

CE 443: Computer Networks

Acknowledgments: Lecture slides are from Computer networks course thought by Jennifer Rexford at Princeton University. When slides are obtained from other sources, a a reference will be noted on the bottom of that slide. A full list of references is provided on the last slide.

Goals for Today's Class

3

Goals for Today's Class

- Overview
 - -Goals of the course
 - -Structure of the course
 - –Course grading
- Key concepts in data networking
 - -Protocols
 - –Layering
 - -Resource allocation
 - -Naming

What You Learn in This Course

4

What You Learn in This Course

- Knowledge: how the Internet works
 - -IP protocol suite
 - -Internet architecture
 - -Applications (Web, e-mail, P2P, VoIP, ...)
- Insight: key concepts in networking
 - -Protocols
 - –Layering
 - -Resource allocation
 - -Naming

What You Learn in This Course

- Knowledge: how the Internet works
 - -IP protocol suite
 - -Internet architecture
 - -Applications (Web, e-mail, P2P, VoIP, ...)
- Insight: key concepts in networking
 - -Protocols
 - –Layering
 - –Resource allocation
 - -Naming
- Skill: network programming
 - -Socket programming
 - Designing and implementing protocols

Structure of the Course (1st Half)

5

Structure of the Course (1st Half)

- Start at the top
 - –Sockets: how applications view the Internet
 - -Protocols: essential elements of a protocol
- Then study the "narrow waist" of IP
 - –IP best-effort packet-delivery service
 - IP addressing and packet forwarding
- And how to build on top of the narrow waist
 - -Transport protocols (TCP, UDP)
 - –Domain Name System (DNS)
 - -Glue (ARP, DHCP, ICMP)
 - –End-system security and privacy (NAT, firewalls)

Structure of the Course (1st Half)

- Start at the top
 - –Sockets: how applications view the Internet
 - -Protocols: essential elements of a protocol
- Then study the "narrow waist" of IP
 - –IP best-effort packet-delivery service
 - IP addressing and packet forwarding
- And how to build on top of the narrow waist
 - -Transport protocols (TCP, UDP)
 - –Domain Name System (DNS)
 - -Glue (ARP, DHCP, ICMP)
 - –End-system security and privacy (NAT, firewalls)
- Looking underneath IP
 - -Link technologies (Ethernet, wireless, ...)

Structure of the Course (2nd Half)

6

Structure of the Course (2nd Half)

- And how to get the traffic from here to there
 - –Internet routing architecture (the "inter" in Internet)
 - -Intradomain and interdomain routing protocols
- Building applications
 - -Web and content-distribution networks
 - -E-mail
 - -Peer-to-peer file sharing
 - -Multimedia streaming and voice-over-IP
- Other approaching to building networks
 - -Circuit switching (e.g., ATM, MPLS, ...)
 - -More on wireless networks, multicast, ...

Learning the Material: Mailing List

- Mailing list
 - -E-mail ce443@lists.ce.sharif.edu
 - -Sign up instruction on course webpage
- Read often
 - –Good place to ask questions
 - -But please do not post your solutions
- Reply, too
 - -Good place to answer questions

Learning the Material: Books

- Required textbook
 - –Computer Networks: A Systems Approach (4th edition), by Peterson and Davie
- Optional textbooks
 - –Networking text books
 - Computer Networking: A Top-Down Approach Featuring the Internet (3rd edition), by Kurose and Ross
 - Computer Networks (4th edition), by Tanenbaum
 - -Network programming references
 - TCP/IP Illustrated, Volume 1: The Protocols, by Stevens
 - Unix Network Programming, Volume 1: The Sockets Networking API (3rd Edition), by Stevens, Fenner, & Rudolf
- Online resources
 - –E.g. on socket programming

Grading (Tentative)

- Quiz 10%
- Assignments 40%
- Midterm 20%
- Final 30%

Policies

Late Homework

- -One day late will cost you 25%, two days 50%, and three days 75%.
- -No homework will be accepted after the third day.

Cellphones

-Please turn them off before entering class.

Cheating and Copying

- -First time you are caught you will get a zero for the task at hand.
- -Second time you are caught you will fail the course.
- Providing your assignment to someone else is considered cheating.

Okay, so let's get started... with a crash course in data networking

Key Concepts in Networking

Protocols

- -Speaking the same language
- –Syntax and semantics

Layering

- -Standing on the shoulders of giants
- –A key to managing complexity

Resource allocation

- Dividing scare resources among competing parties
- -Memory, link bandwidth, wireless spectrum, paths, ...
- Distributed vs. centralized algorithms

Naming

-What to call computers, services, protocols, ...

