
Effective Bug Discovery

Kernel-Mode Coverage Analysis

vf
vf@nologin.org

Last modified: 9/23/2006

If we knew what it was we were doing, it would not be called research, would it?
Albert Einstein

1

Contents

1 Foreword 3

2 Introduction 5
2.1 The status of vulnerability research 5
2.2 The problem with fuzzing . 5
2.3 Expectations . 6

3 Q&A 7
3.1 What is code coverage? . 7

4 Hypothesis: Code Coverage and Fuzzing 9
4.1 Process and Kernel Stalking . 9
4.2 Stalking and Fuzzing Go Hand in Hand 10

5 Implementation 11
5.1 Stalking Setup . 11
5.2 Installing the Stalker . 12
5.3 Installing Debug Stalk . 13
5.4 Stalking with Kernel Debug . 13

5.4.1 Part I . 13
5.5 Analyzing the output . 16

5.5.1 Part II . 18
5.6 Part III . 22

6 Conclusion and Future Work 23

2

Chapter 1

Foreword

Abstract: Sophisticated methods are currently being developed and imple-
mented for mitigating the risk of exploitable bugs. The process of researching
and discovering these vulnerabilities in modern code will, in time, become less
extensive. Therefore, research technologies are changing to accommodate the
shift in vulnerability discovery. Code coverage analysis implemented in con-
junction with fuzz testing reveals faults within a binary file that would have
otherwise remained undiscovered by either method alone. This paper suggests
a research method for more effective runtime binary analysis using the afore-
mentioned strategy. This study presents empirical evidence that despite the
fact that bug detection will become increasingly difficult in the future, analysis
techniques have an opportunity to evolve intelligently.

Disclaimer: Practices and material presented within this paper are meant for
educational purposes only. The author does not suggest using this information
for methods which may be deemed unacceptable. The content in this paper is
considered to be incomplete and unfinished, and therefore some information in
this paper may be incorrect or inaccurate. Permission to make digital or hard
copies of all or part of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, requires prior specific permission.

Prerequisites: For an in-depth understanding of the concepts presented in
this paper, a familiarity with Microsoft Windows device drivers, working with
x86 assembler, debugging fundamentals, and the Windows kernel debugger is
required. A brief introduction to the current state of code coverage analysis,
including related uses, is introduced to support information presented within
this paper. However, to implement the practices within this paper a deeper
knowledge of aforementioned vulnerability discovery methods and methodolo-

3

gies are required. The following software and knowledge of its use is required to
follow along with the discussion: IDAPro, Debugging tools for Windows, Debug
Stalk, and a virtual machine such as VMware or Virtual PC.

Thanks: The author would like to thank west, icer, skape, Uninformed, and
mom.

4

Chapter 2

Introduction

2.1 The status of vulnerability research

Researchers employ a myriad of investigative techniques in the quest for appli-
cation vulnerabilities. In any case, there exists no silver bullet for the discovery
of security related software bugs, not to mention the fact that several new
security oriented kernel-mode components have recently been integrated into
Microsoft operating systems. Although these systems are never failsafe, they
do help to make comprehensive vulnerability investigations more difficult to
perform. Vista, particularly on the 64-bit edition, is integrating several mech-
anisms including driver signing, Secure Bootup using a TPM hardware chip,
PatchGuard, kernel-mode integrity checks, and restricted user-mode access to
\Device\PhysicalMemory. The Vista kernel also has an improved Low Frag-
mentation Heap and Address Space Layout Randomization. In later days, bugs
were revealed via dumb fuzzing techniques, whereas this year more complicated
bugs are indicating that knowledge of the format would require advanced under-
standing of a parser. Because of this, researchers are moving towards different
discovery methods such as intelligent, rather than dumb, testing of drivers and
applications.

