
CE 815 - Secure Software Systems

Secure Architecture

Mehdi Kharrazi

Department of Computer Engineering

Sharif University of Technology

Acknowledgments: Some of the slides are fully or partially obtained from other sources. A
reference is noted on the bottom of each slide, when the content is fully obtained from
another source. Otherwise a full list of references is provided on the last slide.

Fall 1402 Ce 815 - Secure Architecture I

Secure Architecture

• How to come up with a secure
architecture?

• What design principals should be
followed?

• What are the available mechanisms?

• How do you trust the code getting

executed?

xkcd.com

Fall 1402 Ce 815 - Secure Architecture I

Building a Secure system

okieboat.com

imsa.edu

Fall 1402 Ce 815 - Secure Architecture I

Isolation

[Wilson’19]

Fall 1402 Ce 815 - Secure Architecture I [Wilson’19]

Fall 1402 Ce 815 - Secure Architecture I

System Model

• On bootup, the Operating System
(OS) loads itself into memory

• DOS or Windows 3.1

• Typically places itself in high memory

• What is the role of the OS?

• Allow the user to run processes

• Often comes with a shell

• Text shell like bash

• Graphical shell like the Windows desktop

• Provides APIs to access devices

• Offered as a convenience to application developers

Memory

0

128 MB
Hard DriveEthernet/Wifi

OS

Process 1
(Shell)

Process 2open(“file”)

[Wilson’19]

Fall 1402 Ce 815 - Secure Architecture I

Memory Unsafety

• Problem: any process can read/write any memory

Memory

0

128 MB
Hard DriveEthernet/Wifi

OS

Process 1

I’m reading from your
process, stealing your

data ;)

Process 2

[Wilson’19]

Fall 1402 Ce 815 - Secure Architecture I

Memory Unsafety

• Problem: any process can read/write any memory

Memory

0

128 MB
Hard DriveEthernet/Wifi

OS

Infect the OS
code with

malicious code

Scan memory to find
usernames, passwords,

saved credit card numbers,
etc.

[Wilson’19]

Fall 1402 Ce 815 - Secure Architecture I

Device Unsafety

• Problem: any process can access any hardware device directly

• Access control is enforced by the OS, but OS APIs can be bypassed

[Wilson’19]

Fall 1402 Ce 815 - Secure Architecture I

Device Unsafety

• Problem: any process can access any
hardware device directly

• Access control is enforced by the OS, but
OS APIs can be bypassed

Memory

0

128 MB
Hard DriveEthernet/Wifi

OS

Send stolen data to the
thief, attack other

computers, etc.

Read/write/
delete any file

[Wilson’19]

Fall 1402 Ce 815 - Secure Architecture I

Older system issues

• Old systems did not protect memory or devices

• Any process could access any memory

• Any process could access any device

• Problems

• No way to enforce access controls on users or devices

• Processes can steal from or destroy each other

• Processes can modify or destroy the OS

• On old computers, systems security was literally impossible

[Wilson’19]

Fall 1402 Ce 815 - Secure Architecture I

Hardware support for isolation

[Wilson’19]

Fall 1402 Ce 815 - Secure Architecture I

Towards Modern Architecture

• To achieve systems security, we need process isolation

• Processes cannot read/write memory arbitrarily

• Processes cannot access devices directly

• How do we achieve this?

• Hardware support for isolation

• Protected mode execution (a.k.a. process rings)

• Virtual memory

[Wilson’19]

Fall 1402 Ce 815 - Secure Architecture I

Protected Mode

• Most modern CPUs support protected mode

• x86 CPUs support three rings with different privileges

• Ring 0: Operating System

• Code in this ring may directly access any device

• Ring 1, 2: device drivers

• Code in these rings may directly access some

devices

• May not change the protection level of the CPU

• Ring 3: userland

• Code in this ring may not directly access devices

• All device access must be via OS APIs

• May not change the protection level of the CPU

• Most OSes only use rings 0 and 3

Ring 0
OS

Ring 1

Ring 2

Ring 3

Device Drivers

Device Drivers

Applications

[Wilson’19]

Fall 1402 Ce 815 - Secure Architecture I

System Boot Sequence

• On startup, the CPU starts in 16-bit real mode

• Protected mode is disabled

• Any process can access any device

• BIOS executes, finds and loads the OS

• OS switches CPU to 32-bit protected mode

• OS code is now running in Ring 0

• OS decides what Ring to place other processes in

• Shell gets executed, user may run programs

• User processes are placed in Ring 3

[Wilson’19]

Fall 1402 Ce 815 - Secure Architecture I

Restriction on Privileged Instructions

• What CPU instructions are restricted in protected mode?

