CE693: Adv. Computer Networking

L-20 Measurement Fall 1390

Acknowledgments: Lecture slides are from the graduate level Computer Networks course thought by Srinivasan Seshan at CMU. When slides are obtained from other sources, a a reference will be noted on the bottom of that slide. A full list of references is provided on the last slide.

- Answers many questions
 - How does the Internet really operate?
 - Is it working efficiently?
 - How will trends affect its operation?
 - How should future protocols be designed?
- Aren't simulation and analysis enough?
 - We really don't know what to simulate or analyze
 - Need to understand how Internet is being used!
 - Too difficult to analyze or simulate parts we do understand

- Process of collecting data that measure certain phenomena about the network
 - Should be a science
 - Today: closer to an art form
- Key goal: Reproducibility
- "Bread and butter" of networking research
 - Deceptively complex
 - Probably one of the most difficult things to do correctly

- Active tests probe the network and see how it responds
 - Must be careful to ensure that your probes only measure desired information (and without bias)
 - Labovitz routing behavior add and withdraw routes and see how BGP behaves
 - Paxson packet dynamics perform transfers and record behavior
 - Bolot delay & loss record behavior of UDP probes
- Passive tests measure existing behavior
 - Must be careful not to perturb network
 - Labovitz BGP anomalies record all BGP exchanges
 - Leland self-similarity record Ethernet traffic

Types of Data

Active

- traceroute
- ping
- UDP probes
- TCP probes
- Application-level "probes"
 - Web downloads
 - DNS queries

Passive

- Packet traces
 - Complete
 - Headers only
 - Specific protocols
- Flow records
- Specific data
 - Syslogs ...
 - HTTP server traces
 - DHCP logs
 - Wireless association logs
 - DNSBL lookups
 - ...
- Routing data
 - BGP updates / tables, ISIS, etc.

• Active measurement

- Passive measurement
- Strategies
- Some interesting observations

Active Measurement

- Common tools:
 - ping
 - traceroute
 - scriptroute
 - Pathchar/pathneck/... BW probing tools

Sample Question: Topology

- What is the topology of the network?
 - At the IP router layer
 - Without "inside" knowledge or official network maps
- Why do we care?
 - Often need topologies for simulation and evaluation
 - Intrinsic interest in how the Internet behaves
 - "But we built it! We should understand it"
 - Emergent behavior; organic growth

ICMP "time exceeded

- Nodes along IP layer path decrement TTL
- When TTL=0, nodes return "time exceeded" message

- Can't unambiguously identify one-way outages
 - Failure to reach host : failure of reverse path?
- ICMP messages may be filtered or rate-limited
- IP address of "time exceeded" packet may be the outgoing interface of the return packet

Famous Traceroute Pitfall

- Question: What ASes does traffic traverse?
- Strawman approach
 - Run traceroute to destination
 - Collect IP addresses
 - Use "whois" to map IP addresses to AS numbers
- Thought Questions
 - What IP address is used to send "time exceeded" messages from routers?
 - How accurate is whois data?

More Caveats: Topology Measurement

- Routers have multiple interfaces
- Measured topology is a function of vantage points

Less Famous Traceroute Pitfall

- Host sends out a sequence of packets
 - Each has a different destination port
 - Load balancers send probes along different paths
 - Equal cost multi-path
 - Per flow load balancing

Designing for Measurement

- What mechanisms should routers incorporate to make traceroutes more useful?
 - Source IP address to "loopback" interface
 - AS number in time-exceeded message
 - ??
- More general question: How should the network support measurement (and management)?

- Active measurement
- Passive measurement
- Strategies
- Some interesting observations

Two Main Approaches

- Packet-level Monitoring
 - Keep packet-level statistics
 - Examine (and potentially, log) variety of packetlevel statistics. Essentially, anything in the packet.
 - Timing
- Flow-level Monitoring
 - Monitor packet-by-packet (though sometimes sampled)
 - Keep aggregate statistics on a flow

Packet Capture: tcpdump/bpf

- Put interface in promiscuous mode
- Use bpf to extract packets of interest
- Packets may be dropped by filter
 - Failure of tcpdump to keep up with filter
 - Failure of filter to keep up with dump speeds
- Question: How to recover lost information from packet drops?

