
CE693: Adv. Computer Networking

L-5 Fair Queuing

Acknowledgments: Lecture slides are from the graduate level Computer
Networks course thought by Srinivasan Seshan at CMU. When slides are
obtained from other sources, a a reference will be noted on the bottom of
that slide. A full list of references is provided on the last slide.

Overview

• TCP and queues

• Queuing disciplines

• RED

• Fair-queuing

• Core-stateless FQ

• XCP

32

33

Fairness Goals

• Allocate resources fairly
• Isolate ill-behaved users

• Router does not send explicit feedback to
source

• Still needs e2e congestion control
• Still achieve statistical muxing

• One flow can fill entire pipe if no contenders
• Work conserving  scheduler never idles link if

it has a packet

34

What is Fairness?
• At what granularity?

• Flows, connections, domains?
• What if users have different RTTs/links/etc.

• Should it share a link fairly or be TCP fair?
• Maximize fairness index?

• Fairness = (Σxi)2/n(Σxi
2) 0<fairness<1

• Basically a tough question to answer – typically
design mechanisms instead of policy
• User = arbitrary granularity

35

Max-min Fairness

• Allocate user with “small” demand what it
wants, evenly divide unused resources to
“big” users

• Formally:
• Resources allocated in terms of increasing demand
• No source gets resource share larger than its

demand
• Sources with unsatisfied demands get equal share

of resource

36

Max-min Fairness Example

• Assume sources 1..n, with resource
demands X1..Xn in ascending order

• Assume channel capacity C.
• Give C/n to X1; if this is more than X1 wants,

divide excess (C/n - X1) to other sources: each
gets C/n + (C/n - X1)/(n-1)

• If this is larger than what X2 wants, repeat
process

37

Implementing max-min Fairness

• Generalized processor sharing
• Fluid fairness
• Bitwise round robin among all queues

• Why not simple round robin?
• Variable packet length  can get more service

by sending bigger packets
• Unfair instantaneous service rate

• What if arrive just before/after packet departs?

38

Bit-by-bit RR

• Single flow: clock ticks when a bit is
transmitted. For packet i:
• Pi = length, Ai = arrival time, Si = begin transmit

time, Fi = finish transmit time
• Fi = Si+Pi = max (Fi-1, Ai) + Pi

• Multiple flows: clock ticks when a bit from all
active flows is transmitted  round number
• Can calculate Fi for each packet if number of

flows is known at all times
• This can be complicated

39

Bit-by-bit RR Illustration

• Not feasible to
interleave bits on
real networks
• FQ simulates bit-by-

bit RR

40

Fair Queuing

• Mapping bit-by-bit schedule onto packet
transmission schedule

• Transmit packet with the lowest Fi at any
given time
• How do you compute Fi?

41

FQ Illustration

Flow 1

Flow 2

Flow n

I/P O/P

Variation: Weighted Fair Queuing (WFQ)

42

Bit-by-bit RR Example

F=10

Flow 1
(arriving)

Flow 2
transmitting Output

F=2

F=5

F=8

Flow 1 Flow 2 Output

F=10

Cannot preempt packet
currently being transmitted

43

Fair Queuing Tradeoffs
• FQ can control congestion by monitoring flows

• Non-adaptive flows can still be a problem – why?
• Complex state

• Must keep queue per flow
• Hard in routers with many flows (e.g., backbone routers)
• Flow aggregation is a possibility (e.g. do fairness per domain)

• Complex computation
• Classification into flows may be hard
• Must keep queues sorted by finish times
• Finish times change whenever the flow count changes

Overview

• TCP and queues

• Queuing disciplines

• RED

• Fair-queuing

• Core-stateless FQ

• XCP

44

45

Core-Stateless Fair Queuing
• Key problem with FQ is core routers

• Must maintain state for 1000’s of flows
• Must update state at Gbps line speeds

• CSFQ (Core-Stateless FQ) objectives
• Edge routers should do complex tasks since they have

fewer flows
• Core routers can do simple tasks

• No per-flow state/processing  this means that core routers
can only decide on dropping packets not on order of
processing

• Can only provide max-min bandwidth fairness not delay
allocation

46

Core-Stateless Fair Queuing

• Edge routers keep state about flows and do
computation when packet arrives

• DPS (Dynamic Packet State)
• Edge routers label packets with the result of

state lookup and computation
• Core routers use DPS and local

measurements to control processing of
packets

47

Edge Router Behavior

• Monitor each flow i to measure its arrival
rate (ri)
• EWMA of rate
• Non-constant EWMA constant

