#In the name of Allah

Computer Engineering Department
Sharif University of Technology

CE443- Computer Networks

Socket
Programming

Acknowledgments: Lecture slides are from Computer networks course thought
by Jennifer Rexford at Princeton University. When slides are obtained from other
sources, a reference will be noted on the bottom of that slide.

#Typical Client-Server

response

‘socket()‘

| bind() |

| socket) | IlistenQ)]
Connection establishment

‘connect(F

l send) | DaaRequest
‘ recv() ‘

o rafeskon®® J sendO |
recv() ‘

End the connection
‘ close() F“““—————————————*+ recv() ‘

‘ close() ‘

#Client Programming

* Create stream socket (socket())
+ Connect to server (connect())

* While still connected:

- send message to server (send())
* receive (recv()) data from server and process it
* Close TCP connection and Socket (close())

#Client: Learning Server Address/
Port

* Server typically khown by hame and service
—“www.google.com” and “http”

 Which must be transliated into IP address and port #

 Translating the server’s name to an address

+ int (const char *node, const char *service,
4+ const struct addrinfo *hints, struct addrinfo **res);

+ void (struct addrinfo *res);

4+ int (const struct sockaddr *sa, socklen t

+ salen,char *host, size t hostlen, char *serv, size t

+ servlen, int flags);

#Client: Learning Server Address/

Port

struct addrinfo {
int ai_flags; // Al_PASSIVE,Al _CANONNAME, etc.
int ai_family; /[AF_INET,AF INET6,AF UNSPEC
int ai_socktype; // SOCK _STREAM, SOCK DGRAM
int ai_protocol; /] use 0 for "any"
size t ai_addrlen; // size of ai_addr in bytes
struct sockaddr *ai_addr; // struct sockaddr _in or in6
char *ai_canonname; // full canonical hostname
struct addrinfo *ai next; // linked list, next node

5
struct sockaddr {
unsigned short sa_family; // address family, AF xxx

char sa_data[14]; // 14 bytes of protocol address

5

H#Client Creating a Socket: socket()

v Returns a descriptor (or handle) for the socket
v Originally designed to support any protocol suite

v PF_INET for the Internet

v SOCK_STREAM: reliable byte stream
v SOCK DGRAM: message-oriented service

v UNSPEC: unspecified
v (PF_INET and SOCK _ STREAM already implies TCP)

#Client: Send/Rcv Data and Close

v Associate the socket with the server address/port
v Acquire a local port number (assigned by the OS)
v Request connection to server, who will hopefully accept

v Arguments: socket descriptor, server address, and address
V'size
v Returns 0 on success, and -| if an error occurs

#Programming in C: Client

/¢ vode for a client connecting to a server
f/ namely a stream socket to www.example.cecm on port 80 (http)

’

/f eilther I2v4 or IPvo

int sockfd:;
struct addrinfo hints, #*servinfo, *p;
int. rv;

memset (&hints, 0, sizeof hints):
hints.ai family = AF UNSPEC; // use AF INET6 to force IPv6
hints.ai sccktype SOCX STREAM;

I

if ((rv = getaddrinfo ("www.example.com"”, "http", &hints, &servinfo)) != 0) {
fprintf (stderr, "getaddrinfo: %s\n", gai strerror (rxrv));
exit(l);

/¢ loop through all the results and connect to the Zirst we can
for{p = servinfo; p != NULL; p = p-rai_next) {
if ((scckfd - sccket (p—->ai family, p->ai_socktype,
p->ai_protocol)) == -1} {
perror ("socket");
ccntinue;

o
v

if (cconnect (sockfd, p->ai_addr, ai_addrlen) -— -1)
perxroxr ("connect");
clcose (sockid) ;

continue;

-

kreak; // if we get here, we must have connected successfully

if (p == NULL) {
// locped off the end of the list with no connecticn
fprintf (stderr, "failed to connect\n");
exit(2);

freeaddrinfo(servinfo); // 8ll done with this structurs

#Server Programming:
Servers Differ From Clients

* Prepare to accept connections
* ... but don’t actually establish
* ... until hearing from a client

» Allowing a backlog of waiting clients
* ...Iin case several try to communicate at once

- Upon accepting a new client
« ... create a new socket for the communication

#Typical Client-Server

response

‘socket()‘

| bind() |

| socket) | IlistenQ)]
Connection establishment

‘connect(F

l send) | DaaRequest
‘ recv() ‘

o rafeskon®® J sendO |
recv() ‘

End the connection
‘ close() F“““—————————————*+ recv() ‘

‘ close() ‘

10

#Server Programming: Preparing its
Socket

 Create stream socket (socket())
» Bind port to socket (bind()) # local host and port
» Listen for new client (listen()) # How many clients!?

11

#Programming in C: Server

Yinclude <string.h>

¥include <sys/types.h>
Yinclude <sys/sccket.h>
finclude <netinet/in.h>

Fdefine MYPORT "3430" // the port users will he cornecting to
fdefine BACXLOG 10 // how many pending connections queue will helco

Int main(veid)
struct sockaddr storage their addr;
socklen t addr size:;
struct addrinfo hints, *res;
int sockfd, new fd;

ff !l don't forget your error checking for these calls !!

ff first, lcad up address structs with getaddrinfol():

memset (Shintg, O, sizeof nints);

hinta.ai family = AY¥ UNSPEC; S/ use 1Pvw4 or 1Pve, whichever

hints.ai socktyoe — SOCX STRERM;
hints.ai flags = Al DPASSIVE; S Fill in my 12 fer me

getaddrinfo (NULL, MY2ORT, &hints, &res);

// make a socket, »ind it, and listen on it:

sockfd - socket (res->ai family, res->ai socktype, res->ai prectocol);
bind(scckfd, res-»ai addr, res->ai_addrlen);

listen (sccxid, BACKLOG);

// now accevt an incoming connecticn:

addr size = sizeof their addr;
new Td = accept (scckfd, (struct sockaddr *)&their addr, &addr size);

/f ready to communicate on socket descriptor new fd!

H#Server Programming: Handle No. of
Clients

Many client requests may arrive
* Server cannot handle them all at the same time
* Server could reject the requests, or let them wait
* Define how many connections can be pending: backlog
Wiait for clients
*int listen(int sockfd, int backlog)
* Arguments: socket descriptor and acceptable backlog
* Returns a 0 on success,and -1 on error
What if too many clients arrive!
* Some requests don’t get through
* The Internet makes no promises...
* And the client can always try again

13

#Server Programming: Accepting Client
Connection

Now all the server can do is wait...
* Waits for connection request to arrive
* Blocking until the request arrives
* And then accepting the new request
Accept a new connection from a client
* int accept(int sockfd, struct sockaddr *addr, socketlen t
**addrlen)
* Arguments: socket descriptor, structure that will provide
* client address and port, and length of the structure
* Returns descriptor for a new socket for this connection

14

HServer Programming: Accepting
Client Connection

* Server can process just one request at a time
* All other clients must wait until previous one is done
* May need to time share the server machine

* E.g. use multi-threading
* Or, start a new process to handle each request

* Allow the operating system to share the CPU across
processes

* Or, some hybrid of these two approaches

15

#Client and Server: Cleaning House

Once the connection is open

* Both sides and read and write

* Two unidirectional streams of data

* In practice, client writes first, and server reads

* ... then server writes, and client reads, and so on
Closing down the connection

* Either side can close the connection

* ... using the close() system call
What about the data still “in flight”

* Data in flight still reaches the other end

* S0, server can close() before client finishing reading

16

The End

