

Acknowledgments: Lecture slides are from Computer networks course thought by Jennifer Rexford at Princeton University. When slides are obtained from other sources, a reference will be noted on the bottom of that slide and full reference details on the last slide.

Goals of Today's Lectures

- BGP security vulnerabilities

 Prefix ownership
 AS-path attribute
- Improving BGP security

 Protective filtering
 Cryptographic variant of BGP
 Anomaly-detection schemes
- Data-plane attacks
- Difficulty in upgrading BGP

Security Goals for BGP

- Secure message exchange between neighbors

 Confidential BGP message exchange
 - No denial of service
- Validity of the routing information
 - Origin authentication
 - Is the prefix owned by the AS announcing it?
 - -AS path authentication
 - Is AS path the sequence of ASes the BGP update traversed?
 - -AS path policy
 - Does the AS path adhere to the routing policies of each AS?
- Correspondence to the data path – Does the traffic follow the advertised AS path?

Validity of the routing information: Origin authentication

IP Address Ownership and Hijacking

- IP address block assignment

 Regional Internet Registries (ARIN, RIPE, APNIC)
 Internet Service Providers
- Proper origination of a prefix into BGP
 By the AS who owns the prefix
 - -... or, by its upstream provider(s) in its behalf
- However, what's to stop someone else?
 - Prefix hijacking: another AS originates the prefix
 BGP does not verify that the AS is authorized
 - -Registries of prefix ownership are inaccurate

- Consequences for the affected ASes
 - Blackhole: data traffic is discarded
 - Snooping: data traffic is inspected, and then redirected
 - Impersonation: data traffic is sent to bogus destinations

Hijacking is Hard to Debug

- Real origin AS doesn't see the problem –Picks its own route
 - -Might not even learn the bogus route
- May not cause loss of connectivity —E.g., if the bogus AS snoops and redirects —... may only cause performance degradation
- Or, loss of connectivity is isolated —E.g., only for sources in parts of the Internet
- Diagnosing prefix hijacking —Analyzing updates from many vantage points —Launching traceroute from many vantage points

Sub-Prefix Hijacking

Originating a more-specific prefix

 Every AS picks the bogus route for that prefix
 Traffic follows the longest matching prefix

How to Hijack a Prefix

- The hijacking AS has

 Router with eBGP session(s)
 Configured to originate the prefix
- Getting access to the router

 Network operator makes configuration mistake
 Disgruntled operator launches an attack
 Outsider breaks in to the router and reconfigures
- Getting other ASes to believe bogus route

 Neighbor ASes not filtering the routes
 ... e.g., by allowing only expected prefixes
 But, specifying filters on *peering* links is hard

The February 24 YouTube Outage

- YouTube (AS 36561)
 - -Web site www.youtube.com
 - -Address block 208.65.152.0/22
- Pakistan Telecom (AS 17557)
 - Receives government order to block access to YouTube
 - Starts announcing 208.65.153.0/24 to PCCW (AS 3491)
 - -All packets directed to YouTube get dropped on the floor
- Mistakes were made
 - AS 17557: announcing to everyone, not just customers
 AS 3491: not filtering routes announced by AS 17557
- Lasted 100 minutes for some, 2 hours for others

Timeline (UTC Time)

- 18:47:45
 - First evidence of hijacked /24 route propagating in Asia
- 18:48:00
 - Several big trans-Pacific providers carrying the route
- 18:49:30
 - Bogus route fully propagated
- 20:07:25
 - -YouTube starts advertising the /24 to attract traffic back
- 20:08:30
 - Many (but not all) providers are using the valid route

http://www.renesys.com/blog/2008/02/pakistan_hijacks_youtube_1.shtml

Timeline (UTC Time)

