A Security Evaluation of DNSSEC with NSEC3*

Jason Bau
Stanford University
Stanford, CA, USA
jbau@stanford.edu

Abstract

Domain Name System Security Extensions (DNSSEC) and
Hashed Authenticated Denial of Existence (NSEC3) are
slated for adoption by important parts of the DNS hierar-
chy, including the root zone, as a solution to vulnerabili-
ties such as "cache-poisoning” attacks. We study the secu-
rity goals and operation of DNSSEC/NSEC3 using Mury,
a finite-state enumeration tool, to analyze security prop-
erties that may be relevant to various deployment scenar-
ios. Our systematic study reveals several subtleties and po-
tential pitfalls that can be avoided by proper configuration
choices, including resource records that may remain valid
after the expiration of relevant signatures and potential in-
sertion of forged names into a DNSSEC-enabled domain
via the opt-out option. We demonstrate the exploitability
of DNSSEC opt-out options in an enterprise setting by con-
structing a browser cookie-stealing attack on a laboratory
domain. Under recommended configuration settings, fur-
ther Muryp model checking finds no vulnerabilities within
our threat model, suggesting that DNSSEC with NSEC3
provides significant security benefits.

1 Introduction

Domain Name System Security Extensions, or DNSSEC
[4, 5, 6], with Hashed Authenticated Denial-of-Existence
(NSEC3) [8] is a security standard for DNS that has been in
development since at least 1999 [1]. Briefly, DNSSEC adds
cryptographic signatures to standard DNS records to pro-
vide origin authentication and cryptographic integrity, but
not secrecy or improved availability, for those records. Re-
cently, DNS security has garnered quite a lot of interest,
due to the highly publicized DNS “cache-poisoning” vul-
nerability discovered by Dan Kaminsky [15, 22], and sev-
eral actual exploits of this vulnerabilities on ISP-run DNS

*This updated March 2, 2010 version corrects and supersedes a paper
with the same title that appears in the NDSS’10 proceedings.

John C. Mitchell
Stanford University
Stanford, CA, USA

mitchell @cs.stanford.edu

servers that resulted in the redirection of popular websites to
attack sites for customers of these ISPs [18]. Though initial
software patches were issued which made cache-poisoning
attacks much less likely to succeed, DNSSEC is proposed
as a long-term solution to DNS data integrity [17] against
cache-poisoning as well as in-path “man-in-the-middle” at-
tacks. As of August 2009, the operators of the .org, .com,
and .net Top Level Domains (TLDs) as well as the opera-
tors of the DNS root zone have all announced plans to de-
ploy DNSSEC/NSEC3 on their servers. Given the current
interest in DNSSEC/NSEC3, we feel it worthwhile to per-
form a thorough security analysis of the protocol in order to
understand its benfits and shortcomings.

During the course of this study, we found potentially prob-
lematic DNSSEC configuration options that were intention-
ally included in the protocol design to support incremen-
tal adoption and to minimize the performance impact of
DNSSEC at the high-traffic top-level domains. We will
highlight the DNSSEC/NSEC3 design trade-offs associ-
ated with these options, the resultant potential dangers, and
recommend DNSSEC configuration choices for enterprise-
level administrators considering DNSSEC adoption.

As background, we review standard DNS and Kaminsky-
style cache-poisoning attacks. We then examine the se-
curity goals and limitations of DNSSEC/NSEC3, explain
its operations, and consider its effectiveness against cache
poisoning. We perform finite-state model checking of the
DNSSEC/NSECS3 protocol against safety invariants derived
from its stated security goals. By identifying the parts
of DNSSEC packet content possessing cryptographic in-
tegrity, we define the capabilities of network attackers ex-
ecuting a man-in-the-middle attack on DNSSEC packets.
The model checker identifies several security invariant vi-
olations, including resource records that remain valid af-
ter the expiration of signatures attesting to their validity
and also protocol configurations that create an unsigned
subspace in the DNSSEC namespace of a domain, allow-
ing forged names to be inserted into an otherwise secure
domain. We discuss how the first violation may pro-
long the vulnerability window if a private key is compro-