2.2 The problem with fuzzing

To compound the conception that these environments are becoming more dif-
ficult to test, monolithic black box fuzz testing, while frequently efficacious
in its purpose, has a tendency for a exhibiting a lack of potency. The term
“monolithic” is included as a reference to a comprehensive execution of the en-
tire application or driver. Fuzzing is often executed in an environment where

5

the tester does not know the internals of the binary in question. This leads
to disadvantages in which a large number of tests must be executed to get an
accurate estimate of binary’s reliability. This investigation can be a daunting
task if not implemented in a constructive manner. The test program and data
selection should ensure independence from unrelated tests or groups of tests,
thereby gaining the ability of complete coverage by reducing dependency on
specific variables and their decision branching.

Another disadvantage of monolithic black box fuzz testing is that it is difficult
to provide coverage analysis even though the testing selection may cover the
entire suite of security testing models. A further complication in this nature of
testing is of cyclic dependency causing cyclic arguments which in turn leads to
a lessening of coverage assurance.

2.3 Expectations

This paper aims to educate the reader on the espousal of code coverage analysis
and fuzzing philosophy presented to researchers as a means to lighten the burden
of bug detection. A kernel mode device driver will be fuzzed for bugs using a
standard fuzzing method. Results from the initial fuzzing test will be examined
to determine coverage. The fuzz testing method will be revised to accommodate
coverage concerns and an execution graph is generated to view the results of
the previous testing. A comparison is then made between the two prior testing
methods, proving how effective code coverage analysis through kernel mode
Stalking can improve fuzzing endeavors.

6

Chapter 3

Q&A

Before understanding how the methods and methodologies presented in this
paper can be used, a few simple definitions and descriptions are addressed for
the benefit of the reader.

3.1 What is code coverage?

Code coverage analysis, as represented by a Control Flow Graph (CFG), is de-
fined as an exhaustive execution of all possible paths through code and data
flow that may be relevant for revealing failures. It is used as a good metric
in determining how a specific set of tests can uncover numerous faults. Tech-
niques of proper code coverage analysis presented in this paper utilize basic
mathematical properties of graph theory by including elements such as vertices,
links and edges. Graph theory has lain somewhat dormant until recently being
utilized by computer scientists which have subsequently defined their own sets
of vocabulary for the subject. For the sake of research continuity and to link
mathematical to computer science definitions, the verbiage used within this pa-
per will equate vertices to code blocks, branches to decisions, and edges to code
paths.

To support our hypothesis, the aforementioned graph theory elements are com-
piled into CFGs. Informally, a Control Flow Graph is directed graph composed
of a finite set of vertices connected by edges indicating all possible routes a
driver or application may take during execution. In other words, a CFG is
merely blocks of code whose connected flow paths are determined by decisions.
Block execution consists of a sequence of instructions which are free of branching
or other control transfers except for the last instruction. These include branches
or decisions which consist of Boolean expressions in a control structure. A path

7

is a sequence of nodes traveled through by a series of uninterrupted links. Paths
enable flow of information or data through code. In our case, a path is an execu-
tion flow and is therefore essential to measuring code coverage. Because of this
factor, this investigation focuses directly on determining which paths have been
traversed, which blocks and correlating data have been executed, and which
links have been followed and finally applying it to fuzzing techniques.

The purpose of code coverage analysis is ultimately to require all control deci-
sions to be transferred. In other words, the application needs to be executed
thoroughly using enough inputs that all edges in the graph are traversed at least
once. These graphs will be represented as diagrams in which blocks are squares,
edges are lines, and paths are colored.

8

Chapter 4

Hypothesis: Code Coverage
and Fuzzing

In the security hemisphere, fuzzing has traditionally manifested potential se-
curity holes by throwing random garbage at a target, hoping that any given
code path will fail in the process of consuming the aforementioned data. The
possibility of execution flowing through a particular block in code is the sum of
probabilities of the conditional branches leading to blocks. In simplicity, if there
are areas of code that are never executed during typical fuzz testing, then ad-
ministering code coverage methodologies will reveal those unexecuted branches.
Graphical code coverage analysis using CFGs helps determine which code path
has been executed even without the use of symbol tables. This process allows the
tester to more easily identify branch execution, and to subsequently design fuzz
testing methods to properly attain complete code coverage. Prior experiments
driven at determining the effectiveness of code coverage techniques identify that
ensuring branch execution coverage will improve the likelihood of discovery of
binary faults.

