
CE 874 - Secure Software Systems

Run-Time protection/enforcement

Mehdi Kharrazi

Department of Computer Engineering

Sharif University of Technology

Acknowledgments: Some of the slides are fully or partially obtained from other sources.
Reference is noted on the bottom of each slide, when the content is fully obtained from
another source. Otherwise a full list of references is provided on the last slide.

Fall 1402 Ce 815 - Run-Time Protection/Enforcement

Run-Time protection/enforcement

• In many instances we only have
access to the binary

• How do we analyze the binary for
vulnerabilities?

• How do we protect the binary from
exploitation?

• This would be our topic for this
lectures

Fall 1402 Ce 815 - Run-Time Protection/Enforcement

Why Binary Code?

• Access to the source code often is not possible:

• Proprietary software packages

• Stripped executables

• Proprietary libraries: communication (MPI, PVM), linear algebra (NGA),

database query (SQL libraries)

• Binary code is the only authoritative version of the program

• Changes occurring in the compile, optimize and link steps can create non-
trivial semantic differences from the source and binary

• Worms and viruses are rarely provided with source code

[B. P. Miller’06]

Fall 1402 Ce 815 - Run-Time Protection/Enforcement

Binary Analysis and Editing

• Analysis: processing of the binary code to extract syntactic and symbolic
information

• Symbol tables (if present)

• Decode (disassemble) instructions

• Control-flow information: basic blocks, loops, functions

• Data-flow information: from basic register information to highly

sophisticated (and expensive) analysis

[B. P. Miller’06]

Fall 1402 Ce 815 - Run-Time Protection/Enforcement

Binary Analysis and Editing

• Binary rewriting: static (before execution) modification of a binary program

• Analyze the program and then insert, remove, or change the binary code,

producing a new binary

• Dynamic instrumentation: dynamic (during execution) modification of a
binary program

• Analyze the code of the running program and then insert, remove, or

change the binary code, changing the execution of the program

• Can operate on running programs and servers

[B. P. Miller’06]

Fall 1402 Ce 815 - Run-Time Protection/Enforcement

Uses of Binary Analysis and Editing

• Cyber-forensics

• Analysis: understand the nature of malicious code

• Binary-rewriting: produce a new version of the code that might be

instrumented, sandboxed, or modified for study

• Dynamic instrumentation: same features, but can do it interactively on an

executing program

• Hybrid static/dynamic: control execution and produce intermediate

versions of the binary that can be re-executed (and further instrumented)

• Program tracing: instructions, memory accesses, function calls, system

calls, . . .

• Debugging

• Testing, Performance profiling Performance modeling

• Reverse engineering

[B. P. Miller’06]

Fall 1402 Ce 815 - Run-Time Protection/Enforcement

Binary patch Application
Program

Function foo

Trampoline

Pre-Instrumentation
Relocated

Instruction(s)

Post-Instrumentation

[B. P. Miller’06]

pop ecx; puts the return address to ecx
cmp ecx , 0x08048456 ; check that we return to the right place
jne 0x41414141 ; crash
jmp ecx; effectively return

pop ecx; puts the return address to ecx
jmp ecx; jumps to the return address

After Patch:

Fall 1402 Ce 815 - Run-Time Protection/Enforcement

Dynamic Binary Instrumentation

• A DBI is a way to execute an external code before
or/and after each instruction/routine

• With a DBI you can:

• Analyze the binary execution step-by-step

• Context memory

• Context registers

• Only analyze the executed code

[Salwan’15]

Fall 1402 Ce 815 - Run-Time Protection/Enforcement

Available Tools

• Binary re-writing:

• e.g.: Alto, Vulcan, Diablo, etc.

• Binary Instrumnetation:

• e.g. PIN, Valgrind, DynInst, etc

Fall 1402 Ce 815 - Run-Time Protection/Enforcement

Dynamic Taint Analysis for Automatic Detection, Analysis, and
Signature Generation of Exploits on Commodity Software, J.

Newsome and D. Song, NDSS 2005.