mised or signed records are successfully forged. Also, to
demonstrate the exploitability of possible name-insertion,
we implemented an actual attack on a realistic laboratory
DNSSEC domain mimicking an enterprise deployment, ex-
ploiting the vulnerable configuration to steal user browser
cookies. We then incorporate protocol configuration repairs
into the Muryp model and verify that no exploitable vulner-
abilities are detected. Based on our analysis, we provide
recommendations to domain operators, DNSSEC software
implementors, and website designers that maximize the se-
curity of DNSSEC implementation and deployment.

During the process of writing up this work, a presentation
was given by Daniel Bernstein at WOOT ’09 [12] pointing
out possible vulnerabilities in DNSSEC. In comparison, our
work further exposes the mechanisms behind the vulnera-
bilities and thereby provides configuration/operation advice
to eliminate exposure to attacks. For the replay vulner-
ability caused by signature-expiration mismanagement re-
ported by Bernstein, we provide simple operational guide-
lines that prevent possible attacks. One overlap with Bern-
stein’s presentation is the relatively minor observation of
forgeable glue NS and A records within DNSSEC response
packets. While Bernstein correctly concludes this forgery
raises security concerns, we explain why this forgery does
not actually add any capabilities for the network attacker
and thus does not create additional exploitable attacks. Be-
yond Bernstein’s presentation, we found and experimen-
tally confirmed an attack using NSEC3 opt-out that does not
require cryptoanalysis. In fact, our entire work assumes un-
forgeable cryptographic signatures in order to study attacks
possible even with adequate cryptography, complementing
Bernstein’s thoughts on breaking DNSSEC cryptography.
A summary of the contributions of this work, in terms of
security violations discovered and attack prevention advice,
is listed in Table 1.

The remainder of this paper is organized as follows. Section
2 reviews standard DNS and cache-poisoning attacks. Sec-
tion 3 gives an overview of the security limitations, goals,
and mechanisms of DNSSEC/NSEC3 and demonstrates its
effectiveness against cache-poisoning. Section 4 presents
our finite-state model of DNSSEC/NSEC3, the network at-
tacker model, and also the inconsistency in DNSSEC at-
testation chain temporal dependencies that we found. Sec-
tion 5 presents the rest of the security violations reported
by finite-state model checking as well as the configuration
and implementation choices that eliminate them. Section
6 details our experiment confirming the exploitability of
the name-insertion property, using insecure delegation and
NSEC3 opt-out as illustrations. Finally, Section 7 presents
our best-practice DNSSEC adoption and implementation
advice and concludes.

2 Background: DNS Protocol
2.1 DNS Basics

We first review the relevant background information on
DNS. Table 2 lists the relevant RFCs defining DNS. DNS is
a hierarchical distributed database that translates alphanu-
meric domain names, such as wwwl.example.com, into
(most commonly) IPv4 and IPv6 addresses. DNS lookups
are ubiquitous as they must be performed before any net-
work resource, such as a website or a mail server, is ac-
cessed by its alphanumeric domain name. The domain
names may be thought of as database keys that are used to
lookup a variety of values, called Resource Records (RRs),
associated with the key. (The “key” domain name is called
the RR’s “owner name” in DNS parlance). The most com-
mon RRs are IPv4 addresses (the A RR), IPv6 addresses
(the AAAA RR), mail servers associated with a domain (the
MX RR), and name servers associated with a domain (the
NS RR). The values associated with the MX and NS RRs
are in name and not IP address form. The set of all RRs
of the same type belonging to the same owner name, e.g.
multiple NS or A RRs, is termed a RRSet.

We now use the domain name www.example.com as an ex-
ample to explain DNS terminology as well as its hierarchi-
cal operations. The name www.example.com has a canoni-
cal DNS form of www.example.com.. Each successive la-
bel (“www”, “example”, “com”) in this form corresponds
to a level within the DNS hierarchy (a zone), and the extra
trailing dot (“.”) at the end of the canonical DNS form is in-
serted to signify the presence of the root zone, the top level

of the DNS hierarchy.

