
#In the name of Allah

Socket
Programming

Computer Engineering Department
Sharif University of Technology

CE443- Computer Networks

1

Acknowledgments: Lecture slides are from Computer networks course thought
by Jennifer Rexford at Princeton University. When slides are obtained from other
sources, a reference will be noted on the bottom of that slide.

11

Socket: End Point of Net. Comm.’s
• Socket as an Application Programming Interface
–Supports the creation of network applications

• Two ends communicate through a “socket”
–Sending messages from one process to another
–The transportation details are transparent to the

programmer

socket socket

User process User process

Operating
System

Operating
System

12

Delivering the Data: Division of Labor

• Application
–Read data from and write data to the socket
–Interpret the data (e.g., render a Web page)

• Operating system
–Deliver data to the destination socket
–Based on the destination port number

• Network
–Deliver data packet to the destination host
–Based on the destination IP address

13

Identifying the Receiving Process
• Sending process must identify the receiver
–The receiving end host machine
–The specific socket in a process on that machine

• Receiving host
–Destination address that uniquely identifies the host
–An IPv4 address is a 32-bit quantity

• Receiving socket
–Host may be running many different processes
–Destination port that uniquely identifies the socket
–A port number is a 16-bit quantity

14

Identifying the Receiving Process

Web server
(port 80)

Client host

Server host 128.2.194.242

Echo server
(port 7)

Service request for
128.2.194.242:80

(i.e., the Web server)

Web server
(port 80)

Echo server
(port 7)

Service request for
128.2.194.242:7

(i.e., the echo server)

OS

OS

Client

Client

15

Knowing What Port Number To Use
• Popular applications have well-known ports
–E.g., port 80 for Web and port 25 for e-mail
–See http://www.iana.org/assignments/port-numbers

• Well-known vs. ephemeral ports
–Server has a well-known port (e.g., port 80)

 Between 0 and 1023
–Client picks an unused ephemeral (i.e., temporary) port

 Between 1024 and 65535

• Uniquely identifying the traffic between the hosts
–Two IP addresses and two port numbers
–Underlying transport protocol (e.g., TCP or UDP)

http://www.iana.org/assignments/port-numbers
http://www.iana.org/assignments/port-numbers

16

Port Numbers are Unique on Each Host
• Port number uniquely identifies the socket
–Cannot use same port number twice with same address
–Otherwise, the OS can’t demultiplex packets correctly

• Operating system enforces uniqueness
–OS keeps track of which port numbers are in use
–Doesn’t let the second program use the port number

• Example: two Web servers running on a machine
–They cannot both use port “80”, the standard port #
–So, the second one might use a non-standard port #
–E.g., http://www.cnn.com:8080

http://www.cnn.com:8080/
http://www.cnn.com:8080/

UNIX Socket API

17

18

UNIX Socket API
• Socket interface
–Originally provided in Berkeley UNIX
–Later adopted by all popular operating systems
–Simplifies porting applications to different OSes

(even to the Windows!)

• In UNIX, everything is like a file
–All input is like reading a file
–All output is like writing a file
–File is represented by an integer file descriptor

• API implemented as system calls
–E.g., connect, read, write, close, …

19

Typical Client Program
• Prepare to communicate
–Create a socket
–Determine server address and port number
–Initiate the connection to the server

• Exchange data with the server
–Write data to the socket
–Read data from the socket
–Do stuff with the data (e.g., render a Web page)

• Close the socket

20

Typical Server Program
• Prepare to communicate
–Create a socket
–Associate local address and port with the socket

• Wait to hear from a client (passive open)
– Indicate how many clients-in-waiting to permit
–Accept an incoming connection from a client

• Exchange data with the client over new socket
–Receive data from the socket
–Do stuff to handle the request (e.g., get a file)
–Send data to the socket
–Close the socket

• Repeat with the next connection request

21

Putting it All Together

socket()

bind()

listen()

accept()

read()

write()

Server

block

process
request

Client

socket()

connect()

write()

establish

connection

send request

read()
send response

22

Wanna See Real Clients and Servers?
• Apache Web server
–Open source server first released in 1995
–Name derives from “a patchy server” ;-)
–Software available online at http://www.apache.org

• Mozilla Web browser
– http://www.mozilla.org/developer/

• Sendmail
– http://www.sendmail.org/

• BIND Domain Name System (Datagram)
–Client resolver and DNS server
– http://www.isc.org/index.pl?/sw/bind/