Fall 1402 Ce 815 - Run-Time Protection/Enforcement

Motivation

• Worms exploit several software vulnerabilities

• buffer overflow

• “format string” vulnerability

• Attack detectors ideally should:

• Detect new attacks and detect them early

• Be easy to deploy

• Few false positives and false negatives

• Be able to automatically generate filters and sharable fingerprints

[Papadopoulos’11]

Fall 1402 Ce 815 - Run-Time Protection/Enforcement

Motivation (contd.)

• Attack detectors are:

• Coarse grained detectors

• Detect anomalous behavior but do not provide detailed information
about the vulnerability

• Scan detectors, anomaly detectors

• Fine grained detectors are highly desirable

• Detect attacks on programs vulnerabilities and hence provide detailed
information about the attack

• But some require source code (typically not available for commercial
software), recompilation, bounds checking, library recompilation,
source code modification, etc.

• Other options: content-based filtering (e.g., IDS’ such as snort and Bro),
but automatic signature generation is hard

[Papadopoulos’11]

Fall 1402 Ce 815 - Run-Time Protection/Enforcement

TaintCheck: Basic Ideas

• Program execution normally derived from trusted sources, not attacker input

• Mark all input data to the computer as “tainted” (e.g., network, stdin, etc.)

• Monitor program execution and track how tainted data propagates (follow

bytes, arithmetic operations, jump addresses, etc.)

• Detect when tainted data is used in dangerous ways

[Papadopoulos’11]

Fall 1402 Ce 815 - Run-Time Protection/Enforcement

Step 1: Add Taint Checking code

• TaintCheck first runs the code through an emulation environment (Valgrind)
and adds instructions to monitor tainted memory.

Binary re-writer
Taint Check

X86 instructions UCode

UCode

X86 instructions

Dynamic taint analysis

[Papadopoulos’11]

Fall 1402 Ce 815 - Run-Time Protection/Enforcement

TaintCheck Detection Modules

• TaintSeed: Mark untrusted data as tainted

• TaintTracker: Track each instruction, determine if result is tainted

• TaintAssert: Check is tainted data is used dangerously

• Jump addresses: function pointers or offsets

• Format strings: is tainted data used as a format string arg?

• System call arguments

• Application or library customized checks

[Papadopoulos’11]

Fall 1402 Ce 815 - Run-Time Protection/Enforcement

TaintSeed

• Marks any data from untrusted sources as “tainted”

• Each byte of memory has a four-byte shadow memory that stores a

pointer to a Taint data structure if that location is tainted

• records the system call number, a snapshot of the current stack and a

copy of the data that was written.

• Else store a NULL pointer

Memory is mapped to TDS

[Papadopoulos’11]

Fall 1402 Ce 815 - Run-Time Protection/Enforcement

TaintTracker

• Tracks each instruction that manipulates data in order to determine whether
the result is tainted.

• When the result of an instruction is tainted by one of the operands,

TaintTracker sets the shadow memory of the result to point to the same
Taint data structure as the tainted operand.

Memory is mapped to TDS Result is mapped to TDS

[Papadopoulos’11]

Fall 1402 Ce 815 - Run-Time Protection/Enforcement

TaintAssert

• Checks whether tainted data is used in ways that its policy defines as
illegitimate

Memory is mapped to TDS Operand is mapped to TDS vulnerability

[Papadopoulos’11]

Fall 1402 Ce 815 - Run-Time Protection/Enforcement

TaintCheck Operation

X

Memory byte

Shadow Memory

Taint Data structure*

untainted

Use as
Fn pointer

Attack detected

TaintTrackerTaint seed TaintAssert

Exploit Analyzer

TaintCheck

Shadow Memory

*TDS holds the system call number, a snapshot of the current stack, and a copy of the data that was written

[Papadopoulos’11]

Fall 1402 Ce 815 - Run-Time Protection/Enforcement

Exploit Analyzer

• Provides useful information about how the exploit happened, and what the
exploit attempts to do

• Useful to generate exploit fingerprints

• Usage:

• Identifying vulnerabilities.

• Generating exploit signature.

