
CE693: Adv. Computer Networking

L-17 Naming

Acknowledgments: Lecture slides are from the graduate level Computer
Networks course thought by Srinivasan Seshan at CMU. When slides are
obtained from other sources, a a reference will be noted on the bottom of
that slide. A full list of references is provided on the last slide.

Today’s Lecture

• Naming and CDNs
• Required readings

• Middleboxes No Longer Considered Harmful
• Internet Indirection Infrastructure

2

3

Overview

• Akamai (CDNs)
• I3
• DOA

4

How Akamai Works

End-user

cnn.com (content provider) DNS root server Akamai server

1 2 3

4

Akamai high-level DNS server

Akamai low-level DNS server

Akamai server

10

6
7

8

9

12

Get
index.
html

Get /cnn.com/foo.jpg

11

Get foo.jpg

5

5

Akamai – Subsequent Requests

End-user

cnn.com (content provider) DNS root server Akamai server

1 2 Akamai high-level DNS server

Akamai low-level DNS server

Akamai server

7

8

9

12

Get
index.
html

Get /cnn.com/foo.jpg

Coral: An Open CDN

• Implement an open CDN
• Allow anybody to contribute
• Works with unmodified clients
• CDN only fetches once from origin server

Origin
Server

Coral
httpprx
dnssrv

Coral
httpprx
dnssrv

Coral
httpprx
dnssrv

Coral
httpprx
dnssrv

Coral
httpprx
dnssrv

Coral
httpprx
dnssrv

Browser

Browser

Browser

Browser

Pool resources to dissipate flash crowds

6

Using CoralCDN

• Rewrite URLs into “Coralized” URLs

• www.x.com → www.x.com.nyud.net:8090

• Directs clients to Coral, which absorbs load

• Who might “Coralize” URLs?
• Web server operators Coralize URLs
• Coralized URLs posted to portals, mailing lists
• Users explicitly Coralize URLs

7

httpprx
dnssrv

Browser
Resolver

DNS Redirection
Return proxy,
preferably one
near client

Cooperative
Web Caching

CoralCDN components

httpprx

www.x.com.nyud.net
216.165.108.10

Fetch data
from nearby

?

?

Origin
Server



8

Functionality needed
 DNS: Given network location of resolver, return a

proxy near the client

 put (network info, self)
 get (resolver info) → {proxies}

 HTTP: Given URL, find proxy caching object,
preferably one nearby

 put (URL, self)
 get (URL) → {proxies}

9

Use a DHT?

• Supports put/get interface using key-based routing
• Problems with using DHTs as given

• Lookup latency
• Transfer latency
• Hotspots

NYU Columbia

Germany

JapanNYC
NYC

10

Key-based XOR routing

000É 111ÉDistance to key

None

< 60 ms

< 20 ms

Thresholds

• Minimizes lookup latency
• Prefer values stored by nodes within faster clusters

Prevent insertion hotspots

NYU

• Halt put routing at full and loaded node
• Full → M vals/key with TTL > ½ insertion TTL
• Loaded → β puts traverse node in past minute

• Store at furthest, non-full node seen

 Store value once in each level cluster
 Always storing at closest node causes hotspot

É

(log n) β reqs / min

15

Overview

• Akamai
• I3
• DOA

Multicast

S1

C1 C2

S2

R RP RR

RR

RP: Rendezvous
Point

16

Mobility

HA FA

Home Network

Network 5

5.0.0.1 12.0.0.4

Sender

Mobile
Node

5.0.0.3

17

18

i3: Motivation

• Today’s Internet based on point-to-point
abstraction

• Applications need more:
• Multicast
• Mobility
• Anycast

• Existing solutions:
• Change IP layer
• Overlays

So, what’s the problem?
A different solution for each service

The i3 solution
• Solution:

• Add an indirection layer on top of IP
• Implement using overlay networks

• Solution Components:
• Naming using “identifiers”
• Subscriptions using “triggers”
• DHT as the gluing substrate

19

Indirection
Every problem

in CS … 

Only primitive
needed

i3: Rendezvous Communication

• Packets addressed to identifiers (“names”)
• Trigger=(Identifier, IP address): inserted by

receiver

20

Sender Receiver (R)

ID R

trigger

send(ID, data)
send(R, data)