4.1 Process and Kernel Stalking

One of the more difficult questions to answer when testing software for vulnera-
bilities is: “when is the testing considered finished?” How do we, as vulnerability
bug hunters, know when we have completed our testing cycle by exhausting all
code paths and discovering all possible bugs? Because fuzz testing can easily
be random, so unpredictable, the question of when to conclude testing is often
left incomplete.

Pedram Amini, who recently released “Paimei”, coined the term ”Process Stalk-

9

ing” as a set of runtime binary analysis tools intended to enhance the visual
effect of runtime analysis. His tool includes an IDA Pro plug-in paired with
GML graph files for easy viewing. His strategy amalgamates the processes of
runtime profiling, which is the act of gathering information about application
data in a development scenario. Tracing, which used often in debugging, is
the automatic discovery of nodes based on execution paths, and state mapping
which is a graphic model composed of behavior states of a binary. In the past,
Process Stalker has been used to aid in reverse engineering Microsoft Update
patches. Further implementations of the ”Process Stalker” tool suite can be
found on Pedram Amini’s site (http://pedram.redhive.com) and on the re-
verse engineering site (http://www.openrce.org).

4.2 Stalking and Fuzzing Go Hand in Hand

Process Stalker was transformed by an individual into a windbg extension for
use in debugging user-mode and kernel-mode scenarios. This tool was given
the title “Debug Stalk,” and until now this tool has remained unreleased. Pro-
cess and Debug Stalker have overcome the static analysis visualization setback
by implementing runtime binary analysis. Runtime analysis using Process and
Debug Stalking in conjunction with mathematically enhanced CFGs exponen-
tially improves the bug hunting mechanisms using fuzz techniques. Users can
graphically determine via runtime analysis which paths have not been traversed
and which blocks have not been executed. The user then has the opportunity
to refine their testing approach to one that is more effective. When testing a
large application, this technique dramatically reduces the overall workload of
said scenarios. Therefore, iterations of the Process Stalk tool and the Debug
Stalk tool will be used for investigating a faulty driver in this paper.

Debug Stalk is a Windows debugger plug-in that can be used in places where
Process Stalking may not be suited, such as in a kernel-mode setting.

10

http://pedram.redhive.com
http://www.openrce.org

Chapter 5

Implementation

For the mere sake of simple illustration, several tools have been created for
testing our code coverage theories. Some of the test cases have been exaggerated
and are not real world examples. This testing implementation is broken down
into three parts: Part I includes sending garbage to the device driver with dumb
fuzzing; Part II will include smarter fuzzing; Part III is a breakdown of how an
intelligent level of fuzzing helps improve code coverage while testing. First, a
very simple device driver named pluto.sys was created for the purpose of this
paper. It contains several blocks of code with decision based branching that will
be fuzzed. The fuzzer will send random iterations of data to pluto.sys. After
fuzzing has completed, a post-analysis tool will review executed code blocks
within the driver. Part II will contain the same process as Part I, however, it
will include an updated fuzzer based on our Part I post-analysis that will allow
the driver to call into a previously unexecuted code region. Part III uses the
data collected in Parts I and II as illustrative example of a proof of a beneficiary
code coverage thesis.

