Acknowledgments: Some of the slides are fully or partially obtained from other sources. Reference is noted on the bottom of each slide, when the content is fully obtained from another source. Otherwise a full list of references is provided on the last slide.
802.11 DoS Attacks

- In 802.11, the goal of DoS attack is to prevent legitimate users from accessing the wireless LAN
- 2 major types of Attacks
 - RF attacks
 - 802.11 Protocol attacks
RF Attacks on 802.11

- Layer 1 attack (jamming)
- Involves attacker using some type of radio transmitter to generate noise in the 2.4 Ghz frequency
- Transmission disruption occurs when signal-to-noise ratio reaches certain level
- Attacks can be effective, but equipment is expensive
- Not a major attack focus
802.11 Protocol Attacks

• Level 2 attacks
• Based on vulnerabilities in 802.11 protocol
• Require only a laptop or PDA with wireless NIC
• Attacks based on Two kinds of vulnerabilities
 • Identity vulnerabilities
 • Media Access Control vulnerabilities
Identity Vulnerabilities
Identity Vulnerabilities

- Arise from implicit trust placed in a speaker’s source address
- 802.11 nodes are identified at MAC layer by unique address as wired nodes are.
- Frames are not authenticated, meaning an attack can change his MAC address and spoof other nodes (similar to what is done in ARP spoofing)
- Causes different kinds of attacks:
 - Deauthentication attack (most effective)
 - Disassociation attack
Deauthentication Attack

• Authentication Procedure
 • After selecting an AP for communication, clients must authenticate themselves to the AP with their MAC address
 • Part of Authentication framework is a message allowing clients to explicitly deauthenticate from the AP

• Vulnerability
 • An attacker can spoof the deauthentication message causing the communication between AP and client to suspend, causing a DoS

• Result
 • Client must re-authenticate to resume communication with AP
Deauthentication Attack (Cont.)

- Client authenticates then associates
- Attacker needs to only send 1 spoofed packet to AP
- Client forced to re-authenticate with AP
 - Unfortunately, this message itself is not authenticated using any keying material.
Deauthentication Attack (Cont.)

• By repeating attack, client can be kept from transmitting or receiving data indefinitely
• Attack can be executed on individual client or all clients
 • Individual Clients
 • Attacker spoofs clients address telling AP to deauthenticate them
 • All Clients
 • Attacker spoofs AP telling all clients to deauthenticate
Disassociation Attack

- **Disassociation Procedure**
 - After Authentication, a client must associate with AP to allow the AP to forward packets on the clients behalf
 - As with deauthentication, 802.11 provides a disassociation request to tell AP to stop handling the client’s traffic
- **Vulnerability**
 - Attacker can spoof disassociation message causing the AP to disassociate the client, resulting in DoS
 - Attack is nearly identical to deauthentication attack
- **Result**
 - Client must re-associate with AP to resume communication
Which method is more effective?

- Both Deauthentication and Disassociation provide similar DoS results but Deauthentication is more effective due extra work required to return to associated state.

- Authentication happens before association, therefore a deauthentication attack will require a client to re-authenticate and re-associate.
 - Results in 2 RTT

- Disassociation attack only requires a client to re-associate but not re-authenticate.
 - Results in 1 RTT
Media Access Vulnerabilities
Media Access Control Layer

- 802.11 MAC layer controls how the medium is access by clients to allow for free collision fast transmission
- To prevent collisions, a combination of physical carrier-sense and virtual carrier-sense mechanisms is used

- Physical carrier-sense
 - Uses CSMA/CA with Time windows

- Virtual carrier-sense
 - Uses RTS/CTS with NAV
CSMA/CA

- CSMA/CA stands for Carrier Sense Multiple Access with Collision Avoidance
- Works like wired Ethernet except uses Collision Avoidance instead of Collision Detection
- In addition, Time windows are used to prioritize access to the medium
- Before sending, clients must observe a quiet medium for one of the time windows
- The two most important Time windows are:
 - Short Interframe Space (SIFS)
 - Distributed Coordination Function Interframe Space (DIFS)
Time Windows

- **DIFS**
 - Defines the time the medium must be free before a client can transfer
- **SIFS**
 - Used to separate transmission belonging to the same dialog
 - Shorter time than DIFS
- To avoid all nodes transmitting immediately after DIFS expires, time after DIFS subdivided into slots
- Each client randomly picks a slot to transmit in, if collision occurs then random backoff algorithm is used before resending
Attack on Time Windows

• Every transmitting client must wait at least an SIFS interval or longer
• An Attacker can completely monopolize the channel by sending a signal before the end of every SIFS interval
• Attack is limited
 • Very resource intensive – SIFS is 28 µs (802.11b), the attacker will have to send 50,000 packets per sec to disable network
Virtual Carrier Sense

- Mechanism needed in preventing collision from two clients not hearing each other (hidden terminal problem)

- RTS/CTS
 - A client wanting to transmit a packet first sends a RTS (Request to Send)
 - RTS includes source, destination, and duration
 - A client will respond with a CTS (Clear to Send) packet
Virtual Carrier Sense (Cont.)

