CE 443: Computer Networks

Acknowledgments: Lecture slides are from Computer networks course thought by Jennifer Rexford at Princeton University. When slides are obtained from other sources, a reference will be noted on the bottom of that slide. A full list of references is provided on the last slide.
Goals for Today’s Class

• Overview
 – Goals of the course
 – Structure of the course

• Key concepts in data networking
 – Protocols
 – Layering
 – Resource allocation
 – Naming
What You Learn in This Course

• Knowledge: how the Internet works
 – IP protocol suite
 – Internet architecture
 – Applications (Web, e-mail, P2P, VoIP, …)

• Insight: key concepts in networking
 – Protocols
 – Layering
 – Resource allocation
 – Naming

• Skill: network programming
 – Socket programming
 – Designing and implementing protocols
Structure of the Course (1st Half)

• Start at the top
 – Sockets: how applications view the Internet
 – Protocols: essential elements of a protocol

• Then study the “narrow waist” of IP
 – IP best-effort packet-delivery service
 – IP addressing and packet forwarding

• And how to build on top of the narrow waist
 – Transport protocols (TCP, UDP)
 – Domain Name System (DNS)
 – Glue (ARP, DHCP, ICMP)
 – End-system security and privacy (NAT, firewalls)

• Looking underneath IP
 – Link technologies (Ethernet, wireless, …)
Structure of the Course (2nd Half)

• And how to get the traffic from here to there
 – Internet routing architecture (the “inter” in Internet)
 – Intradomain and interdomain routing protocols

• Building applications
 – Web and content-distribution networks
 – E-mail
 – Peer-to-peer file sharing
 – Multimedia streaming and voice-over-IP

• Other approaching to building networks
 – Circuit switching (e.g., ATM, MPLS, …)
 – More on wireless networks, multicast, …
Learning the Material: Books

• Required textbook
 – Computer Networks: A Systems Approach (5th edition), by Peterson and Davie

• Optional textbooks
 – Networking text books
 • Computer Networking: A Top-Down Approach Featuring the Internet (3rd edition), by Kurose and Ross
 • Computer Networks (4th edition), by Tanenbaum
 – Network programming references
 • TCP/IP Illustrated, Volume 1: The Protocols, by Stevens
 • Unix Network Programming, Volume 1: The Sockets Networking API (3rd Edition), by Stevens, Fenner, & Rudolf

• Online resources
 – E.g. on socket programming
Okay, so let’s get started… with a crash course in data networking
Key Concepts in Networking

• Protocols
 – Speaking the same language
 – Syntax and semantics

• Layering
 – Standing on the shoulders of giants
 – A key to managing complexity

• Resource allocation
 – Dividing scarce resources among competing parties
 – Memory, link bandwidth, wireless spectrum, paths, …
 – Distributed vs. centralized algorithms

• Naming
 – What to call computers, services, protocols, …
Protocols: Calendar Service

• Making an appointment with your advisor

Please meet with me for 1.5 hours starting at 1:30pm on February 8, 2006?

Please meet with me for 1.5 hours starting at 4:30pm on February 8, 2006?

I can’t. Can I?

I can’t. Yes!

• Specifying the messages that go back and forth
 – And an understanding of what each party is doing
Okay, So This is Getting Tedious

• You: When are you free to meet for 1.5 hours during the next two weeks?

• Advisor: 10:30am on Feb 8 and 1:15pm on Feb 9.

• You: Book me for 1.5 hours at 10:30am on Feb 8.

• Advisor: Yes.
Well, Not Quite Enough

- Student #1: When can you meet for 1.5 hours during the next two weeks?
- Advisor: 10:30am on Feb 8 and 1:15pm on Feb 9.
- Student #2: When can you meet for 1.5 hours during the next two weeks?
- Advisor: 10:30am on Feb 8 and 1:15pm on Feb 9.
- Student #1: Book me for 1.5 hours at 10:30am on Feb 8.
- Advisor: Yes.
- Student #2: Book me for 1.5 hours at 10:30am on Feb 8.
- Advisor: Uh… well… I can no longer can meet then. I’m free at 1:15pm on Feb 9.
- Student #2: Book me for 1.5 hours at 1:15pm on Feb 9.
- Advisor: Yes.
Specifying the Details

• How to identify yourself?
 – Name? Student ID?