• …

http://www.apache.org/
http://www.apache.org/
http://www.isc.org/index.pl?/sw/bind/
http://www.isc.org/index.pl?/sw/bind/

Client Programming
Wanna to have fun? Okay…

23

24

Client Creating a Socket: socket()
int socket(int domain, int type, int protocol)

• Operation to create a socket
–Returns a descriptor (or handle) for the socket
–Originally designed to support any protocol suite

• Domain: protocol family
–PF_INET for the Internet

• Type: semantics of the communication
–SOCK_STREAM: reliable byte stream
–SOCK_DGRAM: message-oriented service

• Protocol: specific protocol
–UNSPEC: unspecified
– (PF_INET and SOCK_STREAM already implies TCP)

24

Client: Learning Server Address/Port
• Server typically known by name and service
– “www.google.com” and “http”

• Which must be translated into IP address and port #

• Translating the server’s name to an address
– int getaddrinfo(const char *node, const char *service,

const struct addrinfo *hints, struct addrinfo **res);
– void freeaddrinfo(struct addrinfo *res);
– int getnameinfo(const struct sockaddr *sa, socklen_t

salen,char *host, size_t hostlen, char *serv, size_t
servlen, int flags);

• Check Linux Man pages for details

http://www.google.com
http://www.google.com

24

Client: Learning Server Address/Port
• struct addrinfo {

int ai_flags;
int ai_family;
int ai_socktype;
int ai_protocol;
socklen_t ai_addrlen;
struct sockaddr *ai_addr;
char *ai_canonname;
struct addrinfo *ai_next;

};

24

IP Address Data Structures

26

Client: Connecting Socket to the Server
int connect(int sockfd, struct sockaddr *server_address,

socketlen_t addrlen)

• Client contacts the server to establish connection
–Associate the socket with the server address/port
–Acquire a local port number (assigned by the OS)
–Request connection to server, who will hopefully accept

• Establishing the connection
–Arguments: socket descriptor, server address, and address

size
–Returns 0 on success, and -1 if an error occurs

27

Client: Sending and Receiving Data
• Sending data

ssize_t write(int sockfd, void *buf, size_t len)
–Arguments: socket descriptor, pointer to buffer of data to

send, and length of the buffer
–Returns the number of characters written, and -1 on

error

• Receiving data
ssize_t read(int sockfd, void *buf, size_t len)
–Arguments: socket descriptor, pointer to buffer to place

the data, size of the buffer
–Returns the number of characters read (where 0 implies

“end of file”), and -1 on error

• Closing the socket
int close(int sockfd)

Server Programming
Not enough fun? Okay… face a headache!

28

29

Servers Differ From Clients
• Passive open
–Prepare to accept connections
–… but don’t actually establish
–… until hearing from a client

• Hearing from multiple clients
–Allowing a backlog of waiting clients
–... in case several try to communicate at once

• Create a socket for each client
–Upon accepting a new client
–… create a new socket for the communication

30

Remember: Typical Server Program
• Prepare to communicate
–Create a socket
–Associate local address and port with the socket

• Wait to hear from a client (passive open)
– Indicate how many clients-in-waiting to permit
–Accept an incoming connection from a client

• Exchange data with the client over new socket
–Receive data from the socket
–Do stuff to handle the request (e.g., get a file)
–Send data to the socket
–Close the socket

• Repeat with the next connection request

31

Remember: The Big Picture

socket()

bind()

listen()

accept()

read()

write()

Server

block

process
request

Client

socket()

connect()

write()

establish

connection

send request

read()
send response

32

Server: Server Preparing its Socket
• Server creates a socket and binds address/port
–Server creates a socket, just like the client does
–Server associates the socket with the port number

 (and hopefully no other process is already using it!)

• Create a socket
int socket(int domain, int type, int protocol)

• Bind socket to the local address and port number
int bind(int sockfd, struct sockaddr *my_addr, socklen_t

addrlen)
–Arguments: socket descriptor, server address, address

length
–Returns 0 on success, and -1 if an error occurs

33

Server: Allowing Clients to Wait
• Many client requests may arrive
–Server cannot handle them all at the same time
–Server could reject the requests, or let them wait
–Define how many connections can be pending: backlog

• Wait for clients
int listen(int sockfd, int backlog)
–Arguments: socket descriptor and acceptable backlog
–Returns a 0 on success, and -1 on error

• What if too many clients arrive?
–Some requests don’t get through
–The Internet makes no promises…
–And the client can always try again