5.1 Stalking Setup

Several software components need to be acquired before Stalking can begin: the
Debug Stalk extension, Pedram’s Process Stalker, Python, and the GoVisual
Diagram Editor (GDE). Pedram’s Stalker is listed on both his blog and on the
OpenRCE website. The Process Stalker contains files such as the IDA Pro plug-
in, and Python scripts that generate the GML graph files that will be imported
into GDE. GDE provides a functional mechanism for editing and positioning
of graphs including clustered graphing, creation and deletion of nodes, zooming
and scrolling, automatic graph layout. Components can be obtained at the fol-
lowing locations:

11

GDE: http://www.oreas.com/gde_en.php
Python: http://www.python.org/download
Proc Stalker: http://www.openrce.org/downloads/details/171/ProcessStalker
Debug Stalk: http://www.nologin.org/code

5.2 Installing the Stalker

A walkthrough of installation for Process Stalker and required components will
be covered briefly in this document, however, more detailed steps and descrip-
tions are provided in Pedram’s supporting manual. The .bpl file generated by
the IDA plug-in will spit out a breakpoint list for entries within each block.
The IDA plug-in process stalker.plw must be inserted into the IDA Pro plug-
ins directory. Restarting IDA will allow the application to load the plug-in. A
successful installation of the IDA plug-in in the log window will be similar to
the following:

[*] pStalker> Process Stalker Profiler
[*] pStalker> Pedram Amini <pedram.amini@gmail.com>
[*] pStalker > Compiled on Sep 21 2006

Generating a .bpl file can be started by pressing Alt+5 within the IDA applica-
tion. A dialog appears. Make sure that “Enable Instruction Colors,” “Enable
Comments,” and “Allow Self Loops” are all selected. Pressing OK will prompt
for a “Save as” dialog. The .bpl file must be named relative to its given name.
For example, if calc.exe is being watched, the file name must be calc.exe.bpl. In
our case, pluto.sys is being watched, so the file name must be pluto.sys.bpl. A
successful generation of a .bpl file will produce the following output in the log
window:

[*] pStalker> Profile analysis 25% complete.
[*] pStalker> Profile analysis 50% complete.
[*] pStalker> Profile analysis 7% complete.
[*] pStalker> Profile analysis 100% complete.

Opening the pluto.sys.bpl file will show that records are colon delimited:

pluto.sys:0000002e:0000002e
pluto.sys:0000006a:0000006a
pluto.sys:0000007c:0000007c

12

http://www.oreas.com/gde_en.php
http://www.python.org/download
http://www.openrce.org/downloads/details/171/Process Stalker
http://www.nologin.org/code

5.3 Installing Debug Stalk

The Debug Stalk extension can be built as follows. Open the Windows 2003
Server Build Environment window. Set the DBGSDK INC PATH and DBGSDK LIB PATH
environment variables to specify the paths to the debugger SDK headers and the
debugger SDK libraries, respectively. If the SDK is installed at c:\WINDBGSDK,
the following would work:

set DBGSDK_INC_PATH=c:\WINDBGSDK\inc
set DBGSDK_LIB_PATH=c:\WINDBGSDK\lib

This may vary depending on where the SDK is installed. The directory name
must not contain a space (’ ’) in its path. The next step is to change directories
to the project directory. If Debug Stalk source code is placed within the samples
directory within the SDK (located at c:\\WINDBGSDK), then the following should
work:

cd c:\WINDBGSDK\samples\dbgstalk-0.0.18

Typing build -cg at the command line to build the Debug Stalk project. Copy
the dbgstalk.dll module from within this distribution to the root folder of the
Debugging Tools for Windows root directory. This is the folder containing
programs like cdb.exe and windbg.exe. If you have a default installation of
”Debugging tools for Windows” already installed, the following should work:

copy dbgstalk.dll "c:\Program Files\Debugging Tools for Windows\"

The debugger plug-in should be installed at this point. It is important to note
that Debug Stalk is a fairly new tool and has some reliability issues. It is a bit
flakey and some hacking may be necessary in order to get it running properly.

