Networked Applications: Sockets

Fall 1392

Acknowledgments: Lecture slides are from Computer networks course
thought by Jennifer Rexford at Princeton University. This presentation

was edited for CE443 by Sadegh Dorri <dorriQce.sharif.edu>, and later
by Behnam Momeni <b_momeni@ce.sharif.edu>.

mailto:dorri@ce.sharif.edu
mailto:dorri@ce.sharif.edu
mailto:b_momeni@ce.sharif.edu
mailto:b_momeni@ce.sharif.edu

Goals of Today’s Lecture

* Client-server paradigm
—End systems
—Clients and servers

e Sockets
—Socket abstraction
—Socket programming in UNIX

* HyperText Transfer Protocol (HTTP)
—URL, HTML, and HTTP
—Clients, and servers
—Example transactions using sockets

Client-Server Paradigm

-

~
End System: Computer on the ‘Net 3@

Also known as a “host”.. A

-

~
Clients and Servers 3@
» Client program Server program
—Running on end host —Running on end host
—Requests service —Provides service

—E.g., Web browser —E.g., Web server
GET /index.html

“Site under construction” 3

Client-Server Communication

« Client “sometimes on” * Server is “always on”
—Initiates a request to the ~ —Services requests from
server when interested many client hosts

— Eg, \Web browser on — Eg, Web server for the

your laptop or cell phone ~ www.cnn.com Web site
—Doesn’t communicate —Doesn’t initiate contact with

directly with other clients ~ the clients
—Needs to know the —Needs a fixed, well-known

server’'s address address

http://www.cnn.com/
http://www.cnn.com/

Peer-to-Peer Paradigm 9\’

* No always-on server at the center of it all
—Hosts can come and go, and change addresses
—Hosts may have a different address each time

* Example: peer-to-peer file sharing

—Any host can request files, send files, query to
find a file’s location, respond to queries, ...

—Scalability by harnessing millions of peers
—Each peer acting as both a client and server

Sockets

Socket: End Point of Net. Comm.’s

» Socket as an Application Programming Interface
— Supports the creation of network applications

* Two ends communicate through a “socket”
— Sending messages from one process to another

— The transportation details are transparent to the
programmer

User process User process

socket socket

Operating Operating
System < - System

Delivering the Data: Division of Labor ;4

* Application
—Read data from and write data to the socket
—Interpret the data (e.g., render a Web page)

* Operating system
—Deliver data to the destination socket @

—Based on the destination port number

* Network
—Deliver data packet to the destination host
—Based on the destination IP address

Identifying the Receiving Process

» Sending process must identify the receiver
— The receiving end host machine
— The specific socket in a process on that machine

* Receiving host
— Destination address that uniquely identifies the host
—An IPv4 address is a 32-bit quantity

* Receiving socket
—Host may be running many different processes
— Destination port that uniquely identifies the socket
— A port number is a 16-bit quantity

Identifying the Receiving Process

Server host 128.2.194.242

. Service request for
e st 128.2.194.242:80
: i (i.e., the Web server)

Service request for
, 128.2.194.242:7
i (i.e., the echo server)

Knowing What Port Number To Use ‘&

* Popular applications have well-known ports
—E.qg., port 80 for Web and port 25 for e-mail
— See http://www.iana.org/assignments/port-numbers

* Well-known vs. ephemeral ports

— Server has a well-known port (e.g., port 80)
 Between 0 and 1023

— Client picks an unused ephemeral (i.e., temporary) port
* Between 1024 and 65535

* Uniquely identifying the traffic between the hosts
— Two IP addresses and two port numbers
— Underlying transport protocol (e.g., TCP or UDP)

http://www.iana.org/assignments/port-numbers
http://www.iana.org/assignments/port-numbers

Port Numbers are Unique on Each Host @

R T

* Port number uniquely identifies the socket
— Cannot use same port number twice with same address
— Otherwise, the OS can’t demultiplex packets correctly

* Operating system enforces uniqueness
— OS keeps track of which port numbers are in use
—Doesn't let the second program use the port number

« Example: two Web servers running on a machine
— They cannot both use port “80", the standard port #
— 30, the second one might use a non-standard port #
—E.g., http://www.cnn.com:8080

http://www.cnn.com:8080/
http://www.cnn.com:8080/

UNIX Socket API

UNIX Socket API 91’

» Socket interface
—QOriginally provided in Berkeley UNIX
—Later adopted by all popular operating systems

—Simplifies porting applications to different OSes
(even to the Windows!)