34

Server: Accepting Client Connection
• Now all the server can do is wait…
–Waits for connection request to arrive
–Blocking until the request arrives
–And then accepting the new request

• Accept a new connection from a client
int accept(int sockfd, struct sockaddr *addr, socketlen_t

*addrlen)
–Arguments: socket descriptor, structure that will provide

client address and port, and length of the structure
–Returns descriptor for a new socket for this connection

35

Server: One Request at a Time?
• Serializing requests is inefficient
–Server can process just one request at a time
–All other clients must wait until previous one is done

• May need to time share the server machine
–Alternate between servicing different requests

 E.g. use multi-threading
–Or, start a new process to handle each request

 Allow the operating system to share the CPU across processes
–Or, some hybrid of these two approaches

36

Client and Server: Cleaning House
• Once the connection is open
–Both sides and read and write
–Two unidirectional streams of data
– In practice, client writes first, and server reads
–… then server writes, and client reads, and so on

• Closing down the connection
–Either side can close the connection
–… using the close() system call

• What about the data still “in flight”
–Data in flight still reaches the other end
–So, server can close() before client finishing reading

The Problem of Interoperability

37

38

Byte Order
• Hosts differ in how they store data
–E.g., four-byte number (byte3, byte2, byte1, byte0)

• Little endian (“little end comes first”) Intel PCs!!!
– Low-order byte stored at the lowest memory location
–Byte0, byte1, byte2, byte3

• Big endian (“big end comes first”)
–High-order byte stored at lowest memory location
–Byte3, byte2, byte1, byte 0

• Makes it more difficult to write portable code
–Client may be big or little endian machine
–Server may be big or little endian machine

40

IP is Big Endian
• But, what byte order is used “on the wire”
–That is, what do the network protocol use?

• The Internet Protocols picked one convention
– IP is big endian (aka “network byte order”)

• Writing portable code require conversion
–Use htons() and htonl() to convert to network byte order
–Use ntohs() and ntohl() to convert to host order

• Hides details of what kind of machine you’re on
–Use the system calls when sending/receiving data

structures longer than one byte

41

Why Can’t Sockets Hide These Details?
• Dealing with endian differences is tedious
–Couldn’t the socket implementation deal with this
–… by swapping the bytes as needed?

• No, swapping depends on the data type
–Two-byte short int: (byte 1, byte 0) vs. (byte 0, byte 1)
–Four-byte long int: (byte 3, byte 2, byte 1, byte 0) vs.

(byte 0, byte 1, byte 2, byte 3)
–String of one-byte charters: (char 0, char 1, char 2, …) in

both cases

• Socket layer doesn’t know the data types
–Sees the data as simply a buffer pointer and a length
–Doesn’t have enough information to do the swapping

The Web as an Example
Application

42

43

The Web: URL, HTML, and HTTP
• Uniform Resource Locator (URL)
–A pointer to a “black box” that accepts request methods
–Formatted string with protocol (e.g., http), server name

(e.g., www.cnn.com), and resource name (coolpic.jpg)

• HyperText Markup Language (HTML)
–Representation of hyptertext documents in ASCII format
–Format text, reference images, embed hyperlinks
– Interpreted by Web browsers when rendering a page

• HyperText Transfer Protocol (HTTP)
–Client-server protocol for transferring resources
–Client sends request and server sends response

44

Example: HyperText Transfer Protocol

GET /courses/archive/spring08/cos461/ HTTP/1.1
Host: www.cs.princeton.edu
User-Agent: Mozilla/4.03
<CRLF>

HTTP/1.1 200 OK
Date: Mon, 4 Feb 2008 13:09:03 GMT
Server: Netscape-Enterprise/3.5.1
Content-Type: text/plain
Last-Modified: Mon, 4 Feb 2008 11:12:23 GMT
Content-Length: 21
<CRLF>
Site under construction

Request

Response

48

In Fact, Try This at a UNIX Prompt…

labpc: telnet www.cnn.com 80
GET /index.html HTTP/1.1
Host: www.cnn.com
<CRLF>

And you’ll see the response…

50

Web Server
• Web site vs. Web server
–Web site: collections of Web pages associated

with a particular host name
–Web server: program that satisfies client

requests for Web resources

• Handling a client request
–Accept the socket
–Read and parse the HTTP request message
–Translate the URL to a filename
–Determine whether the request is authorized
–Generate and transmit the response