- *Flow monitoring* (*e.g.*, Cisco Netflow)
 - Statistics about groups of related packets (*e.g.*, same IP/TCP headers and close in time)
 - Recording header information, counts, and time
- More detail than SNMP, less overhead than packet capture

What is a flow?

- Source IP address
- Destination IP address
- Source port
- Destination port
- Layer 3 protocol type
- TOS byte
- Input logical interface (ifIndex)

Basic information about the flow...

- Source and Destination, IP address and port
- Packet and byte counts
- Start and end times
- ToS, TCP flags

...plus, information related to routing

- Next-hop IP address
- Source and destination AS
- Source and destination prefix

- Criteria 1: Set of packets that "belong together"
 - Source/destination IP addresses and port numbers
 - Same protocol, ToS bits, ...
 - Same input/output interfaces at a router (if known)
- Criteria 2: Packets that are "close" together in time
 - Maximum inter-packet spacing (e.g., 15 sec, 30 sec)
 - **Example:** flows 2 and 4 are different flows due to time

Packet Sampling

- Packet sampling before flow creation (Sampled Netflow)
 - 1-out-of-m sampling of individual packets (e.g., m=100)
 - Create of flow records over the sampled packets
- Reducing overhead
 - Avoid per-packet overhead on (m-1)/m packets
 - Avoid creating records for a large number of small flows
- Increasing overhead (in some cases)
 - May split some long transfers into multiple flow records
 - ... due to larger time gaps between successive packets

Problems with Packet Sampling

- Determining size of original flows is tricky
 - For a flow originally of size n, the size of the sampled flow follows a binomial distribution
 - Extrapolation can result in big errors
 - Much research in reducing such errors
- Flow records can be lost
- Small flows may be eradicated entirely

Active measurement

- Passive measurement
- Strategies
- Some interesting observations

Strategy: Examine the Zeroth-Order

- Paxson calls this "looking at spikes and outliers"
- More general: Look at the data, not just aggregate statistics
 - Tempting/dangerous to blindly compute aggregates
 - Time series plots are telling (gaps, spikes, etc.)
 - Basics
 - Are the raw trace files empty?
 - Need not be 0-byte files (e.g., BGP update logs have state messages but no updates)
 - Metadata/context: Did weird things happen during collection (machine crash, disk full, etc.)

- Paxson breaks cross validation into two aspects
 - Self-consistency checks (and sanity checks)
 - Independent observations
 - Looking at same phenomenon in multiple ways
- What are some examples?

Example Sanity Checks

- Is time moving backwards?
 - Typical cause: Clock synchronization issues
- Has the the speed of light increased?
 - *E.g.*, 10ms cross-country latencies
- Do values make sense?
 - IP addresses that look like 0.0.1.2 indicate bug

- Telnet connection arrivals should follow a poison distribution (human induced)
- Puzzle
 - Every time a call comes in to the modem, the host launched a telnet connection
 - Data shows an unusual spike
 - So no poison distribution?
- Why?
 - Collection bugs ... or
 - Broken mental model
 - It was assumed that human behavior was being measured, where as the modem was faulty

Longitudinal measurement hard

- Accurate distributed measurement is tricky!
- Lots of things change:
 - Host names, IPs, software
- Lots of things break
 - hosts (temporary, permanently)
 - clocks
 - links
 - collection scripts

- Similar questions arise here as with accuracy
- Researchers always want full packet captures with payloads
 - ...but many questions can be answered without complete information
- Privacy / de-anonymization issues

PlanetLab for Network Measurement

- Nodes are largely at academic sites
 - Other alternatives: RON testbed
- Repeatability of network experiments is tricky
 - Proportional sharing
 - Work-conserving CPU scheduler means experiment could get more resources if there is less contention

Active measurement

- Passive measurement
- Strategies
- Some interesting observations

Traces Characteristics

- Some available at http://ita.ee.lbl.gov
 - E.g. tcpdump files and HTTP logs
 - Public ones tend to be old (2+ years)
 - Privacy concerns tend to reduce useful content
- Paxson's test data
 - Network Probe Daemon (NPD) performs transfers & traceroutes, records packet traces
 - Approximately 20-40 sites participated in various NPD based studies
 - The number of "paths" tested by NPD framework scaled with (number of hosts)²
 - 20-40 hosts = 400-1600 paths!