• Any instruction that modifies the CR0 register

• Controls whether protected mode is enabled

• Any instruction that modifies the CR3 register

• Controls the virtual memory configuration

• hlt – Halts the CPU

• sti/cli – enable and disable interrupts

• in/out – directly access hardware devices

• If a Ring 3 process tries any of these things, it immediately crashes

[Wilson’19]

Fall 1402 Ce 815 - Secure Architecture I

Changing Modes

• Applications often need to access the OS APIs

• Writing files

• Displaying things on the screen

• Receiving data from the network

• etc…

• But the OS is Ring 0, and processes are Ring 3

• How do processes get access to the OS?

• Invoke OS APIs with special assembly instructions

• Interrupt: int 0x80

• System call: sysenter or syscall

• int/sysenter/syscall cause a mode transfer from Ring 3 to Ring 0

[Wilson’19]

Fall 1402 Ce 815 - Secure Architecture I

Mode Transfer

• Application executes trap (int) instruction

• EIP, CS, and EFLAGS get pushed onto the stack

• Mode switches from ring 3 to ring 0

• Save the state of the current process

• Push EAX, EBX, …, etc. onto the stack

• Locate and execute the correct syscall handler

• Restore the state of process

• Pop EAX, EBX, … etc.

• Place the return value in EAX

• Use iret to return to the process

• Switches back to the original mode (typically 3)

U
serland

Kernel M
ode

[Wilson’19]

Fall 1402 Ce 815 - Secure Architecture I

Virtual Memory Implementation

• Each process has its own virtual memory space

• Each process has a page table that maps is virtual space into physical

space

• CPU translates virtual address to physical addresses on-the-fly

• OS creates the page table for each process

• Installing page tables in the CPU is a protected, Ring 0 instruction

• Processes cannot modify their page tables

• What happens if a process tries to read/write memory outside its page table?

• Segmentation Fault or Page Fault

• Process crashes

• In other words, no way to escape virtual memory

[Wilson’19]

Fall 1402 Ce 815 - Secure Architecture I

Security Policy in General

Fall 1402 Ce 815 - Secure Architecture I

Security Policy

• Defines a security perimeter
Because you can’t
secure everything

www.forcecontracting.co.uk

Fall 1402 Ce 815 - Secure Architecture I

Security Policy

• Defines a security perimeter

• Standards codify the what should be done

• Guidelines explain how it will be done

[Garfinkel’04]

Fall 1402 Ce 815 - Secure Architecture I

How do you create a policy?

• Option #1 Risk Assessment:

• Identify assets and their value

• Identify the threats

• Calculate the risks

• Conduct a Cost-Benefit Analysis

• Option #2: Adopt “Best Practices.”

[Garfinkel’04]

Fall 1402 Ce 815 - Secure Architecture I

Threat Modeling

• Threat modeling is the process of systematically identifying the threats faced
by a system

• Identify things of value that you want to protect

• Enumerate the attack surfaces

• Hypothesize attackers and map them to

• Things of value they want from (1)

• Their ability to target vulnerable surfaces from (2)

• Survey mitigations

• Balance costs versus risks

[Wilson’19]

Fall 1402 Ce 815 - Secure Architecture I

Identify Things of Value

• Saved passwords

• Monetizable credentials (webmail, social networks)

• Access to bank accounts, paypal, venmo, credit cards, or other financial

services

• Pics, messages, address book, browsing/search history (for blackmail)

• Sensitive business documents

• Access to sensors (camera, mic, GPS) or network traffic (for surveillance)

• The device itself

• Steal it and sell it

• Use the CPU and network for other criminal activity

[Wilson’19]

Fall 1402 Ce 815 - Secure Architecture I

Enumerate Attack Surfaces

• Intercept and compromise the handset in transit

• Backdoor the OS

• Steal the device and use it

• Direct connection via USB

• Close proximity radios (Bluetooth, NFC)

• Social engineering, e.g. trick the user into installing malicious app(s)

• Exploit vulnerabilities in the OS or apps (e.g. email clients, web browsers)

• Passive eavesdropping on the network

• Active network attacks (e.g. man-in-the-middle, SMS of death)

[Wilson’19]

Fall 1402 Ce 815 - Secure Architecture I

Techniques For Drafting Policies

• Assign a specific “owner” to everything that is to be protected.