13

A DNS zone is named by zero or more labels, e.g. “ex-
ample.com.” and consists of a set of RRs over which the
zone is authoritative. The concept of authority is best
illustrated by example. For instance, a zone is authori-
tative for all RRs whose owner name is the zone name
— the .com zone is authoritative over the NS and MX
records for .com. A zone server is also authoritative over
RRs where 1) the owner name contain the zone name
as a suffix and 2) no “longer suffix” of the RR’s owner
name is also a authoritative zone. For example, the ex-
ample.com zone is usually authoritative over the A record
for www.example.com., except when www.example.com is
configured as its own zone, (possibly to support a domain
name such as www1.www.example.com).

In addition to authoritative RRs, a zone may also store
glue records that aid in delegation. Glue records are RRs,
typically A and NS, under the authority of child zones
but copied to parent zones for the purpose of “gluing” to-
gether a delegation. For instance, the .com server may

Security Property Violations Prevent At Prevention Advice Section
Resource Record remains valid in local resolver Resolver Software Resolver software sets RR TTL to depend | 4.5.1
cache after expiration of signatures or key on all signatures in attestation chain to trust
rollover (revocation) higher in attestation chain anchor

ISP Resolver software imposes an independent
(from authoritative zone values) cap on TTL
and signature validity periods

Glue records may be forged to direct next Domain Operator Use all secure delegations 5.1.1
recursive query to attack DNS server Resolver Software If forgery is suspected, query supposed au-
thoritative zone to obtain signed version of
glue records.
(Even if no action is taken, this violation
does not result in acceptance of forged RR
as final query answer. See paper section.)
NSEC3 opt-out may be used to prepend falsified Domain Operator Do not set NSEC3 optout flag | 5.1.3
owner name in domain, as stated in RFC 5155,
resulting in vulnerability to cookie-theft and Website Designer Do not use overly coarse cookie “domain”
pharming setting
Replay of still valid A+RRSIG after IP-address | Domain Operator Do not relinquish IP-address until all | 5.1.4
move (Bernstein [12]) A+RRSIGs have expired
Inter-operation with standard-DNS child zones | Domain Operator Adoption of DNSSEC; Do not interoperate | 5.1.2
means insecure answer returned by DNSSEC re- DNSSEC with DNS
solver
Lack of end-user software indicator of secure vs. End-User Software | Support DNSSEC by providing lookup se- | 3.1.2
insecure DNSSEC query result exposes end-user (Browser/OS) curity indicators using DNSSEC AD Bit
to exploitable insecure DNSSEC query result
Network attacker can arbitrarily manipulate Resolver Software Do not trust header bits. Resolver validates | 5.3.1
DNSSEC reply header and status bits only using internal state and signed RRs.

ISP or OS Cannot trust remote DNSSEC validation
without secure channel. Provide secure
channel or validate all DNSSEC RRs locally

Network attacker can add recorded RRs / subtract | Resolver Software Build attested cache for answering user | 5.3.1
RRs / mangle bits in RRs in DNSSEC reply packet queries using only authoritative signed RRs
contained in DNSSEC replies.

Table 1. Summary of Recommendations

RRSets in DNS Reply | RRSets added by DNSSEC
“com. NS a.gtld.net.” “com. DS”
“a.gtld.net. A 192.5.6.30” “RRSIG(DS) by .”
| “example.com. NS a.iana.net.” “com. DNSKEY”
Q’*T 5 “a.iana.net. A 192.0.34.43” “RRSIG(DNSKEY) by com.”
User PC Local “example.com. DS”
Stub Recursive 6 “RRSIG(DS) by com.”
Resolver Resolver 7Y 7 “www.example.com. A 1.2.3.4” “example.com. DNSKEY”
“RRSIG(DNSKEY) by
Z — example.com.”
one for " .
"example.com.” RRSIG(A) by example.com.
8 “www.example.com. A 1.2.3.4”

Figure 1. DNS(SEC) name resolution sequence for query “www.example.com A?" resolving to IP address
“1.2.3.4". Authoritative RRSets are in plain text and glue RRSets are in italic. The stub resolver is not ex-
pected to handle DNSSEC RRs, so none are sent to it.