Making an appointment with your advisor

- Specifying the messages that go back and forth
 - -And an understanding of what each party is doing

Making an appointment with your advisor

Please meet with me for 1.5 hours starting at 1:30pm on February 8, 2006?

- Specifying the messages that go back and forth
 - -And an understanding of what each party is doing

Making an appointment with your advisor

Please meet with me for 1.5 hours starting at 1:30pm on February 8, 2006?

- Specifying the messages that go back and forth
 - -And an understanding of what each party is doing

Making an appointment with your advisor

Please meet with me for 1.5 hours starting at 3:00pm on February 8, 2006?

- Specifying the messages that go back and forth
 - -And an understanding of what each party is doing

Making an appointment with your advisor

Please meet with me for 1.5 hours starting at 3:00pm on February 8, 2006?

I can't.

- Specifying the messages that go back and forth
 - –And an understanding of what each party is doing

Making an appointment with your advisor

Please meet with me for 1.5 hours starting at 4:30pm on February 8, 2006?

- Specifying the messages that go back and forth
 - -And an understanding of what each party is doing

Making an appointment with your advisor

Please meet with me for 1.5 hours starting at 4:30pm on February 8, 2006?

Yes!

- Specifying the messages that go back and forth
 - -And an understanding of what each party is doing

14

 You: When are you free to meet for 1.5 hours during the next two weeks?

- You: When are you free to meet for 1.5 hours during the next two weeks?
- Advisor: 10:30am on Feb 8 and 1:15pm on Feb 9.

- You: When are you free to meet for 1.5 hours during the next two weeks?
- Advisor: 10:30am on Feb 8 and 1:15pm on Feb 9.
- You: Book me for 1.5 hours at 10:30am on Feb 8.

- You: When are you free to meet for 1.5 hours during the next two weeks?
- Advisor: 10:30am on Feb 8 and 1:15pm on Feb 9.
- You: Book me for 1.5 hours at 10:30am on Feb 8.
- Advisor: Yes.

15

• Student #1: When can you meet for 1.5 hours during the next two weeks?

- Student #1: When can you meet for 1.5 hours during the next two weeks?
- Advisor: 10:30am on Feb 8 and 1:15pm on Feb 9.

- Student #1: When can you meet for 1.5 hours during the next two weeks?
- Advisor: 10:30am on Feb 8 and 1:15pm on Feb 9.
- Student #2: When can you meet for 1.5 hours during the next two weeks?

- Student #1: When can you meet for 1.5 hours during the next two weeks?
- Advisor: 10:30am on Feb 8 and 1:15pm on Feb 9.
- Student #2: When can you meet for 1.5 hours during the next two weeks?
- Advisor: 10:30am on Feb 8 and 1:15pm on Feb 9.

- Student #1: When can you meet for 1.5 hours during the next two weeks?
- Advisor: 10:30am on Feb 8 and 1:15pm on Feb 9.
- Student #2: When can you meet for 1.5 hours during the next two weeks?
- Advisor: 10:30am on Feb 8 and 1:15pm on Feb 9.
- Student #1: Book me for 1.5 hours at 10:30am on Feb 8.

- Student #1: When can you meet for 1.5 hours during the next two weeks?
- Advisor: 10:30am on Feb 8 and 1:15pm on Feb 9.
- Student #2: When can you meet for 1.5 hours during the next two weeks?
- Advisor: 10:30am on Feb 8 and 1:15pm on Feb 9.
- Student #1: Book me for 1.5 hours at 10:30am on Feb 8.
- Advisor: Yes.

- Student #1: When can you meet for 1.5 hours during the next two weeks?
- Advisor: 10:30am on Feb 8 and 1:15pm on Feb 9.
- Student #2: When can you meet for 1.5 hours during the next two weeks?
- Advisor: 10:30am on Feb 8 and 1:15pm on Feb 9.
- Student #1: Book me for 1.5 hours at 10:30am on Feb 8.
- Advisor: Yes.
- Student #2: Book me for 1.5 hours at 10:30am on Feb 8.

- Student #1: When can you meet for 1.5 hours during the next two weeks?
- Advisor: 10:30am on Feb 8 and 1:15pm on Feb 9.
- Student #2: When can you meet for 1.5 hours during the next two weeks?
- Advisor: 10:30am on Feb 8 and 1:15pm on Feb 9.
- Student #1: Book me for 1.5 hours at 10:30am on Feb 8.
- Advisor: Yes.
- Student #2: Book me for 1.5 hours at 10:30am on Feb 8.
- Advisor: Uh... well... I can no longer can meet then. I'm free at 1:15pm on Feb 9.