• Be positive

• Be realistic in your expectations

• Concentrate on education and prevention

[Garfinkel’04]

Fall 1402 Ce 815 - Secure Architecture I

Remember, Risk Cannot Be Eliminated

• You can purchase a UPS…

• But the power failure may outlast the batteries

• But the UPS may fail

• But the cleaning crew may unplug it

• But the UPS may crash due to a software error.

[Garfinkel’04]

Fall 1402 Ce 815 - Secure Architecture I

Spaf’s first principle of security administration:

“If you have responsibility for security, but have no authority to set rules or
punish violators, your own role in the organization is to take the blame when
something big goes wrong.”

[Garfinkel’04]

Fall 1402 Ce 815 - Secure Architecture I

Security Principles

Fall 1402 Ce 815 - Secure Architecture I

Security Principles

• Designing secure systems (and breaking them) remains an art

• Security principles help bridge the gap between art and science

• Developed by Saltzer and Schroeder

• “The Protection of Information in Computer Systems”, 1975

[Wilson’19]

Fall 1402 Ce 815 - Secure Architecture I

Defense in Depth

• Don't depend on a single
protection mechanism, since they
are apt to fail

• Even very simple or formally
verified defenses fail

• Layering defenses increases the
difficulty for attackers

• Defenses should be
complementary!

High walls

Moat

Drawbridge Dude with a
crossbow

[Wilson’19]

Fall 1402 Ce 815 - Secure Architecture I

Defence in Depth Example

• Problem: Bank.

• How to secure the money?

• Solution: Defence in depth.

• Guards inside bank.

• Closed-circuit cameras monitor activity.

• Tellers do not have access to vault.

• Vault has multiple defences:

• Time-release.

• Walls and lock complexity.

• Multiple compartments.

[Walden’12]

Fall 1402 Ce 815 - Secure Architecture I

Example

• Built-in security features of Windows 10

• Secure boot: cryptographically verified bootup process

• Bitlocker full-drive encryption

• Kernel protections, e.g. Address Space Layout Randomization (ASLR)

• Cryptographic signing for device drivers

• User authentication

• User Account Control: permission check for privileged operations

• Anti-virus and anti-malware

• Firewall

• Automated patching

• System logs

[Wilson’19]

Fall 1402 Ce 815 - Secure Architecture I

Fail-safe Defaults

• The absence of explicit permission is equivalent to no permission

• Systems should be secure "out-of-the-box"

• Most users stick with defaults

• Users should "opt-in" to less-secure

configurations

• Examples. By default…

• New user accounts do not have admin or root privileges

• New apps cannot access sensitive devices

• Passwords must be >8 characters long

• Etc.

[Wilson’19]

[Wilson’19]

Fall 1402 Ce 815 - Secure Architecture I

Separation of Privilege

• Privilege, or authority, should only be distributed to subjects that require it

• Some components of a system should be less privileged than others

• Not every subject needs the ability to do everything

• Not every subject is deserving of full trust

• Examples:

• Two signatures required for a check

• Two authorized personnel required to fire a nuclear missile

Fall 1402 Ce 815 - Secure Architecture I

Least Privilege

• Subjects should possess only that authority that is required to operate
successfully

• Closely related to separation of privilege

• Not only should privilege be separated, but subjects should have the least

amount necessary to perform a task

[Wilson’19]

Fall 1402 Ce 815 - Secure Architecture I

Privilege Over Time

All users
and

processes

OS

Users and
Processes

with
System

Privileges

OS

Users and
Processes with

System
Privileges

Users and
Processes

Unprivileged
Processes

DOS, Windows 3.1 Win 95 and 98
Win NT, XP, 7, 8, 10

Linux, BSD, OSX

[Wilson’19]

Fall 1402 Ce 815 - Secure Architecture I

Privilege Hierarchy

Device drivers, kernel
modules, etc.

sudo, “administrator”
accounts, OS services

Everything that is isolated
and subject to access control

chroot jails, containers,
low-integrity processes

OS

Users and Processes with
System Privileges

Users and Processes

Unprivileged Processes

Ring 0

Ring 3

[Wilson’19]

Fall 1402 Ce 815 - Secure Architecture I

Example: Chrome Multiprocess Architecture

Chrome is split across
many processes
“Core” process has user-
level privileges

• May read/write files
• May access the network
• May render to screen

Each tab, extension, and
plugin has its own
process

• Parse HTML, CSS, JS
• Execute JS
• Large attack surface!
• Thus, have no privileges
• All I/O requests are sent

to the core process

[Wilson’19]

Fall 1402 Ce 815 - Secure Architecture I

Compromise Recording

• Concede that attacks will occur, but record the fact

• Auditing approach to security

• Detection and recovery

• "Tamper-evident" vs. "Tamper-proof"