- MAC data frame

- Indicates number of µs the channel is reserved
- Used in the exchange of RTS/CTS sequencing packets
Virtual Carrier Sense (Cont.)

• All clients receiving either RTS and/or CTS will set their Virtual Carrier Sense indicator called a Network Allocation Vector (NAV)
• Clients will use this information together with the Physical Carrier Sense when sensing the medium
• Only when a client’s NAV reaches 0 is it allowed to transmit over the medium
Virtual Carrier Sense (Cont.)

- Transaction between two stations and the NAV settings of the neighbors
Attack on NAV

- Arises from forging the duration field of a MAC packet
- Attacker can set Duration field to high values causing NAV values to be incremented and preventing channel access to others
 - Maximum of 32767, equals to about 32 ms
 - Attacker needs to transmit only 30 times per second
- Attack is improved if duration of RTS is forged, clients will propagate attack with CTS response
NAV Attack Example

Access Point and Node 2 can’t xmit (but Node 1 can)
NAV Attack Example with RTS/CTS

- AP and both nodes barred from transmitting
- RTS
 - Duration = 32000
- CTS
 - Duration = 31000
- CTS
 - Duration = 31000
- CTS
 - Duration = 31000
- Attack
Practical Perspective

• Theoretically attacks work, but what about in actual practice on commodity hardware?
 • Yes, after testing can be done with NIC tweaking
• Most NICs allow generation of management frames to exploit the identity attacks (deauthentication & disassociation)
• Most NICs do not, however, allow generation of control frames (required for NAV attack) due to firmware restrictions
 • But, there is still away around this
Practical Attacks and Defenses
Deauthentication Attack Simulation

- Testing Hardware
 - 1 attacker (iPAQ H3600 with Dlink DWL-650 card)
 - 1 access point (built with Linux HostAP driver)
 - 4 clients (winXp, Linux Thinkpad, Linux iPAQ, MacOS X)
 - 1 monitoring station (record results of test)

- Scenario
 - Each of the 4 legitimate clients attempt to transfer a large file via ftp

- Two Attacks
 - Attack on individual client (MacOS X) at time 15 sec lasting 8 sec
 - Attack on all clients at time 101 sec lasting 26 sec
Deauthentication Attack Results
Deauthentication Attack Defense

- Two Proposed Defenses
- Defense 1: Authenticate management frames
 - Not feasible using software upgrade
 - A standardized authentication framework is required, can take time
- Defense 2: Delay honoring deauthentication request
 - Based on the observed behavior that legitimate clients do not deauthenticate then send data
 - Small delay interval (5-10 seconds)
 - If no other frames received from source then honor request
- Defense 2 more practical
Deauthentication Defense Results

![Graph showing deauthentication defense results for different operating systems (Attacker, Win XP, Linux Thinkpad, Linux iPaq, MacOS). The x-axis represents time (s) from 1 to 45, and the y-axis represents a value scale ranging from 0 to 700. The graph illustrates the response of each system to deauthentication attacks.]
Virtual Carrier Sense Attack (NAV attack)

- NAV attack simulation set up like Deauth Attack
- NAV simulation run several times with different hardware, resulted in failed attacks
 - Conclusions: many vendors do not implement the 802.11 spec correctly
- NAV attack trace

<table>
<thead>
<tr>
<th>Time (s)</th>
<th>Source</th>
<th>Destination</th>
<th>Duration (ms)</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.294020</td>
<td>:e7:00:15:01</td>
<td></td>
<td>32.767</td>
<td>802.11 CTS</td>
</tr>
<tr>
<td>1.295192</td>
<td>:93:ea:e7:0f</td>
<td>:93:ea:ab:df</td>
<td>0.258</td>
<td>TCP Data</td>
</tr>
<tr>
<td>1.296540</td>
<td>:93:ea:e7:0f</td>
<td>:93:ea:ab:df</td>
<td>0</td>
<td>802.11 Ack</td>
</tr>
<tr>
<td>1.297869</td>
<td>:93:ea:e7:0f</td>
<td>:93:ea:ab:df</td>
<td>0.258</td>
<td>TCP Data</td>
</tr>
</tbody>
</table>
NAV Attack Simulation

• Because of bug, NAV attack simulated using NS2
 • 18 Clients
 • 1 Access Point
 • 1 Attacker

• Scenario
 • Clients attempt to transfer large file via ftp

• Attack
 • Simulated attacks with ACK frames and RTS/CTS sequence
 • 30 attack frames per second
 • 37.767 ms duration per attack frame
NAV Attack Results