- Student #1: When can you meet for 1.5 hours during the next two weeks?
- Advisor: 10:30am on Feb 8 and 1:15pm on Feb 9.
- Student #2: When can you meet for 1.5 hours during the next two weeks?
- Advisor: 10:30am on Feb 8 and 1:15pm on Feb 9.
- Student #1: Book me for 1.5 hours at 10:30am on Feb 8.
- Advisor: Yes.
- Student #2: Book me for 1.5 hours at 10:30am on Feb 8.
- Advisor: Uh... well... I can no longer can meet then. I'm free at 1:15pm on Feb 9.
- Student #2: Book me for 1.5 hours at 1:15pm on Feb 9.

- Student #1: When can you meet for 1.5 hours during the next two weeks?
- Advisor: 10:30am on Feb 8 and 1:15pm on Feb 9.
- Student #2: When can you meet for 1.5 hours during the next two weeks?
- Advisor: 10:30am on Feb 8 and 1:15pm on Feb 9.
- Student #1: Book me for 1.5 hours at 10:30am on Feb 8.
- Advisor: Yes.
- Student #2: Book me for 1.5 hours at 10:30am on Feb 8.
- Advisor: Uh... well... I can no longer can meet then. I'm free at 1:15pm on Feb 9.
- Student #2: Book me for 1.5 hours at 1:15pm on Feb 9.
- Advisor: Yes.

Specifying the Details

- How to identify yourself?
 - -Name? Student ID?
- How to represent dates and time?
 - -Time, day, month, year? In what time zone?
 - -Number of seconds since Jan 1, 1970?
- What granularities of times to use?
 - -Any possible start time and meeting duration?
 - -Multiples of five minutes?
- How to represent the messages?
 - -Strings? Record with name, start time, and duration?
- What do you do if you don't get a response?
 - -Ask again? Reply again?

Example: HyperText Transfer Protocol

GET /courses/archive/ce443/ HTTP/1.1

Host: www.cs.sharif.edu

User-Agent: Mozilla/4.03

CRLF

Request

Example: HyperText Transfer Protocol

GET /courses/archive/ce443/ HTTP/1.1

Host: www.cs.sharif.edu

User-Agent: Mozilla/4.03

CRLF

Response

Request

HTTP/1.1 200 OK

Date: Mon, 4 Feb 2010 13:09:03 GMT

Server: Netscape-Enterprise/3.5.1

Last-Modified: Mon, 4 Feb 2010 11:12:23 GMT

Content-Length: 21

CRLF

Site under construction

Example: IP Packet

4-bit Version	4-bit Header Length	8-bit Type of Service (TOS)	16-bit Total Length (Bytes)	
16-bit Identification			3-bit Flags	13-bit Fragment Offset
8-bit Time to Live (TTL)		8-bit Protocol	16-bit Header Checksum	
32-bit Source IP Address				
32-bit Destination IP Address				
Options (if any)				
Payload				

20-byte header

IP: Best-Effort Packet Delivery

- Packet switching
 - -Send data in packets
 - –Header with source & destination address
- Best-effort delivery
 - –Packets may be lost
 - -Packets may be corrupted
 - -Packets may be delivered out of order

Example: Transmission Control Protocol

- Communication service (socket)
 - -Ordered, reliable byte stream
 - -Simultaneous transmission in both directions
- Key mechanisms at end hosts
 - -Retransmit lost and corrupted packets
 - -Discard duplicate packets and put packets in order
 - -Flow control to avoid overloading the receiver buffer
 - -Congestion control to adapt sending rate to network load

Protocol Standardization

- Communicating hosts speaking the same protocol
 - -Standardization to enable multiple implementations
 - -Or, the same folks have to write all the software
- Standardization: Internet Engineering Task Force
 - -Based on working groups that focus on specific issues
 - -Produces "Request For Comments" (RFCs)
 - Promoted to standards via rough consensus and running code
 - E.g., RFC 1945 on "HyperText Transfer Protocol HTTP/1.0"
 - –IETF Web site is http://www.ietf.org
- De facto standards: same folks writing the code
 - -P2P file sharing, Skype, <your protocol here>...

