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Socket: End Point of Net. Comm.’s
• Socket as an Application Programming Interface
–Supports the creation of network applications

• Two ends communicate through a “socket”
–Sending messages from one process to another
–The transportation details are transparent to the 

programmer
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Delivering the Data: Division of Labor

• Application
–Read data from and write data to the socket
–Interpret the data (e.g., render a Web page)

• Operating system
–Deliver data to the destination socket
–Based on the destination port number

• Network
–Deliver data packet to the destination host
–Based on the destination IP address
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Identifying the Receiving Process
• Sending process must identify the receiver
–The receiving end host machine
–The specific socket in a process on that machine

• Receiving host
–Destination address that uniquely identifies the host
–An IPv4 address is a 32-bit quantity

• Receiving socket
–Host may be running many different processes
–Destination port that uniquely identifies the socket
–A port number is a 16-bit quantity
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Identifying the Receiving Process
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Knowing What Port Number To Use
• Popular applications have well-known ports
–E.g., port 80 for Web and port 25 for e-mail
–See http://www.iana.org/assignments/port-numbers

• Well-known vs. ephemeral ports
–Server has a well-known port (e.g., port 80)

 Between 0 and 1023
–Client picks an unused ephemeral (i.e., temporary) port

 Between 1024 and 65535

• Uniquely identifying the traffic between the hosts
–Two IP addresses and two port numbers
–Underlying transport protocol (e.g., TCP or UDP)

http://www.iana.org/assignments/port-numbers
http://www.iana.org/assignments/port-numbers
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Port Numbers are Unique on Each Host
• Port number uniquely identifies the socket
–Cannot use same port number twice with same address
–Otherwise, the OS can’t demultiplex packets correctly

• Operating system enforces uniqueness
–OS keeps track of which port numbers are in use
–Doesn’t let the second program use the port number

• Example: two Web servers running on a machine
–They cannot both use port “80”, the standard port #
–So, the second one might use a non-standard port #
–E.g., http://www.cnn.com:8080

http://www.cnn.com:8080/
http://www.cnn.com:8080/


UNIX Socket API
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UNIX Socket API
• Socket interface
–Originally provided in Berkeley UNIX
–Later adopted by all popular operating systems
–Simplifies porting applications to different OSes 

(even to the Windows!)

• In UNIX, everything is like a file
–All input is like reading a file
–All output is like writing a file
–File is represented by an integer file descriptor

• API implemented as system calls
–E.g., connect, read, write, close, …
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Typical Client Program
• Prepare to communicate
–Create a socket
–Determine server address and port number
–Initiate the connection to the server

• Exchange data with the server
–Write data to the socket
–Read data from the socket
–Do stuff with the data (e.g., render a Web page)

• Close the socket
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Typical Server Program
• Prepare to communicate
–Create a socket
–Associate local address and port with the socket

• Wait to hear from a client (passive open)
– Indicate how many clients-in-waiting to permit
–Accept an incoming connection from a client

• Exchange data with the client over new socket
–Receive data from the socket
–Do stuff to handle the request (e.g., get a file)
–Send data to the socket
–Close the socket

• Repeat with the next connection request
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Putting it All Together
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Wanna See Real Clients and Servers?
• Apache Web server 
–Open source server first released in 1995
–Name derives from “a patchy server” ;-)
–Software available online at http://www.apache.org

• Mozilla Web browser
– http://www.mozilla.org/developer/

• Sendmail
– http://www.sendmail.org/

• BIND Domain Name System (Datagram)
–Client resolver and DNS server
– http://www.isc.org/index.pl?/sw/bind/

• …

http://www.apache.org/
http://www.apache.org/
http://www.isc.org/index.pl?/sw/bind/
http://www.isc.org/index.pl?/sw/bind/


Client Programming
Wanna to have fun? Okay…
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Client Creating a Socket: socket()
int socket(int domain, int type, int protocol)

• Operation to create a socket
–Returns a descriptor (or handle) for the socket
–Originally designed to support any protocol suite

• Domain: protocol family
–PF_INET for the Internet

• Type: semantics of the communication
–SOCK_STREAM: reliable byte stream
–SOCK_DGRAM: message-oriented service