5.4 Stalking with Kernel Debug

5.4.1 Part I

For testing purposes, a Microsoft Operating System needs to be set up inside
of a Virtual PC environment. Load the pluto.sys driver inside of the Virtual
PC and attach a debug session via Kernel Debug (kd). Once kd is loaded and
attached to a process within the Virtual Machine, Debug Stalk can be invoked
by calling ”!dbgstalk.dbgstalk [switches] [.bpl file path]” at the kd console. For
example:

13

C:\Uninformed>kd -k com:port=\\.\pipe\woo,pipe

Microsoft (R) Windows Debugger Version 6.6.0007.5

Copyright (c) Microsoft Corporation. All rights reserved.

Opened \\.\pipe\woo

Waiting to reconnect...

Connected to Windows XP 2600 x86 compatible target, ptr64 FALSE

Kernel Debugger connection established.

Windows XP Kernel Version 2600 (Service Pack 2) UP Free x86 compatible

Product: WinNt, suite: TerminalServer SingleUserTS

Built by: 2600.xpsp_sp2_rtm.040803-2158

Kernel base = 0x804d7000 PsLoadedModuleList = 0x8055ab20

Debug session time: Sat Sep 23 14:40:24.522 2006 (GMT-7)

System Uptime: 0 days 0:06:50.610

Break instruction exception - code 80000003 (first chance)

nt!DbgBreakPointWithStatus+0x4:

804e3b25 cc int 3

kd> .reload

Connected to Windows XP 2600 x86 compatible target, ptr64 FALSE

Loading Kernel Symbols

...

Loading User Symbols

Loading unloaded module list

...........

kd> !dbgstalk.dbgstalk -o -b c:\Uninformed\pluto.sys.bpl

[*] - Entering Stalker

[*] - Break Point List.....: c:\Uninformed\pluto.sys.bpl

[*] - Breakpoint Restore...: OFF

[*] - Register Enumerate...: ON

[*] - Kernel Stalking:.....: ON

current context:

eax=00000001 ebx=ffdff980 ecx=8055192c edx=000003f8 esi=00000000 edi=f4be2de0

eip=804e3b25 esp=80550830 ebp=80550840 iopl=0 nv up ei pl nz na po nc

cs=0008 ss=0010 ds=0023 es=0023 fs=0030 gs=0000 efl=00000202

nt!RtlpBreakWithStatusInstruction:

804e3b25 cc int 3

commands:

[m] module list [0-9] enter recorder modes

[x] stop recording [v] toggle verbosity

[q] quit/close

Once Debug Stalk is loaded, a list of commands is available to the user. A
breakdown of the command line options offered by Debug Stalk is as follows:

[m] module list
[0-9] enter recorder modes
[x] stop recording
[v] toggle verbosity
[q] quit/close

14

At this point, the fuzz tool needs to be executed to send random arbitrary
data to the device driver. While the fuzzer is running, Debug Stalk will print
out information to kd. Pressing ’g’ at the command line prompt will resume
execution of the target machine. This invocation will look something like this:

kd> g

[*] - Recorder Opened......: pluto.sys.0

[*] - Recorder Opened......: pluto.sys-regs.0

Modload: Processing breakpoints for module pluto.sys at f7a7f000

Modload: Done. 46 of 46 breakpoints were set.

0034c883 T:00000001 [bp] f7a83000 a10020a8f7 mov eax,dword ptr [pluto+0x3000 (f7a82000)]

0034ed70 T:00000001 [bp] f7a8300e 3bc1 cmp eax,ecx

0034eded T:00000001 [bp] f7a83012 a12810a8f7 mov eax,dword ptr [pluto+0x2028 (f7a81028)]

0034ee89 T:00000001 [bp] f7a8302b e9aed1ffff jmp pluto+0x11de (f7a801de)

0034ef16 T:00000001 [bp] f7a801de 55 push ebp

0034ef93 T:00000001 [bp] f7a80219 8b45fc mov eax,dword ptr [ebp-4]