Memory is mapped to TDS Operand is mapped to TDS vulnerability

[Papadopoulos’11]

Fall 1402 Ce 815 - Run-Time Protection/Enforcement

Dynamic Taint Analysis

• Jump addresses:

• Checks whether tainted data is used as a jump target

• Instrument before each Ucode jump instruction

• Format strings:

• Checks whether tainted data is used as format string argument

• Intercept calls to the printf family of functions

• System call arguments:

• Checks whether the arguments specified in system calls are tainted

• Optional policy for execv system call

• Application or library-specific checks:

• To detect application or library specific attacks

[CS-6V81]

Fall 1402 Ce 815 - Run-Time Protection/Enforcement

When does TaintCheck Fail?

• A false negative occurs if an attacker can cause sensitive data to take on a
value without that data becoming tainted

• E.g. if (x == 0)y = 0; else if (x == 1) y = 1; ...

• If values are copied from hard-coded literals, rather than arithmetically

derived from the input

• IIS translates ASCII input into Unicode via a table

• If TaintCheck is configured to trust inputs that should not be trusted

• data from the network could be first written to a file on disk, and then

read back into memory

[Papadopoulos’11]

Fall 1402 Ce 815 - Run-Time Protection/Enforcement

When does TaintCheck give a False Positive?

• TaintCheck detects that tainted data is being used in an illegitimate way even
when there is no attack taking place. Possibilities:

• There are vulnerabilities in the program and need to be fixed, or

• The program performs sanity checks before using the data

[Papadopoulos’11]

Fall 1402 Ce 815 - Run-Time Protection/Enforcement

x = get_input()
y = x + 42
…
goto y

Input is
tainted

untaintedtainted Δ
Var Val

Tainted?Var
τ

TaintSeed

[Brumley’10]

Fall 1402 Ce 815 - Run-Time Protection/Enforcement

x = get_input()
y = x + 42
…
goto y

Data derived from
user input is

tainted

untaintedtainted

y 49

Δ
Var Val

x 7

Ty

Tainted?

T

Var

x

τ
TaintTracker

[Brumley’10]

Fall 1402 Ce 815 - Run-Time Protection/Enforcement

x = get_input()
y = x + 42
…
goto y

Policy Violation
Detected

untaintedtainted Δ
Var Val

x 7
y 49

Tainted?

T
T

Var

x
y

τ
TaintAssert

[Brumley’10]

Fall 1402 Ce 815 - Run-Time Protection/Enforcement

…
strcpy(buffer,argv[1])
;
…
return ;

Jumping to
overwritten

return address

[Brumley’10]

x = get_input()
y = …
…
goto y

Fall 1402 Ce 815 - Run-Time Protection/Enforcement

Memory Load

Variables Memory

Δ
Var Val

x 7

Tainted?

T

Var

x

τ

µ
Addr Val

7 42

Tainted?

F

Addr

7

τµ

[Brumley’10]

Fall 1402 Ce 815 - Run-Time Protection/Enforcement

x = get_input()
y = load(x)
…
goto y

Problem: Memory Addresses

[Brumley’10]

All values derived
from user input
are tainted??

7 42
µ Addr Val

Tainted?

F

Addr

7
τµ

x 7
Δ

Var Val

Fall 1402 Ce 815 - Run-Time Protection/Enforcement

x = get_input()
y = load(x)
…
goto y

Policy 1: Taint depends only on the memory
cell

[Brumley’10]

µ Addr Val

Jump target
could be any

untainted
memory cell

value

Taint Propagation

7 42

Tainted?

F

Addr

7
τµ

x 7
Δ

Var Val

Undertainting
 Failing to identify tainted values
 - e.g., missing exploits

Fall 1402 Ce 815 - Run-Time Protection/Enforcement

x = get_input()
y = load(jmp_table + x % 2)
…
goto y

Policy 2: If either the address or the memory
cell is tainted, then the value is tainted

• `

[Brumley’10]

jmp_table

Policy Violation?