[Wilson’19]

Fall 1402 Ce 815 - Secure Architecture I

Logging

• Log everything

• Better yet, use remote logging

• Ensures that attacker with
local access cannot erase
logs

• Logs are useless if they aren’t
monitored

• Advanced approaches

• Intrusion Detection

Systems (IDS)

• Anomaly detection

• Machine learning-based

approaches

[Wilson’19]

Fall 1402 Ce 815 - Secure Architecture I

Work Factor

• Increase the difficulty of mounting
attacks

• Sometimes utilizes non-
determinism

• e.g. increasing entropy used in

ASLR

• Sometimes utilizes time

• Increase the lengths of keys

• Wait times after failed

password attempts

[Wilson’19]

Fall 1402 Ce 815 - Secure Architecture I

Authentication Rate Limiting

• Short delay after each failed
authentication attempt

• Delays may increase as the

consecutive failed attempts increase

• Does not prevent password cracking

attempts, but slows them down

[Wilson’19]

Fall 1402 Ce 815 - Secure Architecture I

Open Design

• Kerckhoff's Principle: A cryptosystem should be secure even if everything
about the system, except the key, is public knowledge

• Generalization: A system should be secure even if the adversary knows
everything about its design

• Design does not include runtime parameters like secret keys

• Contrast with “security through obscurity”

[Wilson’19]

Fall 1402 Ce 815 - Secure Architecture I

Open Design Example:

• Problem: MPAA wants control over DVDs.

• Region coding, unskippable commercials.

• Solution: CSS (Content Scrambling System)

• CSS algorithm kept secret.

• DVD Players need player key to decrypt disk key on DVD to decrypt movie

for playing.

• Encryption uses 40-bit keys.

• People w/o keys can copy but not play DVDs.

• What happened next?

• CSS algorithm reverse engineered.

• Weakness in algorithm allows disk key to be recovered in an attack of

complexity 225, which takes only a few seconds.

[Walden’12]

Fall 1402 Ce 815 - Secure Architecture I

Closed Source

• Security through obscurity.

• Assumes code in binary can’t be read

• what about disassemblers?

• what about decompilers?

• what about debuggers?

• what about strings, lsof, truss, /proc?

• Reverse engineering.

[Walden’12]

Fall 1402 Ce 815 - Secure Architecture I

Economy of Mechanism

Would you depend on a defense system designed like this?

[Wilson’19]

Fall 1402 Ce 815 - Secure Architecture I

Economy of Mechanism

• Simplicity of design implies a smaller attack surface

• Correctness of protection mechanisms is critical

• "Who watches the watcher?"

• We need to be able to trust our security mechanisms

• (Or, at least quantify their efficacy)

• Essentially the KISS principle

• Keep it simple, stupid

[Wilson’19]

Fall 1402 Ce 815 - Secure Architecture I

Example

• Existing operating systems are monolithic

• Kernel contains all critical functionality

• Process and memory management, file systems,

network stack, etc…

• Micro-kernel OS

• Kernel only contains critical functionality

• Direct access to hardware resources

• Process and memory management

• Small attack surface

• All other functionality runs in separate processes

• File systems, network stack, device drivers

• Examples

• 1) GNU Hurd 2) seL4 – formally verified!

[Wilson’19]

Fall 1402 Ce 815 - Secure Architecture I

Complete Mediation

[Wilson’19]

Fall 1402 Ce 815 - Secure Architecture I

Complete Mediation

• Every access to every object must be checked for authorization

• Incomplete mediation implies that a path exists to bypass a security
mechanism

• In other words, isolation is incomplete

[Wilson’19]

By default, user could
click Cancel to bypass
the password check :(

[Wilson’19]

[Wilson’19]

Fall 1402 Ce 815 - Secure Architecture I

Acknowledgments/References

• [Wilson’19] CS 2550 - Foundations of Cybersecurity, Christo Wilson,
Northeastern University, Spring 2019

• [Garfinkel’04] CSCI E-170: Computer Security, Usability & Privacy, Simson L.
Garfinkel, MIT, 2004

• [Walden’12] CSC 666 -- Secure Software Engineering, James Walden,
Northern Kentucky University, Fall 2012

• [Boneh’15] CS 155, Computer Security, Dan Boneh, Stanford University, 2015

• [Steflik’13] CS-328 Internet and Mobile Programming, Dick Steflik,

Binghamton University, Fall 2013

• [Toshev’16] Security architecture of the Java platform, Martin Toshev, Voxxed

Days Luxembourg, 2016

56