* In UNIX, everything is like a file
—All input is like reading a file
—All output is like writing a file
—File is represented by an integer file descriptor

* APl implemented as system calls
—E.g., connect, read, write, close, ...

Typical Client Program

* Prepare to communicate
—Create a socket
—Determine server address and port number
—Initiate the connection to the server

* Exchange data with the server
—Write data to the socket
—Read data from the socket
—Do stuff with the data (e.g., render a Web page)

* Close the socket

Typical Server Program

* Prepare to communicate
— Create a socket
— Associate local address and port with the socket

» Wait to hear from a client (passive open)
— Indicate how many clients-in-waiting to permit
— Accept an incoming connection from a client

« Exchange data with the client over new socket
— Receive data from the socket
— Do stuff to handle the request (e.g., get a file)
— Send data to the socket
— Close the socket

* Repeat with the next connection request

Putting it All Together

Server

socket ()

v

bind()

v

listen ()

v

accept ()

Client

socket ()
establish *

nection
con _» connect ()

process
request

write ()

send request .*
write ()

Send response

—p read()

Wanna See Real Clients and Servers? @
* Apache Web server
— Open source server first released in 1995
—Name derives from “a patchy server” ;-)
— Software available online at http://www.apache.org

* Mozilla Web browser
— http://lwww.mozilla.org/developer/

« Sendmaill
— http://www.sendmail.org/

* BIND Domain Name System (Datagram)
— Client resolver and DNS server
— http://www.isc.org/index.pl?/sw/bind/

http://www.apache.org/
http://www.apache.org/
http://www.isc.org/index.pl?/sw/bind/
http://www.isc.org/index.pl?/sw/bind/

Wanna to have fun? Okay...

Client Programming

Client Creating a Socket: socket() 91’

'T“

int socket(int domain, int type, int protocol)

« Operation to create a socket
— Returns a descriptor (or handle) for the socket
— Originally designed to support any protocol suite

* Domain: protocol family
—PF _INET for the Internet

* Type: semantics of the communication

—SOCK_STREAM: reliable byte stream
—SOCK_DGRAM: message-oriented service

 Protocol: specific protocol
— UNSPEC: unspecified
—(PF_INET and SOCK_STREAM already implies TCP)

Client: Learning Server Address/Port ;4

» Server typically known by name and service
—“www.google.com” and “http”

* Which must be translated into IP address and port #

 Translating the server’'s name to an address

—int getaddrinfo(const char *node, const char *service,
const struct addrinfo *hints, struct addrinfo **res);

—void freeaddrinfo(struct addrinfo *res);

—int getnameinfo(const struct sockaddr *sa, socklen_t
salen,char *host, size t hostlen, char *serv, size t
servilen, int flags);

* Check Linux Man pages for details

http://www.google.com
http://www.google.com

Client: Learning Server Address/Port @

* struct addrinfo {
int ai_flags;
int ai_family;
Int ai_socktype;
Int al_protocol,;
socklen_t ai_addrlen;
struct sockaddr *ai_addr;

char *ai_canonname;
struct addrinfo *ai_next;

IP Address Data Structures

include <netinet/in. h>

// All pointers to socket address structures are often cast to pointers
// to this type before use in various functions and system calls:

struct sockaddr {

unsigned short sa family; // address family, AF xxx

char sa data[l14]; // 14 bytes of protocol address
)i

// IPv4 AF_INET sockets:

struct sockaddr_in {

short sin family; // e.g. AF_INET, AF_ INET6
unsigned short sin port; // e.g. htons(3490)

struct in_addr sin addr; // see struct in_addr, below
char sin zero[8); // zero this if you want to

struct in_addr {
unsigned long s addr; // load with inet pton()
)i

e

Client: Connecting Socket to the Server 4

|

]

int connect(int sockfd, struct sockaddr *server_address,
socketlen_t addrlen)

* Client contacts the server to establish connection
— Associate the socket with the server address/port

— Acquire a local port number (assigned by the OS)
—Request connection to server, who will hopefully accept

 Establishing the connection

— Arguments: socket descriptor, server address, and address
size

— Returns 0 on success, and -1 if an error occurs

: : . . =
Client: Sending and Receiving Data :%:

» Sending data
ssize t write(int sockfd, void *buf, size t len)

— Arguments: socket descriptor, pointer to buffer of data to
send, and length of the buffer

— Returns the number of characters written, and -1 on
error

* Receiving data
ssize t read(int sockfd, void *buf, size t len)

— Arguments: socket descriptor, pointer to buffer to place
the data, size of the buffer

— Returns the number of characters read (where 0 implies
“end of file”), and -1 on error

* Closing the socket
int close(int sockfd)

Not enough fun? Okay... face a headache!