Senders decoupled from receivers

21

i3: Service Model

• API
• sendPacket(id, p);
• insertTrigger(id, addr);
• removeTrigger(id, addr); //
optional

• Best-effort service model (like IP)
• Triggers periodically refreshed by end-hosts
• Reliability, congestion control, and flow-

control implemented at end-hosts

i3: Implementation

• Use a Distributed Hash Table
• Scalable, self-organizing, robust
• Suitable as a substrate for the Internet

22

Sender Receiver (R)

ID R

trigger

send(ID, data)
send(R, data)

DHT.put(id)

IP.route(R)

DHT.put(id)

Mobility

• The change of the receiver’s address
• from R to R’ is transparent to the sender

24

Multicast
• Every packet (id, data) is forwarded to each

receiver Ri that inserts the trigger (id, Ri)

25

Generalization: Identifier Stack

• Stack of identifiers
• i3 routes packet through these identifiers

• Receivers
• trigger maps id to <stack of ids>

• Sender can also specify id-stack in packet

• Mechanism:
• first id used to match trigger
• rest added to the RHS of trigger
• recursively continued

27

Service Composition

• Receiver mediated: R sets up chain and
passes id_gif/jpg to sender: sender oblivious

• Sender-mediated: S can include (id_gif/jpg, ID)
in his packet: receiver oblivious

28

Sender
(GIF)

Receiver R
(JPG)

ID_GIF/JPG S_GIF/JPG
ID R

send((ID_GIF/JPG,ID), data)

S_GIF/JPG

send(ID, data) send(R, data)

Public, Private Triggers

• Servers publish their public ids: e.g., via
DNS

• Clients contact server using public ids, and
negotiate private ids used thereafter

• Useful:
• Efficiency -- private ids chosen on “close-by” i3-

servers
• Security -- private ids are shared-secrets

29

31

Overview

• Akamai
• I3
• DOA

32

Architectural Brittleness

• Hosts are tied to IP addresses
• Mobility and multi-homing pose problems

• Services are tied to hosts
• A service is more than just one host: replication,

migration, composition

• Packets might require processing at
intermediaries before reaching destination
• “Middleboxes” (NATs, firewalls, …)

Reactions to the Problem

• Purist: can’t live with middleboxes
• Pragmatist: can’t live without middleboxes
• Pluralist (us): purist, pragmatist both right

• DOA goal: Architectural extension in which:
• Middleboxes first-class Internet citizens
• Harmful effects reduced, good effects kept
• New functions arise

33

DOA: Delegation-Oriented Architecture

• Architectural extension to Internet. Core
properties:
1. Restore globally unique identifiers for hosts
2. Let receivers, senders invoke (and revoke) off-path

boxes: delegation primitive

34

NATHost A

Firewall

Host D

10.1.1.4
0xf12312

0xf12312

B

C

35

Naming Can Help

• Thesis: proper naming can cure some ills
• Layered naming provides layers of indirection and

shielding

• Many proposals advocate large-scale,
overarching architectural change
• Routers, end-hosts, services

• Proposal:
• Changes “only” hosts and name resolution
• Synthesis of much previous work

Internet Naming is Host-Centric

• Two global namespaces: DNS and IP
addresses

• These namespaces are host-centric
• IP addresses: network location of host
• DNS names: domain of host
• Both closely tied to an underlying structure
• Motivated by host-centric application

• Such names constrain movement/replication

36

Object Movement Breaks Links

• URLs hard-code a domain and a path

isp.com
“dog.jpg”

isp-2.com
“spot.jpg”

“HTTP 404”

HTTP GET:
/dog.jpg

Browser

http://<A HREF=
http://isp.com/dog.jpg
>Spot

38

http:///
http:///
http://isp.com/dog.jpg
http://isp.com/dog.jpg

Object Movement Breaks Links, Cont’d

• Today’s solutions not stable:
• HTTP redirects

• need cooperation of original host

isp.com
“dog.jpg”

isp-2.com
“spot.jpg”

“HTTP 404”

HTTP GET:
/dog.jpg

Browser

http://<A HREF=
http://isp.com/dog.jpg
>Spot

39

http:///
http:///
http://isp.com/dog.jpg
http://isp.com/dog.jpg

Supporting Object Replication

• Host replication relatively easy today
• But per-object replication requires:

• separate DNS name for each object
• virtual hosting so replica servers recognize names
• configuring DNS to refer to replica servers

isp.com
“/docs/foo.ps”

mit.edu
“~joe/foo.ps”

http://object26.org
HTTP “GET /”

host: object26.org

HTTP “GET /”host: object26.org

40

Key Architectural Questions

• Which entities should be named?