- 20:18:43
 - YouTube starts announcing two more-specific /25 routes
- 20:19:37
 - Some more providers start using the /25 routes
- 20:50:59
 - -AS 17557 starts prepending ("3491 17557 17557")
- 20:59:39
 - -AS 3491 disconnects AS 17557
- 21:00:00
 - -All is well, videos of cats doing funny things are available

http://www.renesys.com/blog/2008/02/pakistan_hijacks_youtube_1.shtmf

Another Example: Spammers

- Spammers sending spam
 - -Form a (bidrectional) TCP connection to a mail server
 - Send a bunch of spam e-mail
 - Disconnect and laugh all the way to the bank
- But, best not to use your real IP address — Relatively easy to trace back to you
- Could hijack someone's address space

 But you might not receive all the (TCP) return traffic
 And the legitimate owner of the address might notice
- How to evade detection
 - -Hijack unused (i.e., unallocated) address block in BGP
 - Temporarily use the IP addresses to send your spam

BGP AS Path

Bogus AS Paths

- Remove ASes from the AS path – E.g., turn "701 3715 88" into "701 88"
- Motivations
 - Make the AS path look shorter than it is
 - Attract sources that normally try to avoid AS 3715
 - Help AS 88 look like it is closer to the Internet's core
- Who can tell that this AS path is a lie?
 - Maybe AS 88 *does* connect to AS 701 directly

– Trigger loop detection in AS 3715

Denial-of-service attack on AS 3715

-E.g., turn "701 88" into "701 3715 88"

- Or, blocking unwanted traffic coming from AS 3715!
- Make your AS look like is has richer connectivity
- Who can tell the AS path is a lie?
 - -AS 3715 could, if it could see the route
 - AS 88 could, but would it really care as long as it received data traffic meant for it?

Bogus AS Paths

Motivations

Add ASes to the path

701

88

Bogus AS Paths

- Adds AS hop(s) at the end of the path – E.g., turns "701 88" into "701 88 3"
- Motivations
 - Evade detection for a bogus route
 - -E.g., by adding the legitimate AS to the end
- Hard to tell that the AS path is bogus... – Even if other ASes filter based on prefix ownership

17

Invalid Paths

- AS exports a route it shouldn't

 AS path is a valid sequence, but violated policy
- Example: customer misconfiguration – Exports routes from one provider to another
- ... interacts with provider policy

 Provider prefers customer routes
 ... so picks these as the best route
- ... leading the dire consequences
 Directing all Internet traffic through customer
- Main defense
 - -Filtering routes based on prefixes and AS path

BGP

Missing/Inconsistent Routes

Bad AS

data

BGP

- Peers require consistent export

 Prefix advertised at all peering points
 Prefix advertised with same AS path length
- Reasons for violating the policy dest —Trick neighbor into "cold potato"
 —Configuration mistake
- Main defense
 - -Analyzing BGP updates
 - -... or data traffic
 - -... for signs of inconsistency

BGP Security Today

- Applying best common practices (BCPs)

 Filtering routes by prefix and AS path
 Packet filters to block unexpected control traffic
- This is not good enough

 Depends on vigilant application of BCPs
 ... and not making configuration mistakes!
 - -Doesn't address fundamental problems
 - Can't tell who owns the IP address block
 - Can't tell if the AS path is bogus or invalid
 - Can't be sure the data packets follow the chosen route

Proposed Enhancements to BGP

S-BGP Secure Version of BGP

- Address attestations
 - Claim the right to originate a prefix
 - Signed and distributed out-of-band
 - Checked through delegation chain from ICANN
- Route attestations
 - Distributed as an attribute in BGP update message
 - Signed by each AS as route traverses the network
 - Signature signs previously attached signatures
- S-BGP can validate
 - -AS path indicates the order ASes were traversed
 - No intermediate ASes were added or removed

S-BGP Deployment Challenges

- Complete, accurate registries -E.g., of prefix ownership
- Public Key Infrastructure – To know the public key for any given AS
- Cryptographic operations

 E.g., digital signatures on BGP messages
- Need to perform operations quickly

 To avoid delaying response to routing changes
- Difficulty of incremental deployment – Hard to have a "flag day" to deploy S-BGP

Incrementally Deployable Schemes

- Monitoring BGP update messages
 - Use past history as an implicit registry
 - -E.g., AS that announces each address block
 - -E.g., AS-level edges and paths
- Out-of-band detection mechanism
 - Generate reports and alerts
 - Internet Alert Registry: <u>http://iar.cs.unm.edu/</u>
 - Prefix Hijack Alert System: http://phas.netsec.colostate.edu/
- Soft response to suspicious routes
 - Prefer routes that agree with the past
 - Delay adoption of unfamiliar routes when possible
 - Some (e.g., misconfiguration) will disappear on their own

What About Packet Forwarding?