![Graph showing NAV Attack Results](image-url)
NAV Attack Defense

- Defense based on fact that legitimate duration values are relatively small
- Put a cap on value of the max duration on received frames
- If station receives frame with duration more than cap value, truncate the duration of the cap value
Simulated NAV Defense Results
Conclusions

- 802.11 WLANs suffer from many DoS attacks not inherent in wired cousin.
- Should not depend on restricted firmware interfaces to prevent attacks
- Deauthentication attack is biggest concern
- 802.11 DoS attacks seem to stem from the IEEE’s goal to provide authentication, confidentiality, and integrity and not availability
- In the future, 802.11n and 802.16(WiMax) adoption will greatly extend the range of these networks. The impact of DoS attacks at the Data-Link level could be huge.
Fingerprinting

- What is fingerprinting?
 - Process by which a target object is identified by its externally observable characteristics

Target Device

Fingerprinter

What would you like to identify today?
Device Driver Fingerprinting

- Utility of fingerprinting
 - Intrusion detection: detecting MAC address spoofing
 - Network forensics: narrow or verify source of network event or security incident

- Why not use the MAC Address?
 - MAC address is one way to identify a NIC manufacturer
 - Easy to change (spooft) to another legitimate, copied, or fictitious MAC
802.11 Active Scanning

- A station sends probe request frames when it needs to discover access points in a wireless network. This process is known as active scanning.

- The IEEE 802.11 standard specifies active scanning as...

 For every channel:
 - Broadcast probe request frame;
 - Start channel timer, t;
 - If t reaches MinChannelTime AND current channel is IDLE:
 - Scan to the next channel;
 - Else
 - Wait until t reaches MaxChannelTime;
 - Process probe response frames from current channel;
 - Scan to the next channel;

- The remaining details of this process implementation are determined by wireless driver authors...
Intuition

- As you may have guessed, we distinguish drivers based on unique active scanning!

![Graphs showing time delta from previous frame for D-Link and Cisco drivers.]

- D-Link driver: D-Link DWL-G520 PCI Wireless NIC
- Cisco driver: Aironet AIR-CB21AG-A-K9 PCI Wireless NIC
Fingerprinting Approach
Outline of Method

- Supervised Bayesian Classification:
 - Create tagged signatures (Bayesian Models)
 - 17 different device drivers
 - 12 hour traffic traces
 - Capture traffic trace for an unidentified driver
 - Compare how close the unidentified trace is to every tagged signature and identify based on nearest match
Signature Generation

- Driver signatures are based on the delta arrival time between probe requests.
- Signatures are obtained via binning with an empirically tuned and fixed bin width.
 - Record the percentage of probe requests placed in each bin
 - Record the average, for each bin, of all actual (non-rounded) delta arrival time values in that bin
 - Generate a vector initialized with these parameters as the signature for that driver
Factors that Effect Probing

- Association status
 - Associated to an access point
 - Unassociated
- Driver management
 - Managed by Windows
 - Managed by NIC vendor drivers
Experimental Setup

• The fingerprinter: Pentium 4 running Linux with a Cisco Aironet a/b/g wireless card
• The victims: 17 different wireless drivers, including drivers from Apple, Cisco, D-link, Intel, Linksys, Madwifi, Netgear, Proxim, and SMC
• The signature database: 31 unique driver signatures with tags and signature of the format:
 • driver assoc-status manager : (bin, % in bin, mean)
Experimental Setup

- Test set #1, Master Signature Database (Lab):
 - No background traffic
 - No obstructions
- Test set #2 (Home network):
 - No background traffic
 - Wall between fingerprinter and victim
- Test set #3 (Coffee house):
 - Background wireless traffic
 - Miscellaneous objects between fingerprinter and victim
Results

<table>
<thead>
<tr>
<th>Test Set</th>
<th>Successful</th>
<th>Total</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>55</td>
<td>57</td>
<td>96%</td>
</tr>
<tr>
<td>2</td>
<td>48</td>
<td>57</td>
<td>84%</td>
</tr>
<tr>
<td>3</td>
<td>44</td>
<td>57</td>
<td>77%</td>
</tr>
</tbody>
</table>

![Bar Chart]

Accuracy of Driver Percentage

- **100**
- **99-90**
- **89-80**
- **79-70**
- **69-60**
Results

Trace Data (Minutes)

Fingerprinting Accuracy (Percentage)

Test Set 1
Test Set 2
Test Set 3
Limitations

- Cannot distinguish between different driver versions
- Accuracy is sensitive to network conditions
Acknowledgments/References

• [Lindsey] CSCE790: Security and Privacy for Emerging Ubiquitous Communication system, Hal Lindsey, University of South Carolina, SPring 2008.
