traffic measurement. In Proceedings
of IEEE INFOCOM, Hong Kong, China, March 2004.

[17] S. Kumar and E. H. Spafford. An application of
pattern matching in intrusion detection. Purdue
University Technical Report CSD-TR-94-013, 1994.

[18] A. Mankin, D. Massey, C. L. Wu, S. F. Wu, and
L. Zhang. On design and evaluation of
“intention-driven” ICMP traceback. In Proc. IEEE
International Conference on Computer
Communications and Networks, Oct 2001.

[19] S. McCreary and K. Claffy. Trends in wide area ip
traffic patterns: A view from ames internet exchange.
In ITC Specialist Seminar on IP Traffic Modelling,
Measurement, and Management, March 2000.

[20] A. Mitchell and G. Vigna. MNEMOSYNE: Designing
and implementing network short-term memory. In
International Conference on Engineering of Complex
Computer Systems. IEEE, Dec 2002.

[21] M. Mitzenmacher. Compressed bloom filters. In
Proceedings of the 20th Annual ACM Symposium on
Principles of Distributed Computing, pages 144–150,
2001.

[22] V. Paxson. Bro: A system for detecting network
intruders in real-time. 7th Annual USENIX Security
Symposium, January 1998.

[23] T. H. Ptacek and T. N. Newsham. Insertion, evasion,
and denial of service: Eluding network intrusion
detection. Secure Networks, Inc., January 1998.

[24] Sean C. Rhea, Kevin Liang, and Eric Brewer.
Value-based web caching. In Proceedings of the twelfth
international conference on World Wide Web, pages
619–628. ACM Press, 2003.

[25] S. Savage, D. Wetherall, A. Karlin, and T. Anderson.
Practical network support for IP traceback. In
Proceedings of the 2000 ACM SIGCOMM Conference,
pages 295–306, Stockholm, Sweden, Aug 2000.

[26] K. Shanmugasundaram, A. Savant, H. Brönnimann,
and N. Memon. Fornet: A distributed forensics
network. In The Second International Workshop on
Mathematical Methods, Models and Architectures for
Computer Networks Security, St. Petersburg, Russia,
October 2003.

[27] A. C. Snoeren, C. Partridge, L. A. Sanchez, C. E.
Jones, F. Tchakountio, S. T. Kent, and W. T. Strayer.
Hash-based IP traceback. In ACM SIGCOMM, San
Diego, California, USA, August 2001.

[28] D. Song and A. Perrig. Advanced and authenticated
marking schemes for IP traceback. In IEEE Infocomm,
2001.

[29] Eugene H. Spafford. OPUS: Preventing weak
password choices. In Computers & Security, pages
273–278, May 1992.

[30] S. Staniford-Chen and L.T. Heberlein. Holding
intruders accountable on the internet. Oakland, 1995.
Proceedings of the 1995 IEEE Symposium on Security
and Privacy.

[31] Y. Zhang and V. Paxson. Detecting stepping stones.
In Proceedings of the 9th USENIX Security
Symposium, Denver, Colorado, USA, August 2000.

h
http://www.snort.org/
http://www.cert.org/incident_notes/IN-2004-01.html
http://www.cert.org/incident_notes/IN-2004-01.html
http://www.sandstorm.com/

	Introduction
	Related Work
	Bloom Filters
	Attribution Systems

	Hierarchical Bloom Filters
	Block-Based Bloom Filter (BBF)
	Hierarchical Bloom Filter

	Payload Attribution via HBF
	Design Challenges of PAS
	Adapting HBF for Payload Attribution
	Deployment Challenges of PAS
	Attacks, Evasions, & Possible Defenses

	Experiments & Results
	Experimental Evaluation of the Effective FP rate FPe
	Resource Requirements
	An Actual Case: Tracking MyDoom

	Conclusion & Future Work
	Acknowledgment
	REFERENCES -9pt