0034f03f T:00000001 [bp] f7a80253 6844646b20 push 206B6444h

0034f0cb T:00000001 [bp] f7a802a2 b980000000 mov ecx,80h

0034f148 T:00000001 [bp] f7a802ab 5f pop edi

00359086 T:00000001 [bp] f7a8006a 8b4c2408 mov ecx,dword ptr [esp+8]

0035920c T:00000001 [bp] f7a800f6 833d0420a8f700 cmp dword ptr [pluto+0x3004 (f7a82004)],0

003592a9 T:00000001 [bp] f7a8010c 8b7760 mov esi,dword ptr [edi+60h]

00359345 T:00000001 [bp] f7a80114 8b4704 mov eax,dword ptr [edi+4]

003593e1 T:00000001 [bp] f7a80122 6a10 push 10h

0035945e T:00000001 [bp] f7a80133 85c0 test eax,eax

003594eb T:00000001 [bp] f7a80147 ff7604 push dword ptr [esi+4]

00359587 T:00000001 [bp] f7a80176 8bcf mov ecx,edi

00359614 T:00000001 [bp] f7a80182 5f pop edi

0035ac5b T:00000001 [bp] f7a8002e 55 push ebp

current context:

eax=00000001 ebx=0000c271 ecx=8055192c edx=000003f8 esi=00000001 edi=291f0c30

eip=804e3b25 esp=80550830 ebp=80550840 iopl=0 nv up ei pl nz na po nc

cs=0008 ss=0010 ds=0023 es=0023 fs=0030 gs=0000 efl=00000202

nt!RtlpBreakWithStatusInstruction:

804e3b25 cc int 3

commands:

[m] module list [0-9] enter recorder modes

[x] stop recording [v] toggle verbosity

[q] quit/close

kd> q

[*] - Exiting Stalker

q

Debug Stalk has finished Stalking the points in the driver allowed by the fuzzer.
Files named ”pluto.sys.0,” ”pluto.sys-regs.0 (optional),” have been saved to the
current working directory.

15

5.5 Analyzing the output

Pedram has developed a set of Python scripts to support the .bpl and recorder
output file, such as adding register metadata to the graph, filtering gener-
ated breakpoint lists, additional GDE support for difficult graphs, combin-
ing multi-function graphs into a conglomerate graph, highlighting interesting
blocks, importing back into the IDA changes made directly to the graph, adding
function offsets to breakpoint addresses and optionally rebasing the record-
ing addresses, and much more. Pedram provides detailed descriptions and
usage of his python scripts in his manual. The Python scripts used for for-
matting the .gml files (for block based coverage) are ps process recording and
ps view recording funcs. The ps process recording script is executed first on the
pluto.sys.0 which will produce another file called pluto.sys.0.BadFuzz-processed.
The ps view recording funcs is executed on the pluto.sys.0.BadFuzz-processed
file to produce the file called BadFuzz.gml, which is the chosen name for the ini-
tial testing technique. More information on Pedram’s Python scripts, reference
the Process Stalking Manual. Opening the resulting .gml file will enable us to
view the following graph.

16

Executed blocks are available in pink, unexecuted blocks are shown as grey,
paths of execution are green lines, and unexecuted paths are red lines. At this
point it is important to note that the code block starting at address 00011169
does not get executed. This is detrimental to our testing process because it
appears that fuzzer supplied data is passed to it and it does not appear to

17

get executed. Based on this evidence, we can conclude that a readjustment
of our testing methodologies needs to be put in place so that we can hit that
unexecuted block.

Analysis indicates that the device driver does not execute block 00011169 be-
cause a comparison is made in the block at address 00011147 which reveals that
[eax] does not match a specified value. Since eax is pointing to the fuzzer sup-
plied data, we should be able to adjust the fuzzer to meet the requirement of
the 00011161 cmp dword ptr [eax], 0DEADBEEFh instruction, which will allow
us to get into block 00011169. BetterFuzz.exe was improved to do complete the
previous description.