• Protocol: specific protocol
–UNSPEC: unspecified
– (PF_INET and SOCK_STREAM already implies TCP)
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Client: Learning Server Address/Port
• Server typically known by name and service
– “www.google.com” and “http”

• Which must be translated into IP address and port #

• Translating the server’s name to an address
– int getaddrinfo(const char *node, const char *service, 

const struct addrinfo *hints, struct addrinfo **res);
– void freeaddrinfo(struct addrinfo *res);
– int getnameinfo(const struct sockaddr *sa, socklen_t 

salen,char *host, size_t hostlen, char *serv, size_t 
servlen, int flags);

• Check Linux Man pages for details

http://www.google.com
http://www.google.com
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Client: Learning Server Address/Port
• struct addrinfo {

int ai_flags;
int ai_family;
int ai_socktype;
int ai_protocol;
socklen_t ai_addrlen; 
struct sockaddr *ai_addr; 
char *ai_canonname;
struct addrinfo *ai_next;

};
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IP Address Data Structures
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Client: Connecting Socket to the Server
int connect(int sockfd, struct sockaddr *server_address, 

socketlen_t addrlen)

• Client contacts the server to establish connection
–Associate the socket with the server address/port
–Acquire a local port number (assigned by the OS)
–Request connection to server, who will hopefully accept

• Establishing the connection
–Arguments: socket descriptor, server address, and address 

size
–Returns 0 on success, and -1 if an error occurs
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Client: Sending and Receiving Data
• Sending data

ssize_t write(int sockfd, void *buf, size_t len)
–Arguments: socket descriptor, pointer to buffer of data to 

send, and length of the buffer
–Returns the number of characters written, and -1 on 

error

• Receiving data
ssize_t read(int sockfd, void *buf, size_t len)
–Arguments: socket descriptor, pointer to buffer to place 

the data, size of the buffer
–Returns the number of characters read (where 0 implies 

“end of file”), and -1 on error

• Closing the socket
int close(int sockfd)



Server Programming
Not enough fun? Okay… face a headache!
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Servers Differ From Clients
• Passive open
–Prepare to accept connections
–… but don’t actually establish
–… until hearing from a client

• Hearing from multiple clients
–Allowing a backlog of waiting clients
–... in case several try to communicate at once

• Create a socket for each client
–Upon accepting a new client
–… create a new socket for the communication
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Remember: Typical Server Program
• Prepare to communicate
–Create a socket
–Associate local address and port with the socket

• Wait to hear from a client (passive open)
– Indicate how many clients-in-waiting to permit
–Accept an incoming connection from a client

• Exchange data with the client over new socket
–Receive data from the socket
–Do stuff to handle the request (e.g., get a file)
–Send data to the socket
–Close the socket

• Repeat with the next connection request
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Remember: The Big Picture
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Server: Server Preparing its Socket
• Server creates a socket and binds address/port
–Server creates a socket, just like the client does
–Server associates the socket with the port number

  (and hopefully no other process is already using it!)

• Create a socket
int socket(int domain, int type, int protocol)

• Bind socket to the local address and port number
int bind(int sockfd, struct sockaddr *my_addr, socklen_t 

addrlen)
–Arguments: socket descriptor, server address, address 

length
–Returns 0 on success, and -1 if an error occurs
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Server: Allowing Clients to Wait
• Many client requests may arrive
–Server cannot handle them all at the same time
–Server could reject the requests, or let them wait
–Define how many connections can be pending: backlog

• Wait for clients
int listen(int sockfd, int backlog)
–Arguments: socket descriptor and acceptable backlog
–Returns a 0 on success, and -1 on error

• What if too many clients arrive?
–Some requests don’t get through
–The Internet makes no promises…
–And the client can always try again
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Server: Accepting Client Connection
• Now all the server can do is wait…
–Waits for connection request to arrive
–Blocking until the request arrives
–And then accepting the new request

• Accept a new connection from a client
int accept(int sockfd, struct sockaddr *addr, socketlen_t 