DNS DNSSEC

RFC Relevance RFC Relevance

1034, 1035 DNS Definition 4033, 4034, 4035 DNSSEC Definition (NSEC)

2671 EDNSO longer packets (used by || 5155 NSEC3 Definition

DNSSEC)

3833 Threat analysis of DNS 4641 DNSSEC operational guidlines

2845 TSIG Channel Security 2535 DNSSEC initial proposal (AD, CD header
bits)

2931 SIG(0) Channel Security 3757 Key Signing Keys (KSKs) and Zone Sign-
ing Keys (ZSKs)

Table 2. Relevant DNS and DNSSEC RFCs

store both the the NS record for example.com, with a value
of ns.example.com, and the A record for ns.example.com,
so that a single query response may contain all the infor-
mation needed to follow a delegation. However, the .com
zone would not be authoritative over either glue record; the
glue records fall under the authority of the example.com
Server.

Figure 1 illustrates a typical DNS lookup process, which
involves two types of DNS resolvers, a stub resolver and
a recursive resolver. Consider the name resolution pro-
cess that occurs after a user types www.example.com into
the browser address bar. This triggers the DNS resolution
process of the stub resolver on the user’s PC, which then
issues a query (“www.example.com A?”) to the local ISP-
run DNS server. This server now becomes a local DNS
recursive resolver: it first queries the DNS root server for
the A RR of www.example.com. The root server is not
authoritative for this information, so it issues a delegation
response, pointing the local recursive resolver towards the
authoritative server for the .com zone. This query/response
pair occurs again between the recursive resolver and the
.com authoritative server, which leads to the resolver ob-
taining the address of the authoritative DNS server of ex-
ample.com. When the recursive resolver queries the author-
itative DNS server for example.com, it finally obtains an
answer to “www.example.com A?”, which it can then pass
back to DNS stub resolver on the user’s PC that initiated
this entire process.

To reduce DNS network traffic, each DNS server caches
RRs to keep from issuing redundant requests. DNS replies
include the specified caching period (TTL) of a returned
RR, set by the authoritative zone. As an example, sup-
pose that the set of queries and responses in Figure 1 has
occurred recently, so that the TTL of caches records has
not yet expired. When another user of same local recur-
sive resolver requests “mail.example.com A?”, the local re-
solver will be able to bypass steps 2-5 due to caching and
directly query the “example.com.” authoritative server with
“mail.example.com A?”.

2.2 DNS Packet Format

We will now briefly describe the DNS packet format
and transmission characteristics and subsequently discuss
“cache-poisoning” attacks on DNS, conducted via both
“man-in-the-middle” and “out-of-path” means.

The format of a DNS packet is illustrated in Figure 2
(DNSSEC packets are completely identical). DNS queries
and responses are usually contained in a single small packet,
less than 512 bytes, and are usually sent over UDP. This
makes it fairly simple for network attackers to spoof DNS
responses. The only protection that the DNS packet format
provides against spoofing is in the 16-bit TXID (transac-
tion ID) field. A DNS resolver will accept as valid the first
response packet containing a TXID matching the TXID of
an outstanding query. This creates a race condition for at-
tackers: their spoofed responses to the DNS resolver must
match an outstanding TXID before the actual response re-
turns.

2.3 Cache-Poisoning Attack

In a cache poisoning attack, the attacker spoofs a DNS re-
sponse packet so that a DNS resolver accepts and caches
data “poisoned” by the attacker, such as an A RR of a
valid owner name pointing at the IP address of an attack-
ing server. The resolver then provides this poisoned data
to the end user, redirecting common domain name requests
(such as www.google.com) away from the legitimate server
to attacking servers [18].