Server Programming

Servers Differ From Clients

* Passive open
—Prepare to accept connections
—... but don’t actually establish
—... until hearing from a client

* Hearing from multiple clients
—Allowing a backlog of waiting clients
—... In case several try to communicate at once

* Create a socket for each client
—Upon accepting a new client
—... create a new socket for the communication

Remember: Typical Server Program 3

* Prepare to communicate
— Create a socket
— Associate local address and port with the socket

» Wait to hear from a client (passive open)
— Indicate how many clients-in-waiting to permit
— Accept an incoming connection from a client

« Exchange data with the client over new socket
— Receive data from the socket
— Do stuff to handle the request (e.g., get a file)
— Send data to the socket
— Close the socket

* Repeat with the next connection request

Remember: The Big Picture

Server

socket ()

v

bind()

v

listen ()

v

accept ()

Client

socket ()
establish *

nection
con _» connect ()

process
request

write ()

send request .*
write ()

seénd response

—p read()

Server: Server Preparing its Socket 9\'

» Server creates a socket and binds address/port
— Server creates a socket, just like the client does

— Server associates the socket with the port number
(and hopefully no other process is already using it!)

 Create a socket
int socket(int domain, int type, int protocol)

* Bind socket to the local address and port number

int bind(int sockfd, struct sockaddr *my_addr, socklen _t
addrien)

— Arguments: socket descriptor, server address, address
length

—Returns 0 on success, and -1 if an error occurs

L]

~

Server: Allowing Clients to Wait

»: i

* Many client requests may arrive
— Server cannot handle them all at the same time
— Server could reject the requests, or let them wait
— Define how many connections can be pending: backlog

» Wait for clients
int listen(int sockfd, int backlog)
— Arguments: socket descriptor and acceptable backlog
—Returns a 0 on success, and -1 on error

* What if too many clients arrive?
—Some requests don’t get through
— The Internet makes no promises...
— And the client can always try again

Server: Accepting Client Connection

* Now all the server can do is walit...
— Waits for connection request to arrive
— Blocking until the request arrives
— And then accepting the new request

» Accept a new connection from a client

int accept(int sockfd, struct sockaddr *addr, socketlen _t
*addrlen)

— Arguments: socket descriptor, structure that will provide
client address and port, and length of the structure

— Returns descriptor for a new socket for this connection

Server: One Request at a Time?

 Serializing requests is inefficient
— Server can process just one request at a time
— All other clients must wait until previous one is done

* May need to time share the server machine
— Alternate between servicing different requests
* E.g. use multi-threading

— Orr, start a new process to handle each request
* Allow the operating system to share the CPU across processes

— Or, some hybrid of these two approaches

Client and Server: Cleaning House

* Once the connection is open
— Both sides and read and write
— Two unidirectional streams of data
—In practice, client writes first, and server reads
— ... then server writes, and client reads, and so on

* Closing down the connection
— Either side can close the connection
— ... using the close() system call

* What about the data still “in flight”

— Data in flight still reaches the other end
— S0, server can close() before client finishing reading

The Problem of Interoperability

Byte Order

* Hosts differ in how they store data
—E.qg., four-byte number (byte3, byte2, byte1, byte0)

e Little endian (“little end comes first”) < Intel PCs!!!
— Low-order byte stored at the lowest memory location
—ByteO, byte1, byte2, byte3d

» Big endian ("big end comes first”)

— High-order byte stored at lowest memory location
—Byte3, byte2, byte1, byte O

* Makes it more difficult to write portable code
— Client may be big or little endian machine
— Server may be big or little endian machine

IP is Big Endian

* But, what byte order is used “on the wire”
—That is, what do the network protocol use?

* The Internet Protocols picked one convention
—IP is big endian (aka “network byte order”)

» Writing portable code require conversion
— Use htons() and htonl() to convert to network byte order
— Use ntohs() and ntohl() to convert to host order

* Hides details of what kind of machine you're on

— Use the system calls when sending/receiving data
structures longer than one byte

Why Can’t Sockets Hide These Details? 91’

e,

* Dealing with endian differences is tedious
— Couldn’t the socket implementation deal with this
— ... by swapping the bytes as needed?

