

Data Center Networks Jennifer Rexford

COS 461: Computer Networks

http://www.cs.princeton.edu/courses/archive/spr15/cos461/

Acknowledgments: Lecture slides are from Computer networks course thought by Jennifer Rexford at Princeton University. When slides are obtained from other sources, a reference will be noted on the bottom of that slide and full reference details on the last slide.

Outline

- Why are data centers important?
 - Cloud computing
- How are data centers structured
 - Hierarchy of VMs, servers, racks, pods, etc.
- How is traffic routed between VMs?
 - Traditional designs and newer flat architectures

Cloud Computing

Cloud Computing

Elastic resources

- Expand and contract resource
- Pay-per-use
- Infrastructure on demand

Multi-tenancy

- Multiple independent users
- Security and resource isolation
- Amortize the cost of the (shared) infrastructure
- Flexible service management

Cloud Service Models

Software as a Service

- Provider licenses applications to users as a service
- E.g., customer relationship management, email, ..
- Avoid costs of installation, maintenance, patches, ...

Platform as a Service

- Provider offers platform for building applications
- E.g., Google's App-Engine
- Avoid worrying about scalability of platform

Cloud Service Models

- Infrastructure as a Service
 - Provider offers raw compute, storage, and network
 - E.g., Amazon's Elastic Computing Cloud (EC2)
 - Avoid buying servers and estimating resource needs

Enabling Technology: Virtualization

- Multiple virtual machines on one physical machine
- Applications run unmodified as on real machine
- VM can migrate from one computer to another

Multi-Tier Applications

- Applications consist of tasks
 - Many separate components
 - Running on different machines
- Commodity computers
 - -Many general-purpose computers
 - Not one big mainframe
 - Easier scaling

Multi-Tier Applications

Data Center Network

Virtual Switch in Server

Top-of-Rack Architecture

- Rack of servers
 - Commodity servers
 - And top-of-rack switch
- Modular design
 - Preconfigured racks
 - Power, network, and storage cabling

Aggregate to the Next Level

Modularity, Modularity, Modularity

Containers

Many containers

Data Center Network Topology

Capacity Mismatch

Traditional Data-Center Routing

Reminder: Layer 2 vs. Layer 3

- Ethernet switching (layer 2)
 - Cheaper switch equipment
 - Fixed addresses and auto-configuration
 - Seamless mobility, migration, and failover
- IP routing (layer 3)
 - Scalability through hierarchical addressing
 - Efficiency through shortest-path routing
 - Multipath routing through equal-cost multipath
- So, like in enterprises...
 - Connect layer-2 islands by IP routers

Newer "Flat" Routing Architectures

- Virtual switch abstraction
 - All VMs for the same tenant
 - ... connected by a single switch
- Advantages
 - Assign any address to any VM
 - Place any VM anyway
 - Freely move VMs across locations
- Challenges
 - Scalability