*addrlen)
–Arguments: socket descriptor, structure that will provide  

client address and port, and length of the structure
–Returns descriptor for a new socket for this connection



35

Server: One Request at a Time?
• Serializing requests is inefficient
–Server can process just one request at a time
–All other clients must wait until previous one is done

• May need to time share the server machine
–Alternate between servicing different requests

 E.g. use multi-threading
–Or, start a new process to handle each request

 Allow the operating system to share the CPU across processes
–Or, some hybrid of these two approaches
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Client and Server: Cleaning House
• Once the connection is open
–Both sides and read and write
–Two unidirectional streams of data
– In practice, client writes first, and server reads
–… then server writes, and client reads, and so on

• Closing down the connection
–Either side can close the connection
–… using the close() system call

• What about the data still “in flight”
–Data in flight still reaches the other end
–So, server can close() before client finishing reading



The Problem of Interoperability
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Byte Order
• Hosts differ in how they store data
–E.g., four-byte number (byte3, byte2, byte1, byte0)

• Little endian (“little end comes first”)  Intel PCs!!!
– Low-order byte stored at the lowest memory location
–Byte0, byte1, byte2, byte3

• Big endian (“big end comes first”)
–High-order byte stored at lowest memory location
–Byte3, byte2, byte1, byte 0

• Makes it more difficult to write portable code
–Client may be big or little endian machine
–Server may be big or little endian machine
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IP is Big Endian
• But, what byte order is used “on the wire”
–That is, what do the network protocol use?

• The Internet Protocols picked one convention
– IP is big endian (aka “network byte order”)

• Writing portable code require conversion
–Use htons() and htonl() to convert to network byte order
–Use ntohs() and ntohl() to convert to host order

• Hides details of what kind of machine you’re on
–Use the system calls when sending/receiving data 

structures longer than one byte
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Why Can’t Sockets Hide These Details?
• Dealing with endian differences is tedious
–Couldn’t the socket implementation deal with this
–… by swapping the bytes as needed?

• No, swapping depends on the data type
–Two-byte short int: (byte 1, byte 0) vs. (byte 0, byte 1)
–Four-byte long int: (byte 3, byte 2, byte 1, byte 0) vs. 

(byte 0, byte 1, byte 2, byte 3)
–String of one-byte charters: (char 0, char 1, char 2, …) in 

both cases

• Socket layer doesn’t know the data types
–Sees the data as simply a buffer pointer and a length
–Doesn’t have enough information to do the swapping



The Web as an Example 
Application
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The Web: URL, HTML, and HTTP
• Uniform Resource Locator (URL)
–A pointer to a “black box” that accepts request methods
–Formatted string with protocol (e.g., http), server name 

(e.g., www.cnn.com), and resource name (coolpic.jpg)

• HyperText Markup Language (HTML)
–Representation of hyptertext documents in ASCII format
–Format text, reference images, embed hyperlinks
– Interpreted by Web browsers when rendering a page

• HyperText Transfer Protocol (HTTP)
–Client-server protocol for transferring resources
–Client sends request and server sends response



44

Example: HyperText Transfer Protocol

GET /courses/archive/spring08/cos461/ HTTP/1.1
Host: www.cs.princeton.edu
User-Agent: Mozilla/4.03
<CRLF>

HTTP/1.1 200 OK
Date: Mon, 4 Feb 2008 13:09:03 GMT
Server: Netscape-Enterprise/3.5.1
Content-Type: text/plain
Last-Modified: Mon, 4 Feb  2008 11:12:23 GMT
Content-Length: 21
<CRLF>
Site under construction

Request

Response
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In Fact, Try This at a UNIX Prompt…

labpc: telnet www.cnn.com 80
GET /index.html HTTP/1.1
Host: www.cnn.com
<CRLF>

And you’ll see the response…
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Web Server
• Web site vs. Web server
–Web site: collections of Web pages associated 

with a particular host name
–Web server: program that satisfies client 

requests for Web resources

• Handling a client request
–Accept the socket
–Read and parse the HTTP request message
–Translate the URL to a filename
–Determine whether the request is authorized
–Generate and transmit the response