Memory

printa

printb

Address
expression
is tainted

Taint Propagation

Overtainting
 Unaffected values are tainted
 - e.g., exploits on safe inputs

Fall 1402 Ce 815 - Run-Time Protection/Enforcement

General Challenge

• State-of-the-Art is not perfect for all programs

[Brumley’10]

Undertainting:
Policy may miss

taint

Overtainting:
Policy may wrongly

detect taint

Fall 1402 Ce 815 - Run-Time Protection/Enforcement

Automatic Signature Generation

• Automatic semantic analysis based signature generation

• Find value used to override return address – typically fixed value in the

exploit code

• Sometimes as little as 3 bytes! See paper for details

[Papadopoulos’11]

Fall 1402 Ce 815 - Run-Time Protection/Enforcement

More recent work

• Improving performance:

• TaintPipe: Pipelined Symbolic Taint Analysis, Jiang Ming, Dinghao Wu,

Gaoyao Xiao, Jun Wang, and Peng Liu, Usenix Security 2015.

• DECAF++: Elastic Whole-System Dynamic Taint Analysis, Ali Davanian,

Zhenxiao Qi, Yu Qu, and Heng Yin, Raid 2019.

• SelectiveTaint: Efficient Data Flow Tracking With Static Binary Rewriting,

Sanchuan Chen, Zhiqiang Lin, and Yinqian Zhang, Usenix Security, 2021

• Extending to GPU

• GPU Taint Tracking, Ari B. Hayes, Lingda Li, Mohammad Hedayati,
Jiahuan He, Eddy Z. Zhang, Kai Shen, Usenix ATC, 2017.

Fall 1402 Ce 815 - Run-Time Protection/Enforcement

Run-Time protection/enforcement

• In many instances we only have
access to the binary

• How do we analyze the binary for
vulnerabilities?

• How do we protect the binary from
exploitation?

• This would be our topic for the next
few lectures

Fall 1402 Ce 815 - Run-Time Protection/Enforcement

Files
Sockets
Computer Operations

People
Processes
Computer Operations

Op request

Op response

Subject Object

[Brumley’15]

Fall 1402 Ce 815 - Run-Time Protection/Enforcement

Reference Monitor: Principles

• Complete Mediation: The reference monitor must always be invoked

• Tamper-proof: The reference monitor cannot be changed by unauthorized

subjects or objects

• Verifiable: The reference monitor is small enough to thoroughly understand,

test, and ultimately, verify.

Subject Object

Op request

Op response

Reference
Monitor

Op request

Op response

Policy

[Brumley’15]

Fall 1402 Ce 815 - Run-Time Protection/Enforcement

Inlined Referenced Monitor

Today’s Example:
Inlining a control flow policy into a program

 Subject Object

Op request

Op response

Reference
Monitor

Policy

[Brumley’15]

Fall 1402 Ce 815 - Run-Time Protection/Enforcement

Control-Flow Integrity: Principles, Implementations,
and Applications
Martin Abadi, Mihai Budiu, U ́lfar Erlingsson, Jay Ligatti,
CCS 2005

Fall 1402 Ce 815 - Run-Time Protection/Enforcement

• protects against powerful adversary

• with full control over entire data memory

• widely-applicable

• language-neutral; requires binary only

• provably-correct & trustworthy

• formal semantics; small verifier

• efficient

• hmm… 0-45% in experiments; average 16%

Control Flow Integrity

[Brumley’15]

Fall 1402 Ce 815 - Run-Time Protection/Enforcement

CFI Adversary Model

• Overwrite any data memory at any
time

• stack, heap, data segs

• Overwrite registers in current
context

Can Can Not
• Execute Data

• NX takes care of that

• Modify Code

• text seg usually read-only

• Write to %ip

• true in x86

• Overwrite registers in other

contexts

• kernel will restore regs

[Brumley’15]

Fall 1402 Ce 815 - Run-Time Protection/Enforcement

CFI Overview

• Invariant: Execution must follow a path in a control flow graph (CFG) created
ahead of run time. 

