CE 815 – Secure Software Systems

ML-Based Vulnerability Detection Methods (Vulchecker)

Mohammad Haddadian/Mehdi Kharrazi Department of Computer Engineering Sharif University of Technology

Acknowledgments: Some of the slides are fully or partially obtained from other sources. A reference is noted on the bottom of each slide, when the content is fully obtained from another source. Otherwise a full list of references is provided on the last slide.

- Automated vulnerability detection
- Code graph representation
- Word2Vec
- GNN
- Hand-selected dataset
- Problem?

Prior Works Limitations

- Detects vulnerability at function level
- Can't find vulnerability type

Fall 1402

- VulChecker
- Precisely locate vulnerabilities in source code (down to the exact instruction)
- Classify vulnerabilities type
- Low-cost dataset augmentation
- Manifestation distance
- Level of program representation

Prior Works

			(1) Code Representation							(2) Sample Selection						(3) Feature Extraction							(4) Model indu	(5) Application				1			
								Code Slicing																			, e				
			Level Structure					Planc	:	Pol Cut				Node			Edge	1	nput	Model	Utilizes Edge Type		Detection 1/		vel	E.					
Year	Cite	Name	Source Code	щ	Linear	CFG	PDG	CPG	nesCPG	ePD/G	Function	Control-flow	Data-flow	Generic	Manifestation	Region	Scoped	One-hot Enc.	Word2Vec	Doc2Vec	Explicit features	Ditype feature	Sequence	Graph			Function	Code Region	Line	Instruction	Classifies Vuln.
2018	[28]	Preela'18	•		-		_	-	-	-	-	-	_	-	-	-		1.0	-	_	-			-	CNN RE		-	-	-	-	-
2018	[20]	Vuldeenecker			1.						<u>- ا</u>		-					12					12		BISTM		-	-			11
2016	[40]	willDeeDecker			1.													12					12		BILSTM						
2019	[30]	Device			•								•	•				11					1.1		GCN DNN			•			•
2019	[37]	VCDatestor							•										•						CCN DNN	•	•				
2019	[1+]	NW-LCS																۰.		•					LCS Scores			•			-
2019	[31]	1.220				•					· •							12							CNN		•				
2020	[29]	Zamma'20																	•				1.2		DNN						-
2020	[30]	Europed			•							•		•				Ľ					17		GNN GRU	-		•			
2020	[32]	ATAWA						-	•		11														GNN GRU						-
2020	[20]	SuSaUD						•			•								•					•	BDNN	•	•				
2021	[20]	1 221	•		11													12					1.2		CNN+RNN DNN						
2021	[20]	Vuldaelocator			11									•				12					1.2		BIDNN			•			
2021	[12]	DeepWukeng			•										-			11					1.1		GCN DNN						-
2021	[35]	War21										•		•						•					GUN, DNN			•			-
2021	[35]	RONNAVD					•	-																	GNN GRU						
2021	111	Pavaol																							GCN DNN						
2021	[11]	VulChaokar	•		-			•			•			•	-	•			•			-			GN (S2V)	-	•				-
		AntCuperset		•						•		•			•		•	0			•	-		•	014(324)	•			•		-

CE 815 - Vulnerability Analysis

[VulChecker]

Embedding

- Some embeddings include one hot encodings and pre-processed embeddings (e.g., Word2Vec)
- In some cases entire portions of code are summarized using Doc2Vec
- The issue with these representations:
 - nodes in G_i would likely capture multiple operations in a single line of source code resulting in a loss in semantic precision
 - the use of pre-processed embeddings prevents the model from learning the best representation to optimize the learning objective

 ePDGs are graph structures in which nodes represent atomic machine-level instructions and edges represent control- and data-flow dependencies between instructions

Program Slicing

Program Slicing (cont.)

VulChecker

Figure 2: A diagram showing the steps of VulChecker's pipeline for one CWE. Note that the real graphs are significantly larger than what is visualized (e.g., projects like libgit 2-v0.26.1 have over 18 million nodes in G). Solid edges represent control-flow and dashed edges are data dependencies.