2.3.1 Man-in-the-Middle

Man-in-the-middle attackers are attackers who have read
and write access to network packets belonging to the victim.
In this scenario an attacker can overhear the queries made
by the local recursive resolver to the remote DNS zones and

1516

2324

TXID

Transaction ID

31

QR = Query or Reply
UDP UDP Source Port UDP Dest Port Opcode = Typically 0 (QUERY)
AA = Authoritative Answer
Header UDP Length UDP Checksum
TC = Truncated
TXID OR| Opcode |AA|TC|RD|RA| z [AD|CD| RCODE RD = Recursion Desired
DNS RA = Recursion Available
QDCOUNT ANCOUNT Z = Zero Bit
Header AD = Authenticated Data
NSCOUNT ARCOUNT CD = Checking Disabled
RCODE: 0 = No Error

i Question Section

Answer Section RRs

Server Failure or
Bogus DNSSEC data
DNSSEC OK (in EDNSO header)

| 2
;

DO

Figure 2. DNS and DNSSEC packet format. DO bit is in EDNSO Header in Additional Section RR

inject faux replies from the remote zones. As DNS is un-
encrypted, it is trivial for the man-in-the-middle attacker to
copy the correct TXID to generate an acceptable spoofed
DNS reply, which will then poison the cache of the recur-
sive resolver.

2.3.2 Out-of-Path Attack

We will now discuss out-of-path DNS cache-poisoning at-
tacks, of which the recent work publicized by Dan Kamin-
sky [15] is the most infamous. In a Kaminsky attack, the
attacker does not require the ability to overhear the outgo-
ing DNS requests generated by the local recursive resolver.
Instead, the ingenuity of the Kaminsky attack involves in-
creasing the number of valid outstanding TXIDs, thus in-
creasing the probability that a randomly generated spoof
TXID will match an outstanding one.

The Kaminsky attack works with delegation responses
rather than authoritative answers. The attacker issues
many DNS queries to a DNS recursive resolver for non-
existent names sharing a common suffix zone, e.g. aN-
otExist.example.com, bNotExist.example.com, etc. (The
queries may also be coerced from a user, for instance by
an attacker-crafted web page containing these names in
tags). This creates many valid outstanding TXIDs at
the recursive DNS resolver. Since all of these queries con-
tain a common suffix zone (“example.com”), all responses
coming from the “.com” zone will include NS and A glue
records for the name server of “example.com”. The at-
tacker thus has many chances to poison the RRs for the “ex-
ample.com” name server at the resolver, by sending many
spoofed delegation responses (packet 5 from Figure 1) with
different TXIDs containing altered NS and A glue records.
Since the resolver will accept and cache the glue records
upon finding a match, this creates an instance of the “birth-
day problem” [11] from probability that can lead to success

after only seconds of attacking the 16-bit TXID field. Af-
ter a successful match, the resolver will query the attacking
server to resolve any RRs with owner name ending in “ex-
ample.com”, essentially giving the attacker full control of
the “example.com” zone for users of this resolver. After
the successful attack, all users of a poisoned DNS resolver
that attempt to access “example.com” will be directed to a
server of the attacker’s choosing.

In order to address this vulnerability, Kaminsky worked
with DNS software vendors to randomize the UDP source
port of DNS queries [9, 13]; these random ports become
the destination ports for DNS response packets. This effec-
tively adds 10-11 bits of entropy for the attacker, making
the expected success time of an attack several tens of min-
utes rather than seconds. However, the mitigation does not
fundamentally prevent a spoofing packet success; it only
lowers the probability of such an event. This mitigation
also provides no defense against man-in-the-middle attack-
ers. Therefore, many researchers, including Kaminsky him-
self [9, 17], have been actively supporting DNSSEC as a
long-term solution to DNS security vulnerabilities, includ-
ing cache-poisoning.