• Method:

• build CFG statically, e.g., at compile time

• instrument (rewrite) binary, e.g., at install time

• add IDs and ID checks; maintain ID uniqueness

• verify CFI instrumentation at load time

• direct jump targets, presence of IDs and ID checks, ID uniqueness

• perform ID checks at run time

• indirect jumps have matching IDs

“static”

[Brumley’15]

Fall 1402 Ce 815 - Run-Time Protection/Enforcement

Control Flow Graphs

[Brumley’15]

Fall 1402 Ce 815 - Run-Time Protection/Enforcement

Basic Block

• Defn Basic Block: A consecutive sequence of instructions / code such that

• the instruction in each position always executes before (dominates) all

those in later positions, and

• no outside instruction can execute between two instructions in the

sequence

1. x = y + z
2. z = t + i

3. x = y + z
4. z = t + i
5. jmp 1

6. jmp 3

3 static
basic blocks

1. x = y + z
2. z = t + i
3. x = y + z
4. z = t + i
5. jmp 1

1 dynamic
basic block

[Brumley’15]

control is “straight”
(no jump targets except at the beginning,

no jumps except at the end)

Fall 1402 Ce 815 - Run-Time Protection/Enforcement

CFG Definition

• A static Control Flow Graph is a graph where

• each vertex vi is a basic block, and

• there is an edge (vi, vj) if there may be a transfer of control from block vi to

block vj.

• Historically, the scope of a “CFG” is limited to a function or procedure, i.e.,
intra-procedural.

[Brumley’15]

Fall 1402 Ce 815 - Run-Time Protection/Enforcement

Call Graph

• Nodes are functions. There is an edge (vi, vj) if function vi calls function vj.

void orange()
{
1. red(1);
2. red(2);
3. green();  
}

void red(int x)
{
green();
...
}

void green()
{
 green();
 orange();
}

orange
red

green

[Brumley’15]

Fall 1402 Ce 815 - Run-Time Protection/Enforcement

Super Graph

• Superimpose CFGs of all procedures over the call graph

1: red1
2
3 2: red

A context sensitive super-
graph for orange lines 1
and 2.

void orange()
{
1. red(1);
2. red(2);
3. green();  
}

void red(int x)
{
..
}

void green()
{
 green();
 orange();
}

[Brumley’15]

Fall 1402 Ce 815 - Run-Time Protection/Enforcement

Precision: Sensitive or Insensitive

• The more precise the analysis, the more accurate it reflects the “real” program
behavior.

• More precise = more time to compute

• More precise = more space

• Limited by soundness/completeness tradeoff

• Common Terminology in any Static Analysis:

• Context sensitive vs. context insensitive

• Flow sensitive vs. flow insensitive

• Path sensitive vs. path insensitive

[Brumley’15]

Fall 1402 Ce 815 - Run-Time Protection/Enforcement

Things I say

Soundness

If analysis says X is true,
then X is true.

True Things

Things I say True Things

Trivially Sound: Say nothing Trivially complete: Say everything

Sound and Complete: Say exactly the set of true things!

Completeness

If X is true, then analysis
says X is true.

[Brumley’15]

Soundness, Completeness, Precision, Recall,
False Negative, False Positive, All that Jazz…
Imagine we are building a classifier.
Ground truth: things on the left is “in”.
Our classifier: things inside circle is “in”.

50

FN TN

TP FP

Sound means FP is empty
Complete means FN is empty

Precision = TP/(TP+FP)
Recall = TP/(FN+TP)
False Positive Rate = FP/(TP+FP)
False Negative Rate = FN/(FN+TN)
Accuracy = (TP+TN)/(Σ everything)

Fall 1402 Ce 815 - Run-Time Protection/Enforcement

Context Sensitive

Whether different calling contexts are distinguished

void yellow()
{
1. red(1);
2. red(2);
3. green();  
}

void red(int x)
{
..
}

void green()
{
 green();
 yellow();
}

Context sensitive
distinguishes 2 different calls

to red(-)

[Brumley’15]

Fall 1402 Ce 815 - Run-Time Protection/Enforcement

Context Sensitive Example

a = id(4);  

b = id(5);

void id(int z)  
{ return z; }

Context-Sensitive
(color denotes
matching call/ret)

a = id(4);  

b = id(5);

void id(int z)  
{ return z; }

Context-Insensitive
(note merging)

Context sensitive can tell one call returns 4, the other 5

Context insensitive will say both calls return {4,5}
[Brumley’15]