Observations – Routing Pathologies

- Observations from traceroute between NPDs
- Routing loops
 - Types forwarding loops, control information loop (count-to-infinity)
 - Routing protocols should prevent loops from persisting
 - Fall into short-term (< 3hrs) and long-term (> 12 hrs) duration
 - Some loops spanned multiple BGP hops! → seem to be a result of static routes
- Erroneous routing Rare but saw a US-UK route that went through Israel → can't really trust where packets may go!

Observations – Routing Pathologies

- Route change between traceroutes
- Temporary outages
 - Traceroute probes (1-2%) experienced > 30sec outages
 - Outage likelihood strongly correlated with time of day/ load
- Most pathologies seem to be getting worse over time

- Prevalence how likely are you to encounter a given route
 - In general, paths have a single primary route
 - For 50% of paths, single route was present 82% of the time
- Persistence how long does a given route last
 - Hard to measure what if route changes and changes back between samples?
 - Look at 3 different time scales
 - Seconds/minutes→ load-balancing flutter & tightly coupled routers
 - 10's of Minutes \rightarrow infrequently observed
 - Hours → 2/3 of all routes, long lived routes typically lasted several days

ISP Topologies

- Rocketfuel [SIGCOMM02]
 - Maps ISP topologies of specific ISPs
 - BGP → prefixes served
 - Traceroute servers → trace to prefixes for path
 - DNS → identify properties of routers
 - Location, ownership, functionality
- However...
 - Some complaints of inaccuracy why?

Network Topology

- Faloutsos³ [SIGCOMM99] on Internet topology
 - Observed many "power laws" in the Internet structure
 - Router level connections, AS-level connections, neighborhood sizes
 - Power law observation refuted later, Lakhina [INFOCOM00]
- Inspired many degree-based topology generators
 - Compared properties of generated graphs with those of measured graphs to validate generator
 - What is wrong with these topologies? Li et al [SIGCOMM04]
 - Many graphs with similar distribution have different properties
 - Random graph generation models don't have network-intrinsic meaning
 - Should look at fundamental trade-offs to understand topology
 - Technology constraints and economic trade-offs
 - Graphs arising out of such generation better explain topology and its properties, but are unlikely to be generted by random processes!

Observations – Re-ordering

- 12-36% of transfers had re-ordering
- 1-2% of packets were re-ordered
- Very much dependent on path
 - Some sites had large amount of re-ordering
 - Forward and reverse path may have different amounts
- Impact \rightarrow ordering used to detect loss
 - TCP uses re-order of 3 packets as heuristic
 - Decrease in threshold would cause many "bad" rexmits

- Replication
 - Internet does not provide "at most once" delivery
 - Replication occurs rarely
 - Possible causes → link-layer rexmits, misconfigured bridges
- Corruption
 - Checksums on packets are typically weak
 - 16-bit in TCP/UDP \rightarrow miss 1/64K errors
 - Approx. 1/5000 packets get corrupted
 - 1/3million packets are probably accepted with errors!

Observations – Bottleneck Bandwidth 💆

- Typical technique, packet pair, has several weaknesses
 - Out-of-order delivery \rightarrow pair likely used different paths
 - Clock resolution → 10msec clock and 512 byte packets limit estimate to 51.2 KBps
 - Changes in BW
 - Multi-channel links → packets are not queued behind each other
- Solution many new sophisticated BW measurement tools
 - Unclear how well they really work $\ensuremath{\mathfrak{S}}$

Observations – Loss Rates

- Ack losses vs. data losses
 - TCP adapts data transmission to avoid loss
 - No similar effect for acks → Ack losses reflect Internet loss rates more accurately (however, not a major factor in measurements)
- 52% of transfers had no loss
- 2.7% loss rate in 12/94 and 5.2% in 11/95
 - Loss rate for "busy" periods = 5.6 & 8.7%
 - Has since gone down dramatically...
- Losses tend to be very bursty