• How to represent dates and time?
 – Time, day, month, year? In what time zone?
 – Number of seconds since Jan 1, 1970?

• What granularities of times to use?
 – Any possible start time and meeting duration?
 – Multiples of five minutes?

• How to represent the messages?
 – Strings? Record with name, start time, and duration?

• What do you do if you don’t get a response?
 – Ask again? Reply again?
Example: HyperText Transfer Protocol

Request

GET /courses/archive/ce443/ HTTP/1.1
Host: www.cs.sharif.edu
User-Agent: Mozilla/4.03
CRLF

Response

HTTP/1.1 200 OK
Date: Mon, 4 Feb 2010 13:09:03 GMT
Server: Netscape-Enterprise/3.5.1
Last-Modified: Mon, 4 Feb 2010 11:12:23 GMT
Content-Length: 21
CRLF
Site under construction
Example: IP Packet

<table>
<thead>
<tr>
<th>4-bit Version</th>
<th>4-bit Header Length</th>
<th>8-bit Type of Service (TOS)</th>
<th>16-bit Total Length (Bytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-bit Identification</td>
<td>3-bit Flags</td>
<td>13-bit Fragment Offset</td>
<td></td>
</tr>
<tr>
<td>8-bit Time to Live (TTL)</td>
<td>8-bit Protocol</td>
<td>16-bit Header Checksum</td>
<td></td>
</tr>
<tr>
<td>32-bit Source IP Address</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32-bit Destination IP Address</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Options (if any)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Payload</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
IP: Best-Effort Packet Delivery

• Packet switching
 – Send data in packets
 – Header with source & destination address

• Best-effort delivery
 – Packets may be lost
 – Packets may be corrupted
 – Packets may be delivered out of order
Example: Transmission Control Protocol

• Communication service (socket)
 – Ordered, reliable byte stream
 – Simultaneous transmission in both directions

• Key mechanisms at end hosts
 – Retransmit lost and corrupted packets
 – Discard duplicate packets and put packets in order
 – Flow control to avoid overloading the receiver buffer
 – Congestion control to adapt sending rate to network load
Protocol Standardization

• Communicating hosts speaking the same protocol
 – Standardization to enable multiple implementations
 – Or, the same folks have to write all the software

• Standardization: Internet Engineering Task Force
 – Based on working groups that focus on specific issues
 – Produces “Request For Comments” (RFCs)
 • Promoted to standards via rough consensus and running code
 • E.g., RFC 1945 on “HyperText Transfer Protocol – HTTP/1.0”
 – IETF Web site is http://www.ietf.org

• De facto standards: same folks writing the code
 – P2P file sharing, Skype, <your protocol here>…
Key Concepts in Networking

• Protocols
 – Speaking the same language
 – Syntax and semantics

• Layering
 – Standing on the shoulders of giants
 – A key to managing complexity

• Resource allocation
 – Dividing scarce resources among competing parties
 – Memory, link bandwidth, wireless spectrum, paths, …
 – Distributed vs. centralized algorithms

• Naming
 – What to call computers, services, protocols, …
Layering: A Modular Approach

• Sub-divide the problem
 – Each layer relies on services from layer below
 – Each layer exports services to layer above

• Interface between layers defines interaction
 – Hides implementation details
 – Layers can change without disturbing other layers

![Layering Diagram]

- Application
- Application-to-application channels
- Host-to-host connectivity
- Link hardware
IP Suite: End Hosts vs. Routers

HTTP message

TCP segment

IP packet

host

router

router

host
The Internet Protocol Suite

The waist facilitates interoperability
Layer Encapsulation

User A

User B

Get index.html

Connection ID

Source/Destination

Link Address
What if the Data Doesn’t Fit?