Fall 1402 Ce 815 - Run-Time Protection/Enforcement

Flow Sensitive

• A flow sensitive analysis considers the order (flow) of statements

• Examples:

• Type checking is flow insensitive since a variable has a single type
regardless of the order of statements

• Detecting uninitialized variables requires flow sensitivity

x = 4;
....
x = 5;

Flow sensitive can
distinguish values of x,
flow insensitive cannot

[Brumley’15]

Fall 1402 Ce 815 - Run-Time Protection/Enforcement

Flow Sensitive Example

1. x = 4;
....
n. x = 5;

Flow sensitive:
x is the constant 4 at line 1, x

is the constant 5 at line n

Flow insensitive:
x is not a constant

[Brumley’15]

Fall 1402 Ce 815 - Run-Time Protection/Enforcement

Path Sensitive

• A path sensitive analysis maintains branch conditions along each execution
path

• Requires extreme care to make scalable

• Subsumes flow sensitivity

[Brumley’15]

Fall 1402 Ce 815 - Run-Time Protection/Enforcement

Path Sensitive Example

1. if(x >= 0)  
2. y = x;  
3. else  
4. y = -x;

path sensitive:
y >= 0 at line 2,
y > 0 at line 4

path insensitive:
y is not a constant

[Brumley’15]

Fall 1402 Ce 815 - Run-Time Protection/Enforcement

Precision

Even path sensitive analysis approximates behavior due to:

• loops/recursion

• unrealizable paths

1. if(an + bn = cn && n>2 && a>0 && b>0 && c>0)  
2. x = 7;  
3. else  
4. x = 8;

Unrealizable path.
x will always be 8

[Brumley’15]

Fall 1402 Ce 815 - Run-Time Protection/Enforcement

Control Flow Integrity (Analysis)

[Brumley’15]

Fall 1402 Ce 815 - Run-Time Protection/Enforcement

CFI Overview

• Invariant: Execution must follow a path in a control flow graph (CFG) created
ahead of run time. 

• Method:

• build CFG statically, e.g., at compile time

• instrument (rewrite) binary, e.g., at install time

• add IDs and ID checks; maintain ID uniqueness

• verify CFI instrumentation at load time

• direct jump targets, presence of IDs and ID checks, ID uniqueness

• perform ID checks at run time

• indirect jumps have matching IDs

[Brumley’15]

Fall 1402 Ce 815 - Run-Time Protection/Enforcement

Build CFG

Two possible
return sites due to

context insensitivity

direct calls

indirect calls

[Brumley’15]

Fall 1402 Ce 815 - Run-Time Protection/Enforcement

Instrument Binary
predicated call 17, R: transfer control to R

only when R has label 17

predicated ret 23: transfer
control to only label 23

• Insert a unique number at each destination
• Two destinations are equivalent if CFG contains edges

to each from the same source

[Brumley’15]

Fall 1402 Ce 815 - Run-Time Protection/Enforcement

Verify CFI Instrumentation

• Direct jump targets (e.g. call 0x12345678)

• are all targets valid according to CFG?

• IDs

• is there an ID right after every entry point?

• does any ID appear in the binary by accident?

• ID Checks

• is there a check before every control transfer?

• does each check respect the CFG?

easy to implement correctly => trustworthy

[Brumley’15]

Fall 1402 Ce 815 - Run-Time Protection/Enforcement

ID Checks Check dest label

Check dest label

[Brumley’15]

Fall 1402 Ce 815 - Run-Time Protection/Enforcement

Performance

• Size: increase 8% avg

• Time: increase 0-45%; 16% avg

16%

45%

[Brumley’15]

Fall 1402 Ce 815 - Run-Time Protection/Enforcement

Security Guarantees

• Effective against attacks based on illegitimate control-flow transfer

• buffer overflow, ret2libc, pointer subterfuge, etc.

• Allow data-only attacks since they respect CFG!

• incorrect usage (e.g. printf can still dump mem)

• substitution of data (e.g. replace file names)

Any check becomes non-circumventable.

