
#In the name of Allah

Socket
Programming

Computer Engineering Department
Sharif University of Technology

CE443- Computer Networks

1

Acknowledgments: Lecture slides are from Computer networks course thought
by Jennifer Rexford at Princeton University. When slides are obtained from other
sources, a reference will be noted on the bottom of that slide.

#What is Socket?

• Networking in UNIX is I/O

• A way to speak to other programs using standard Unix file

descriptors, here a file is a Network Connection.

• Socket Programming is a way to create and Handle a file for

a network connection.

• Sockets can be different …

• DARPA Internet addresses, Internet Sockets.

2

#Internet Sockets

 Support stream and datagram packets (e.g. TCP, UDP, IP)

 Is Similar to UNIX file I/O API (provides a file

descriptor)

 Based on C, single thread model (does not require

multiple threads)

3

#Layers of the IP Protocol Suite

Link Layer

 Transport Layer

Network Layer

Application Layer

Link Layer

 Transport Layer

Network Layer

Application Layer

Ethernet

e.g. http

e.g. TCP, UDP

e.g. IP

4

#Protocol Suite Location

Link Layer

 Transport Layer

Network Layer

Application Layer

 
Network Card &

Device Driver  
(e.g. Ethernet card)

 
 

Operating System  
(e.g. Unix)

Applications 
(e.g. browser, game, ftp)

Application Programming  
Interface (API)  

(e.g. network API)

 Interface to the Network Card

5

#Socket Programming API

6

Controlled by
App developer

Controlled by
OS

#Delivering the Data: Division of Labor

7

 Application
• Read data from and write data to the socket

• Interpret the data (e.g., render a Web page)

 Operating System
• Deliver data to the destination socket

• Based on the destination port number

 Network
• Deliver data packet to the destination host

• Based on the destination IP address

#Identifying the Receiving Process

8

 Sending process must identify the receiver
• The receiving end host machine

• The specific socket in a process on that machine

 Receiving host
• Destination address that uniquely identifies the host

• An IPv4 address is a 32-bit quantity

 Receiving socket
• Host may be running many different processes

• Destination port that uniquely identifies the socket

#Socket Programming: Naming and
Addressing

9

• Host name
• identifies a single host (Recall: DNS)
• variable length string
• is mapped to one or more IP addresses 

• IP Address
• written as dotted octets (e.g. 10.0.0.1)
• 32 bits. Not a number! But often needs to be converted

to a 32-bit number to use.
• Port number

• identifies a process on a host
• 16 bit number

#Client-Server Architecture

10

 Client requests service from server
 Server responds with sending service or error message to

client
 What if Server starts a connection?

Client Server

request

response

#Identifying the Receiving Process

11

Client OS

Web Server
Port 80

Echo Server
Port 67

Client Host

request for
68.90.132.108:80

Server Host 68.90.132.108

#Identifying the Receiving Process

12

Client OS

Web Server
Port 80

Echo Server
Port 67

Client Host

request for
68.90.132.108:67

Server Host 68.90.132.108

Port Numbers are Unique on Each Host…

13

 Port number uniquely identifies the socket:

• Cannot use same port number twice with same address

• Otherwise, the OS can’t demultiplex packets correctly

 Operating system enforces uniqueness

• OS keeps track of which port numbers are in use

• Doesn’t let the second program use the port number

#nc!

14

 nc : arbitrary TCP and UDP connections and listens!
 now we just focus on a very very simple example:
 nc hostname port
 nc -l port

Client Server

request

response

UNIX Socket API

#UNIX Socket API

16

Socket interface

• Originally provided in Berkeley UNIX
• Later adopted by all popular operating systems
• Simplifies porting applications to different OSes(even to

the Windows!)
In UNIX, everything is like a file

• All input is like reading a file
• All output is like writing a file
• File is represented by an integer file descriptor
API implemented as system calls

• E.g., connect, read, write, close, …

#Two Types of Internet Sockets

17

Connection-oriented sockets
• How to snd/rcv data
• How to establish

connection
• 3-way handshake?

• How to identify socket
• How to create socket
• How to close socket

Type of socket: stream socket

Connectionless sockets
• How to snd/rcv data

• How to identify socket
• How to create socket
• How to close socket

Type of socket: datagram
socket