Layering: A Modular Approach

- Sub-divide the problem
 - Each layer relies on services from layer below
 - Each layer exports services to layer above
- Interface between layers defines interaction
 - –Hides implementation details
 - -Layers can change without disturbing other layers

Application

Application-to-application channels

Host-to-host connectivity

Link hardware

IP Suite: End Hosts vs. Routers

The Internet Protocol Suite

The waist facilitates interoperability

Layer Encapsulation

What if the Data Doesn't Fit?

Problem: Packet size

- On Ethernet, max IP packet is 1500 bytes
- Typical Web page is 10 kbytes

What if the Data Doesn't Fit?

Problem: Packet size

- On Ethernet, max IP packet is 1500 bytes
- Typical Web page is 10 kbytes

Protocol Demultiplexing

Multiple choices at each layer

Demultiplexing: Port Numbers

- Differentiate between multiple transfers
 - -Knowing source and destination host is not enough
 - -Need an id for each transfer between the hosts
- Specify a particular service running on a host
 - -E.g., HTTP server running on port 80
 - -E.g., FTP server running on port 21

Is Layering Harmful?

- Layer N may duplicate lower level functionality
 - -E.g., error recovery to retransmit lost data
- Layers may need same information
 - -E.g., timestamps, maximum transmission unit size
- Strict adherence to layering may hurt performance
 - -E.g., hiding details about what is really going on
- Some layers are not always cleanly separated
 - -Inter-layer dependencies for performance reasons
- Headers start to get really big
 - -Sometimes more header bytes than actual content

Resource Allocation: Queues

- Sharing access to limited resources
 - -E.g., a link with fixed service rate
- Simplest case: first-in-first out queue
 - –Serve packets in the order they arrive
 - -When busy, store arriving packets in a buffer
 - –Drop packets when the queue is full

What if the Data gets Dropped?

What if the Data gets Dropped?

Solution: Timeout and Retransmit

GET index.html

What if the Data is Out of Order?

What if the Data is Out of Order?

Resource Allocation: Congestion Control

- What if too many folks are sending data?
 - -Senders agree to slow down their sending rates
 - -... in response to their packets getting dropped
- The essence of TCP congestion control
 - -Key to preventing congestion collapse of the Internet

Transmission Control Protocol

- Flow control: window-based
 - -Sender limits number of outstanding bytes (window size)
 - -Receiver window ensures data does not overflow receiver
- Congestion control: adapting to packet losses
 - Congestion window tries to avoid overloading the network (increase with successful delivery, decrease with loss)
 - -TCP connection starts with small initial congestion window

Naming: Domain Name System (DNS)

Properties of DNS

- -Hierarchical name space divided into zones
- -Translation of names to/from IP addresses
- Distributed over a collection of DNS servers

Client application

- -Extract server name (e.g., from the URL)
- -Invoke system call to trigger DNS resolver code
 - E.g., gethostbyname() on "www.cs.sharif.edu"

Server application

- -Extract client IP address from socket
- -Optionally invoke system call to translate into name
 - E.g., gethostbyaddr() on "12.34.158.5"

Domain Name System

Caching based on a time-to-live (TTL) assigned by the DNS server responsible for the host name to reduce latency in DNS translation.

Caching based on a time-to-live (TTL) assigned by the DNS server responsible for the host name to reduce latency in DNS translation.

Caching based on a time-to-live (TTL) assigned by the DNS server responsible for the host name to reduce latency in DNS translation.

Caching based on a time-to-live (TTL) assigned by the DNS server responsible for the host name to reduce latency in DNS translation.

Caching based on a time-to-live (TTL) assigned by the DNS server responsible for the host name to reduce latency in DNS translation.

Caching based on a time-to-live (TTL) assigned by the DNS server responsible for the host name to reduce latency in DNS translation.

Caching based on a time-to-live (TTL) assigned by the DNS server responsible for the host name to reduce latency in DNS translation.

Caching based on a time-to-live (TTL) assigned by the DNS server responsible for the host name to reduce latency in DNS translation.

Caching based on a time-to-live (TTL) assigned by the DNS server responsible for the host name to reduce latency in DNS translation.

Caching based on a time-to-live (TTL) assigned by the DNS server responsible for the host name to reduce latency in DNS translation.

Caching based on a time-to-live (TTL) assigned by the DNS server responsible for the host name to reduce latency in DNS translation.

Conclusions

- Course objectives
 - -How the Internet works, key concepts in networking, and Network programming
- Key concepts in networking
 - -Protocols, layers, resource allocation, and naming
- Next lecture:
 - –Read Chapter 1 of the Peterson/Davie book
 - -Skim the online reference material on sockets
 - -(Re)familiarize yourself with C programming