* No, swapping depends on the data type
— Two-byte short int: (byte 1, byte 0) vs. (byte 0, byte 1)
— Four-byte long int: (byte 3, byte 2, byte 1, byte 0) vs.
(byte O, byte 1, byte 2, byte 3)
— String of one-byte charters: (char O, char 1, char 2, ...) in
both cases

» Socket layer doesn’t know the data types
— Sees the data as simply a buffer pointer and a length
—Doesn’t have enough information to do the swapping

41

The Web as an Example
Application

The Web: URL, HTML, and HTTP

» Uniform Resource Locator (URL)
— A pointer to a “black box” that accepts request methods

— Formatted string with protocol (e.g., http), server name
(e.g., www.cnn.com), and resource name (coolpic.jpg)

* HyperText Markup Language (HTML)

— Representation of hyptertext documents in ASCII format
— Format text, reference images, embed hyperlinks
— Interpreted by Web browsers when rendering a page

» HyperText Transfer Protocol (HTTP)

— Client-server protocol for transferring resources
— Client sends request and server sends response

The Web: URL, HTML, and HTTP

» Uniform Resource Identifier (URI)

— Addresses a resource including the
* Protocol

* Machine address
* The path

» Uniform Resource Locator (URL)
—An special URI

— Addresses a resource via a representation of its primary
access mechanism

—Each URL is URI too, but not vice versa

— Each resource could be identified via
 Many URI addresses
e But only one URL address (usually the network address)

wu
Example: HyperText Transfer Protocol :4:

GET /courses/archive/spring08/cos461/ HTTP/1.1
Host: www.cs.princeton.edu

User-Agent: Mozilla/4.03 Request
<CRLF>

HTTP/1.1 200 OK

Date: Mon, 4 Feb 2008 13:09:03 GMT

Server: Netscape-Enterprise/3.5.1
Content-Type: text/plain

Response | | ast-Modified: Mon, 4 Feb 2008 11:12:23 GMT
Content-Length: 21

<CRLF>

Site under construction

Example Client: Web Browser

» Generating HT TP requests
— User types URL, clicks a hyperlink, or selects bookmark
— User clicks “reload”, or “submit” on a Web page
— Automatic downloading of embedded images

 Layout of response
— Parsing HTML and rendering the Web page
—Invoking helper applications (e.g., Acrobat, PowerPoint)

* Maintaining a cache
— Storing recently-viewed objects
— Checking that cached objects are fresh

Client: Typical Web Transaction @

e (T |

» User clicks on a hyperlink
— http://www.cnn.com/index.html

 Browser learns the |IP address

—Invokes gethostbyname(www.cnn.com)
— And gets a return value of 64.236.16.20

* Browser creates socket and connects to server

— OS selects an ephemeral port for client side
— Contacts 64.236.16.20 on port 80

* Browser writes the HT TP request into the socket

—“GET /index.htm| HTTP/1.1
Host: www.cnn.com
<CRLF>”

http://www.cnn.com/
http://www.cnn.com/

e
In Fact, Try This at a UNIX Prompt... :%:

labpc: telnet www.cnn.com 80
GET /index.html HTTP/1l.1
Host: www.cnn.com

<CRLF>

And you’ll see the response...

Client: Typical Web Transaction (Cont) a’

T

Lo

* Browser parses the HT TP response message
— Extract the URL for each embedded image

— Create new sockets and send new requests
—Render the Web page, including the images

* Opportunities for caching in the browser

—HTML file
— Each embedded image
—|P address of the Web site

Web Server =

~ ‘-a —-“ - '!.

* Web site vs. Web server

—Web site: collections of Web pages associated
with a particular host name

—Web server: program that satisfies client
requests for Web resources

* Handling a client request
—Accept the socket
—Read and parse the HT TP request message
—Translate the URL to a filename
—Determine whether the request is authorized
—Generate and transmit the response

Conclusions

* Client-server paradigm
— Model of communication between end hosts
— Client asks, and server answers

» Sockets
— Simple byte-stream and messages abstractions
— Common application programmable interface

* HyperText Transfer Protocol (HTTP)
— Client-server protocol
—URL, HTML, and HTTP

A Good Online Tutorial

—Beej's Guide to Network Programming