• What should names look like?

• What should names resolve to?

41

42

Delegation

• Names usually resolve to “location” of entity

• Packets might require processing at
intermediaries before reaching destination

• Such processing today violates layering
• Only element identified by packet’s IP destination

should inspect higher layers

Delegation principle: A network entity should be able
to direct resolutions of its name not only to its own

location, but also to chosen delegates

43

Name Services and Hosts Separately

• Service identifiers (SIDs) are host-
independent data names

• End-point identifiers (EIDs) are location-
independent host names

• Protocols bind to names, and resolve them
• Apps should use SIDs as data handles
• Transport connections should bind to EIDs

Binding principle: Names should bind protocols only
to relevant aspects of underlying structure

44

The Naming Layers

User-level descriptors
(e.g., search)

App session

App-specific search/lookup
returns SID

Transport

Resolves SID to EID
Opens transport conns

IP

Resolves EID to IP

Bind to EID

Use SID as handle

IP hdr EID TCP SID …
IP

Transport

App session

Application

45

SIDs and EIDs should be Flat
0xf436f0ab527bac9e8b100afeff394300

• Flat names impose no structure on entities
• Structured names stable only if name structure

matches natural structure of entities
• Can be resolved scalably using, e.g., DHTs

• Flat names can be used to name anything
• Once you have a large flat namespace, you

never need other global “handles”

Stable-name principle: A stable name should not
impose restrictions on the entity it names

46

Resolution
Service

Flat Names Enable Flexible Migration

<A HREF=
http://f012012/pub.pdf
>here is a paper

HTTP GET: /

docs/pu
b.pdf

10.1.2.3
/docs/

20.2.4.6

HTTP GET: /~user/

pubs/pub.pdf
(10.1.2.3,80,
/docs/)(20.2.4.6,80,

/~user/pubs/)

/~user/pubs/

• SID abstracts all object reachability information
• Objects: any granularity (files, directories)
• Benefit: Links (referrers) don’t break

Domain H

Domain Y

Globally Unique Identifiers for Hosts

• Location-independent, flat, big namespace
• Hash of a public key
• These are called EIDs (e.g., 0xf12abc…)
• Carried in packets

DOA hdr

IP
hdr

transport hdr bodysource EID
destination EID

48

Delegation Primitive

• Let hosts invoke, revoke off-path boxes
• Receiver-invoked: sender resolves

receiver’s EID to
• An IP address or
• An EID or sequence of EIDs

• DOA header has destination stack of EIDs
• Sender-invoked: push EID onto this stack

IP
hdr

transport hdr bodysource EID
destination EID stack

49

DOA in a Nutshell

• End-host replies to source by resolving es

• Authenticity, performance: discussed in the
paper

Delegate
IP: j

<eh, j>

End-host
EID: eh
IP: ih

j

DHT

LOOKUP(
eh)

Process
Source
EID: es
IP: is

DOA Packet

IP
is j

transport bodyDOA
es eh

DOA

transportDOA
es eh

50

Off-path Firewall

eh  (ih, Rules)

Network
Stack

is j es [eFW eh]

ihj es eh

eh

<eh, eFW>
<eFW, j>

eFW

eFW

j

DHT

Source
EID: es
IP: is

Firewall

End-host

ih

j EID: eFW

EID: eh

Sign (MAC)

Verify

51

Off-path Firewall: Benefits

• Simplification for end-users who want it
• Instead of a set of rules, one rule:
• “Was this packet vetted by my FW provider?”

• Firewall can be anywhere, leading to:
• Third-party service providers
• Possible market for such services
• Providers keeping abreast of new applications

• DOA enables this; doesn’t mandate it.

52

Next Lecture

• Data-oriented networking and DTNs
• Required reading:

• Networking Named Content
• A Delay-Tolerant Network Architecture for

Challenged Internets

53