5.5.1 Part II

Determining that the previous testing methodology is not effective, a re-engineering
of the test case has been implemented and re-testing the driver to hit the missed
block can now be accomplished. Following the steps provided in Part I, the
driver is loaded into the Virtual PC, kd is attached to the driver process, and
Debug Stalk has been loaded into kd and has been invoked to run by using the
’g’ command. The entire process is the same except that when the new fuzz
test is invoked, different output is printed to kd:

18

kd> g

[*] - Recorder Opened......: pluto.sys.0

[*] - Recorder Opened......: pluto.sys-regs.0

Modload: Processing breakpoints for module pluto.sys at f7a27000

Modload: Done. 46 of 46 breakpoints were set.

004047a0 T:00000001 [bp] f7a2b000 a100a0a2f7 mov eax,dword ptr [pluto+0x3000 (f7a2a000)]

004052bc T:00000001 [bp] f7a2b00e 3bc1 cmp eax,ecx

00405339 T:00000001 [bp] f7a2b012 a12890a2f7 mov eax,dword ptr [pluto+0x2028 (f7a29028)]

004053e5 T:00000001 [bp] f7a2b02b e9aed1ffff jmp pluto+0x11de (f7a281de)

00405462 T:00000001 [bp] f7a281de 55 push ebp

004054ee T:00000001 [bp] f7a28219 8b45fc mov eax,dword ptr [ebp-4]

0040558b T:00000001 [bp] f7a28253 6844646b20 push 206B6444h

00405617 T:00000001 [bp] f7a282a2 b980000000 mov ecx,80h

00405694 T:00000001 [bp] f7a282ab 5f pop edi

00406ccc T:00000001 [bp] f7a2806a 8b4c2408 mov ecx,dword ptr [esp+8]

00406e04 T:00000001 [bp] f7a280f6 833d04a0a2f700 cmp dword ptr [pluto+0x3004 (f7a2a004)],0

00406eb0 T:00000001 [bp] f7a2810c 8b7760 mov esi,dword ptr [edi+60h]

00406f4c T:00000001 [bp] f7a28114 8b4704 mov eax,dword ptr [edi+4]

00406ff8 T:00000001 [bp] f7a28122 6a10 push 10h

00407075 T:00000001 [bp] f7a28133 85c0 test eax,eax

00407102 T:00000001 [bp] f7a28147 ff7604 push dword ptr [esi+4]

004071ae T:00000001 [bp] f7a28169 6a04 push 4

current context:

eax=00000003 ebx=00000000 ecx=8050589d edx=0000006a esi=00000000 edi=f1499052

19

eip=804e3b25 esp=f3cbe720 ebp=f3cbe768 iopl=0 nv up ei pl zr na pe nc

cs=0008 ss=0010 ds=0023 es=0023 fs=0030 gs=0000 efl=00000246

nt!RtlpBreakWithStatusInstruction:

804e3b25 cc int 3

commands:

[m] module list [0-9] enter recorder modes

[x] stop recording [v] toggle verbosity

[q] quit/close

kd> k

ChildEBP RetAddr

f3c1971c 805328e7 nt!RtlpBreakWithStatusInstruction

f3c19768 805333be nt!KiBugCheckDebugBreak+0x19

f3c19b48 805339ae nt!KeBugCheck2+0x574

f3c19b68 805246fb nt!KeBugCheckEx+0x1b

f3c19bb4 804e1ff1 nt!MmAccessFault+0x6f5

f3c19bb4 804da1ee nt!KiTrap0E+0xcc

*** ERROR: Module load completed but symbols could not be loaded for pluto.sys

f3c19c48 f79f0173 nt!memmove+0x72

WARNING: Stack unwind information not available. Following frames may be wrong.