Problem: Packet size

- On Ethernet, max IP packet is 1500 bytes
- Typical Web page is 10 kbytes

Solution: Split the data across multiple packets

GET index.html
Protocol Demultiplexing

- Multiple choices at each layer

```
FTP  HTTP  NV  TFTP
TCP  UDP
NET_1  NET_2  ...  NET_n
```

```
Network  IP  TCP/UDP
Type Field  Protocol Field  Port Number
```
Demultiplexing: Port Numbers

• Differentiate between multiple transfers
 – Knowing source and destination host is not enough
 – Need an id for each transfer between the hosts

• Specify a particular service running on a host
 – E.g., HTTP server running on port 80
 – E.g., FTP server running on port 21
Is Layering Harmful?

• Layer N may duplicate lower level functionality
 – E.g., error recovery to retransmit lost data

• Layers may need same information
 – E.g., timestamps, maximum transmission unit size

• Strict adherence to layering may hurt performance
 – E.g., hiding details about what is really going on

• Some layers are not always cleanly separated
 – Inter-layer dependencies for performance reasons

• Headers start to get really big
 – Sometimes more header bytes than actual content
Key Concepts in Networking

• Protocols
 – Speaking the same language
 – Syntax and semantics

• Layering
 – Standing on the shoulders of giants
 – A key to managing complexity

• Resource allocation
 – Dividing scarce resources among competing parties
 – Memory, link bandwidth, wireless spectrum, paths, …
 – Distributed vs. centralized algorithms

• Naming
 – What to call computers, services, protocols, …
Resource Allocation: Queues

• Sharing access to limited resources
 – E.g., a link with fixed service rate

• Simplest case: first-in-first out queue
 – Serve packets in the order they arrive
 – When busy, store arriving packets in a buffer
 – Drop packets when the queue is full
What if the Data gets Dropped?

Problem: Lost Data

 SOLUTION: Timeout and Retransmit
What if the Data is Out of Order?

Problem: Out of Order

Solution: Add Sequence Numbers
Resource Allocation: Congestion Control

- What if too many folks are sending data?
 - Senders agree to slow down their sending rates
 - … in response to their packets getting dropped

- The essence of TCP congestion control
 - Key to preventing congestion collapse of the Internet
Transmission Control Protocol

• Flow control: window-based
 – Sender limits number of outstanding bytes (window size)
 – *Receiver window* ensures data does not overflow receiver

• Congestion control: adapting to packet losses
 – *Congestion window* tries to avoid overloading the network (increase with successful delivery, decrease with loss)
 – TCP connection starts with small initial congestion window

Figure showing the relationship between time and congestion window, with stages labeled slow start and congestion avoidance.
Key Concepts in Networking

• Protocols
 – Speaking the same language
 – Syntax and semantics

• Layering
 – Standing on the shoulders of giants
 – A key to managing complexity

• Resource allocation
 – Dividing scarce resources among competing parties
 – Memory, link bandwidth, wireless spectrum, paths, …
 – Distributed vs. centralized algorithms

• Naming
 – What to call computers, services, protocols, …
Naming: Domain Name System (DNS)

- Properties of DNS
 - Hierarchical name space divided into zones
 - Translation of names to/from IP addresses
 - Distributed over a collection of DNS servers

- Client application
 - Extract server name (e.g., from the URL)
 - Invoke system call to trigger DNS resolver code
 - E.g., `gethostbyname()` on “www.cs.sharif.edu”

- Server application
 - Extract client IP address from socket
 - Optionally invoke system call to translate into name
 - E.g., `gethostbyaddr()` on “12.34.158.5”
Domain Name System

```
com  edu  • • •  org

sharif

west  ce

foo  lists

lists.ce.sharif.edu

ac  • • •  uk  zw

ac

cam

usr

usr.cam.ac.uk
```

Domain Name System

- **Generic Domains**
 - com
 - edu
 - org

- **Country Domains**
 - ac
 - uk
 - zw

- **Example Domains**
 - lists.ce.sharif.edu
 - usr.cam.ac.uk
DNS Resolver and Local DNS Server

Caching based on a time-to-live (TTL) assigned by the DNS server responsible for the host name to reduce latency in DNS translation.
Conclusions

• Course objectives
 – How the Internet works, key concepts in networking, and Network programming

• Key concepts in networking
 – Protocols, layers, resource allocation, and naming

• Next lecture:
 – Read Chapter 1 of the Peterson/Davie book
 – Skim the online reference material on sockets
 – (Re)familiarize yourself with C programming