Fall 1402

CE 815 - Vulnerability Analysis

ePDG Generation

- Lowering the source code S to LLVM IR
- Extracting G based on the structure and flows it contains

Lowering Code to LLVM IR

- Simplifies the program representation:
 - Control-flow: complicated branching constructs in source code are reduced to conditional jumps that test a single condition
 - Data-flow: definition-use chains are shorter and less complex as they are based on virtual register values rather than source code variables
- During lowering, VulChecker instructs Clang to embed debug information in the IR, which enables traceability of IR instructions back to source code instructions

- Using semantic-preserving compiler optimizations provided by LLVM to simplify and better express the code in G:
 - Function inlining to replace function call sites in the IR with a concrete copy of the called function body
 - Indirect branch expansion to eliminate indirect branching constructs
 - Dead code elimination to reduce the size of the output graph

Generating the ePDG

- C is the set of all types of instructions in the LLVM instruction API (e.g., return, add, allocate, etc.) and A_c is the set of all possible attributes for instruction v ∈ V of type c.
- D is the set of edge types (i.e., control-flow or data-flow) and A_d is the set of flow attributes for a flow type d (e.g., the data type of the data dependency) $G := (\mathcal{V}, \mathcal{E}, q, r)$

$$q: \mathcal{V} \to \{\{c,a\}: c \in C, a \in A_c\}$$
$$r: \mathcal{E} \to \{\{(x,y),d,b\}: x, y \in \mathcal{V}, d \in D, b \in A_d\}$$

- Pol Criteria
- Program Slicing
 - Crawls G backwards from m_i using breadth first search (BFS)
- Labeling

Feature Extraction

- Operational Node Features
- Structural Node Features
 - Distance from the nearest potential root cause
 - Betweeness centrality measure (BEC)
- Semantic Node Features
- Edge Features

Table 2: Summary of Features used in G'_i									
	Name	Туре	Count						
		Bool Num. Categ.							
	Has static value?	•	1						
	Static value	•	1						
	Operation {+, *, %,}	•	54						
	Basic function {malloc, read, }	•	1228						
	Part of IF clause	•	1						
ы	Number of data dependents	•	1						
te	Number of control dependents	•	1						
Vel Vel	Betweeness centrality measure	•	1						
	Distance to m _i	•	1						
	Distance to nearest r	•	1						
	Operation of nearest r	•	54						
	Output dtype { int, float, }	•	6						
	Node tag $\{r, m, none\}$	•	2						
		Total	1352						
e	Output dtype {float, pointer }		6						
gþ	Edge type {CFG, DFG}		2						
-		Total	8						

Data Augmentation

- Data augmentation is a technique for creating new training examples from existing ones. VulChecker augments its training dataset by adding synthetic vulnerabilities to "clean" projects.
- Validity: Since augmentation process splices multiple ePDGs, it may produce samples where a vulnerability ePDG subgraph lies on an infeasible path in the augmented ePDG

Data Augmentation (cont.)

Figure 3: An illustration of an ePDG from the wild $G^{(w)}$ being augmented with a synthetic vulnerability trace from Juliet $G_i^{(J)}$.

CE 815 - Vulnerability Analysis

Overview

Overview (cont.)

CE 815 - Vulnerability Analysis

Evaluation

Evaluation (cont.)

Table 3: Baseline comparison against a commercial SAST tool in detecting CVEs in the wild.

	Vul	Chec	ker @ FPR 0.05	Vul	Chec	ker @ FPR 0.1	Helix QAC				
	Lines		CVEs		nes	CVEs	Li	nes	CVEs		
CWE	TP	FP	ТР	TP	FP	ТР	TP	FP	ТР		
190	9	55	3	12	112	6	1	2	1		
121	7	33	7	9	112	9	4	230	1		
122	1	6	1	1	6	1	4	241	1		
415	3	0	2	3	0	2	0	5	0		
416	4	6	4	6	228	6	0	0	1		
Total	24	100	17	31	458	24	9	478	4		

Evaluation (cont.)

Figure 6: Performance of VulChecker when trained on synthetic data, then either tested on synthetic (left) or tested on real data (right).

CE 815 - Vulnerability Analysis

[VulChecker]

Conclusion

- VulChecker precisely locates vulnerabilities in source code down to the exact instruction.
- Classifies vulnerabilities according to the Common Vulnerabilities and Exposures (CVE) taxonomy.
- Employs a novel data augmentation technique to enrich the training dataset and enhance generalization ability.
- Achieves near-zero false positives in vulnerability detection, outperforming commercial tools.
- VulChecker successfully detects a previously unknown zero-day vulnerability, highlighting its ability to identify novel vulnerabilities.

Acknowledgments

- [VulChecker] VulChecker: Graph-based Vulnerability Localization in Source Code, Y. Mirsky, G. Macon, M. Brown, C. Yagemann, M. Pruett, E. Downing, S. Mertoguno, and W. Lee, Usenix Security 2023.
- [Alves] Program Slicing. SwE 455, Alves, E., Federal University of Pernambuco, 2015.