f3c19c84 8057a510 pluto+0x1173

f3c19d38 804df06b nt!NtWriteFile+0x602

f3c19d38 7c90eb94 nt!KiFastCallEntry+0xf8

0006fec0 7c90e9ff ntdll!KiFastSystemCallRet

0006fec4 7c81100e ntdll!ZwWriteFile+0xc

0006ff24 01001276 kernel32!WriteFile+0xf7

0006ff44 010013a7 betterfuzz_c!main+0xa4

0006ffc0 7c816d4f betterfuzz_c!mainCRTStartup+0x12f

0006fff0 00000000 kernel32!BaseProcessStart+0x23

current context:

eax=00000003 ebx=00000000 ecx=8050589d edx=0000006a esi=00000000 edi=f1499052

eip=804e3b25 esp=f3c19720 ebp=f3c19768 iopl=0 nv up ei pl zr na pe nc

cs=0008 ss=0010 ds=0023 es=0023 fs=0030 gs=0000 efl=00000246

nt!RtlpBreakWithStatusInstruction:

804e3b25 cc int 3

commands:

[m] module list [0-9] enter recorder modes

[x] stop recording [v] toggle verbosity

[q] quit/close

kd> q

[*] - Exiting Stalker

q

C:\Uninformed>

Generating the .gml file allows the tester to view the new execution path. In
this case the block at address 00011169 is executed. All subsequent blocks
underneath it are not executed because the driver BugChecks inside of this

20

newly hit block indicating a bug of some sort. Command ’k’ in kd produces the
stack unwind information and we can see that a BugCheck was initiated for an
Access Violation that occurs inside of pluto.sys.

21

5.6 Part III

Analysis of the graph BadFuzz.gml generated in Part I indicated that the testing
methods used were not effective enough to exhibit optimal code coverage of the
device driver in question. Part II implemented an improved test case based
on the coverage analysis used in Part I. Graph BetterFuzz.gml allowed test
executers to view the improved testing methods to ensure that the missed block
was reached. This process revealed a fault in block 00011169 which would have
otherwise remained undetected without code coverage analysis.

22

Chapter 6

Conclusion and Future
Work

This paper illustrated an improved testing technique by taking advantage of
code coverage methods using basic graph theory. The author would like to
reiterate that the driver and fuzz tool used in this paper were simple examples
to illustrate the effectiveness of code coverage practices.

Finally, more research and experimentation are needed to fully implement these
theorems. The question remains on how to integrate a full code coverage anal-
ysis tool and a fuzzing tool. Much work has been done on code coverage tech-
niques and their implementations. For example, the paper entitled Crypto-
graphic Verification of Test Coverage Claims, Devanbu, et al[1] presents proto-
cols for coverage testing methods such as verifying coverage with and without
source code, with just the binary which can utilize both block and branch test-
ing (e0178[1].PDF). A tool to automate the espousal of code coverage and fuzz
technologies needs to be implemented so that the two technologies may work
together without manual investigation. Further research may include more so-
phisticated coverage techniques using graph theory such as super blocks, denom-
inators, and applying weights to frequently used loops, paths and edges. CFGs
may also benefit from Bayesian networks which are a directed cyclic graph of
nodes represented as variables including distribution probability for these vari-
ables given the values of its parents. In other words, the Bayesian theory may be
helpful for deterministic prediction of code execution which can in turn lead to
more intelligent fuzzing. In closing, the author extends the hope that methods
and methodologies shared herein can offer other ideas to researchers.

23

Bibliography

[1] Devanbu, T (2000). Cryptographic Verification of Test Coverage Claims.
IEEE. 2, 178-192.

24

	Foreword
	Introduction
	The status of vulnerability research
	The problem with fuzzing
	Expectations

	Q&A
	What is code coverage?

	Hypothesis: Code Coverage and Fuzzing
	Process and Kernel Stalking
	Stalking and Fuzzing Go Hand in Hand

	Implementation
	Stalking Setup
	Installing the Stalker
	Installing Debug Stalk
	Stalking with Kernel Debug
	Part I

	Analyzing the output
	Part II

	Part III

	Conclusion and Future Work