• e-T/K where T = current interarrival, K = constant
• Helps adapt to different packet sizes and arrival

patterns

• Rate is attached to each packet

48

Core Router Behavior

• Keep track of fair share rate α
• Increasing α does not increase load (F) by N *
α

• F(α) = Σi min(ri, α)  what does this look like?
• Periodically update α
• Keep track of current arrival rate

• Only update α if entire period was congested or
uncongested

• Drop probability for packet = max(1- α/r, 0)

49

F vs. Alpha

New alpha

C [linked capacity]

r1 r2 r3 old alpha
alpha

F

50

Estimating Fair Share
• Need F(α) = capacity = C

• Can’t keep map of F(α) values  would require per
flow state

• Since F(α) is concave, piecewise-linear
• F(0) = 0 and F(α) = current accepted rate = Fc

• F(α) = Fc/ α

• F(αnew) = C  αnew = αold * C/Fc

• What if a mistake was made?
• Forced into dropping packets due to buffer capacity
• When queue overflows α is decreased slightly

51

Other Issues

• Punishing fire-hoses – why?
• Easy to keep track of in a FQ scheme

• What are the real edges in such a scheme?
• Must trust edges to mark traffic accurately
• Could do some statistical sampling to see if

edge was marking accurately

Overview

• TCP and queues

• Queuing disciplines

• RED

• Fair-queuing

• Core-stateless FQ

• XCP

52

53

Feedback

Round Trip Time

Congestion Window

Congestion Header

Feedback

Round Trip Time

Congestion Window

 How does XCP Work?

Feedback =
+ 0.1 packet

54

Feedback =
+ 0.1 packet

Round Trip Time

Congestion Window

Feedback =
- 0.3 packet

 How does XCP Work?

55

 Congestion Window = Congestion Window + Feedback

Routers compute feedback without
any per-flow state

 How does XCP Work?

XCP extends ECN and CSFQ

56

How Does an XCP Router Compute the
Feedback?

Congestion Controller Fairness Controller
Goal: Divides Δ between
flows to converge to fairness

Looks at a flow’s state in
Congestion Header

Algorithm:
If Δ > 0 ⇒ Divide Δ equally
between flows
If Δ < 0 ⇒ Divide Δ between
flows proportionally to their
current rates

 MIMD AIMD

Goal: Matches input traffic to
link capacity & drains the queue

Looks at aggregate traffic &
queue

Algorithm:
Aggregate traffic changes by Δ
Δ ~ Spare Bandwidth
Δ ~ - Queue Size
So, Δ = α davg Spare - β Queue

ΔCongestion
Controller

Fairness
Controller

57

Δ = α davg Spare - β Queue

Theorem: System converges
to optimal utilization (i.e.,
stable) for any link bandwidth,
delay, number of sources if:

(Proof based on Nyquist
Criterion)

Getting the devil out of the details …

Congestion Controller Fairness Controller

No Parameter Tuning

Algorithm:
If Δ > 0 ⇒ Divide Δ equally between flows
If Δ < 0 ⇒ Divide Δ between flows
proportionally to their current rates

Need to estimate number of
flows N

RTTpkt : Round Trip Time in header

Cwndpkt : Congestion Window in header

T: Counting Interval
No Per-Flow State

Discussion
• RED

• Parameter settings
• RED vs. FQ

• How much do we need per flow tracking? At what cost?
• FQ vs. XCP/CSFQ

• Is coarse-grained fairness sufficient?
• Misbehaving routers/trusting the edge
• Deployment (and incentives)
• How painful is FQ

• XCP vs CSFQ
• What are the key differences

• Granularity of fairness

58

59

Important Lessons

• How does TCP implement AIMD?
• Sliding window, slow start & ack clocking
• How to maintain ack clocking during loss recovery
 fast recovery

• How does TCP fully utilize a link?
• Role of router buffers

• TCP alternatives
• TCP being used in new/unexpected ways
• Key changes needed

60

Lessons

• Fairness and isolation in routers
• Why is this hard?
• What does it achieve – e.g. do we still need congestion

control?

• Routers
• FIFO, drop-tail interacts poorly with TCP
• Various schemes to desynchronize flows and control loss

rate (e.g. RED)
• Fair-queuing

• Clean resource allocation to flows
• Complex packet classification and scheduling

• Core-stateless FQ & XCP
• Coarse-grain fairness
• Carrying packet state can reduce complexity