[Brumley’15]

Fall 1402 Ce 815 - Run-Time Protection/Enforcement

Software Fault Isolation

• SFI ensures that a module only accesses memory within its region by adding
checks

• e.g., a plugin can accesses only its own memory

 if(module_lower < x < module_upper)
 z = load[x];

• CFI ensures inserted memory checks are executed

SFI Check

[Brumley’15]

Fall 1402 Ce 815 - Run-Time Protection/Enforcement

Inline Reference Monitors

• IRMs inline a security policy into binary to ensure security enforcement

• Any IRM can be supported by CFI + Software Memory Access Control

• CFI: 	 IRM code cannot be circumvented

	 	 +

• SMAC: IRM state cannot be tampered

[Brumley’15]

Fall 1402 Ce 815 - Run-Time Protection/Enforcement

Accuracy vs. Security

• The accuracy of the CFG will reflect the level of enforcement of the security
mechanism.

Indistinguishable sites, e.g., due to
lack of context sensitivity will be

merged

[Brumley’15]

Fall 1402 Ce 815 - Run-Time Protection/Enforcement

Context Sensitivity Problems

• Suppose A and B both call C.

• CFI uses same return label in A and B.

• How to prevent C from returning to B when 
it was called from A?

• Shadow Call Stack

• a protected memory region for call stack

• each call/ret instrumented to update shadow

• CFI ensures instrumented checks will be run

[Brumley’15]

Fall 1402 Ce 815 - Run-Time Protection/Enforcement

CFI Summary

• Control Flow Integrity ensures that control flow follows a path in CFG

• Accuracy of CFG determines level of enforcement

• Can build other security policies on top of CFI

[Brumley’15]

Fall 1402 Ce 815 - Run-Time Protection/Enforcement

Acknowledgments/References (1/2)

• [B. P. Miller'06] A Framework for Binary Code Analysis, and Static and
Dynamic Patching, Barton P. Miller, Jeffrey Hollingsworth, February 2006.

• [Papadopoulos’11] CS451, Christos Papadopoulos, CSU, Spring 2011.
Original slides by Devendra Salvi (2007). Based on “Dynamic Taint Analysis
for Automatic Detection, Analysis, and Signature Generation of Exploits on
Commodity Software”, J. Newsome and D. Song, NDSS 2005.

• [EECS 583’12] – Class 21 Research Topic 3: Dynamic Taint Analysis,
University of Michigan December 5, 2012. Based on “All You Ever Wanted to
Know about Dynamic Taint Analysis and Forward Symbolic Execution (but
Might Have Been Afraid to Ask)”, E. J. Schwartz, T. Avgerinos, D. Brumley,
IEEE S&P, 2010.

• [Brumley’10] All You Ever Wanted to Know about Dynamic Taint Analysis and
Forward Symbolic Execution (but Might Have Been Afraid to Ask), E. J.
Schwartz, T. Avgerinos, D. Brumley, IEEE S&P, 2010.

71

Fall 1402 Ce 815 - Run-Time Protection/Enforcement

Acknowledgments/References (2/2)

• [CS-6V81] System Security and Malicious Code Analysis, S. Qumruzzaman,
K. Al-Naami, Spring 2012. Based on “Dynamic Taint Analysis for Automatic
Detection, Analysis, and Signature Generation of Exploits on Commodity
Software”, J. Newsome and D. Song, NDSS 2005.

• [Salwan’15] Dynamic Binary Analysis and Instrumentation Covering a function
using a DSE approach, J. Salwan, Security Day, January 2015.

• [TaintPipe’15] TaintPipe: Pipelined Symbolic Taint Analysis, Jiang Ming,
Dinghao Wu, Gaoyao Xiao, Jun Wang, and Peng Liu, Usenix Security 2015.

• [Brumley’15] Introduction to Computer Security (18487/15487), David
Brumley and Vyas Sekar, CMU, Fall 2015.

• [Kuznetsov’14] Code-Pointer Integrity, Volodymyr Kuznetsov, László
Szekeres, Mathias Payer, George Candea, R. Sekar, Dawn Song, Slides from
OSDI 2014.

• [Payer’14] Code-Pointer Integrity, Mathias Payer, Slides in (Chaos
Communication Congress) CCC 2014.

72