Control Plane Vs. Data Plane

- Control plane
 - -BGP is a routing protocol
 - -BGP security concerns validity of routing messages
 - I.e., did the BGP message follow the sequence of ASes listed in the AS-path attribute

Data plane

- -Routers forward data packets
- Supposedly along the path chosen in the control plane
- -But what ensures that this is true?

Data-Plane Attacks, Part 1

- Drop packets in the data plane
 While still sending the routing announcements
- Easier to evade detection
 - Especially if you only drop some packets
 - -Like, oh, say, BitTorrent or Skype traffic
- Even easier if you just slow down some traffic
 - How different are normal congestion and an attack?
 - Especially if you let ping/traceroute packets through?

Data-Plane Attacks, Part 2

- Send packets in a different direction

 Disagreeing with the routing announcements
- Direct packets to a different destination – E.g., one the adversary controls
- What to do at that bogus destination?
 - Impersonate the legitimate destination (e.g., to perform identity theft, or promulgate false information)
 - Snoop on the traffic and forward along to real destination
- How to detect?
 - Traceroute? Longer than usual delays?
 - End-to-end checks, like site certificate or encryption?

Fortunately, Data-Plane Attacks are Harder

- Adversary must control a router along the path
 So that the traffic flows through him
- How to get control a router
 - Buy access to a compromised router online
 - Guess the password
 - Exploit known router vulnerabilities
 - Insider attack (disgruntled network operator)
- Malice vs. greed
 - Malice: gain control of someone else's router
 - Greed: Verizon DSL blocks Skype to gently encourage me to pick up my landline phone to use Verizon long distance \$ervice ⁽³⁾

What's the Internet to Do?

BGP is So Vulnerable

- Several high-profile outages
 - http://merit.edu/mail.archives/nanog/1997-04/msg00380.html
 - <u>http://www.renesys.com/blog/2005/12/internetwide_nearcatastrophela.shtml</u>
 - <u>http://www.renesys.com/blog/2006/01/coned_steals_the_net.shtml</u>
 - <u>http://www.renesys.com/blog/2008/02/pakistan_hijacks_youtube_1.shtml</u>
- Many smaller examples
 - Blackholing a single destination prefix
 - Hijacking unallocated addresses to send spam
- Why isn't it an even bigger deal?
 - Really, most big outages are configuration errors
 - Most bad guys want the Internet to stay up
 - ... so they can send unwanted traffic (e.g., spam, identity theft, denial-of-service attacks, port scans, ...)

BGP is So Hard to Fix

- Complex system
 - -Large, with around 30,000 ASes
 - Decentralized control among competitive ASes
 - Core infrastructure that forms the Internet
- Hard to reach agreement on the right solution - S-BGP with public key infrastructure, registries, crypto?
 - Who should be in charge of running PKI and registries?
 - Worry about data-plane attacks or just control plane?
- Hard to deploy the solution once you pick it
 - -Hard enough to get ASes to apply route filters
 - Now you want them to upgrade to a new protocol
 - … all at the exact same moment?

Conclusions

- Internet protocols designed based on trust
 The insiders are good guys
 - -All bad guys are outside the network
- Border Gateway Protocol is very vulnerable
 - Glue that holds the Internet together
 - Hard for an AS to locally identify bogus routes
 - -Attacks can have very serious global consequences
- Proposed solutions/approaches
 - Secure variants of the Border Gateway Protocol
 - -Anomaly detection schemes, with automated response
 - Broader focus on data-plane availability