3 DNSSEC Protocol

3.1 Stated Security Goals and Limitations

DNSSEC, as the name implies, consists of a set of secu-
rity extensions to the DNS protocol (see Table 2 for the
relevant RFCs). DNSSEC introduces additional security-
related resource records with each reply, for the purpose
of providing cryptographically signed integrity to the orig-
inal DNS resource records. This makes DNSSEC effective
against both types of cache-poisoning attacks described in
Section 2.3. DNSSEC does not guarantee delivery of re-
source records and does not provide integrity for unsigned

portions of packets. Its security goals are described in RFC
4033 as follows:

“The Domain Name System (DNS) security extensions pro-
vide origin authentication and integrity assurance services
for DNS data, including mechanisms for authenticated de-
nial of existence of DNS data.”

In RFC 4033, the authors explicitly distinguish DNSSEC
data (RR) security from channel security. DNSSEC pack-
ets, containing resource records carrying encoded-binary
cryptographic material, are typically carried in the clear
over UDP. Thus, the current paper is largely about the
implications of the DNSSEC design decision to provide
data (RR) security rather than channel security. We will
first discuss the limitations of DNSSEC, and then consider
in turn the three component DNSSEC data integrity goals
from above: origin authentication, data integrity assurance,
and authenticated denial-of-existence, and detail how the
DNSSEC protocol attempts to reach these goals, even with
in-the-clear communications.

3.1.1 “Last-Hop” Limitations

RFC 4033 specifically states the “last-hop” between stub
resolver and recursive resolver (1 and 8 in Figure 1) may
be out-of-scope for DNSSEC, to be protected via DNS
channel security means such as SIG(0) [3] or TSIG [2].
This is because in anticipated DNSSEC deployment, cryp-
tographic signatures are expected to flow from authoritative
servers only to local recursive resolvers, with stub resolvers
on end-user PCs not equipped to handle signature verifica-
tion.

As our finite-state analysis is focused on the DNSSEC pro-
tocol, we consider last-hop security out-of-scope and des-
ignate the recursive resolver as the trusted end-point for
name resolution in the analysis. However, we emphasize
that the channel security of this last hop is critically im-
portant to end-to-end DNSSEC integrity. For example, the
recursive resolver marks the difference between two types
of responses to the stub resolver: verifiably secure answers
and insecure answers, with a single “Authenticated Data”
(AD) bit. Thus, attackers able to manipulate DNS replies
over this last hop may forge secure answers simply by set-
ting the AD bit. In usage scenarios where last-hop security
is absent, such as unencrypted wireless hotspots, DNSSEC
cannot guarantee domain-name lookup integrity to the end
user.

3.1.2 Interoperability with DNS Limitations

Under current specifications, any inter-operation with stan-
dard DNS zones exposes the end-user of a DNSSEC re-
cursive resolver to forgeable query results. When inter-
operating with a standard DNS zone, a DNSSEC recursive
resolver cannot verify the integrity of remote zone data due
to the lack of cryptographic signatures. For compatibility,
the recursive resolver still returns any responses from the
zone to the stub resolver, but without setting the AD se-
curity indicator bit. Thus, whenever a DNSSEC recursive
resolver must query a standard DNS zone, the recursive re-
solver is forced to provide an answer without security guar-
antees to the stub resolver. As of this writing, end-user
software accepts both secure and insecure results from the
stub resolver, without any user-interface elements to indi-
cate the security of the lookup result. Thus, the current
end-user cannot trust the security of DNS lookups even if
a DNSSEC recursive resolver with last-hop channel secu-
rity is utilized. While this is the fault of end-user software,
not DNSSEC/NSECS3, this is still an issue that enterprise
network administrators (and application developers) should
recognize.

3.2 Origin Authentication

The need for origin authentication is possibly best under-
stood in the context of preventing cache-poisoning attacks.
As we described above, these attacks are possible because
the DNS recursive resolver will accept DNS data sent to
it by any computer connected to Internet (possibly with
a falsified source IP address) as long as the destination
port/TXID fields match. There is no mechanism within
DNS, aside from source IP address, that verifies the data
originates from an authoritative server for a particular zone.
To solve this issue, DNSSEC provides a form of hierarchi-
cal public key infrastructure (PKI) which allows resolvers
to securely obtain the public key for a DNSSEC zone and
to use this for authenticating signed data belonging to the
zone.

DNSSEC introduces three new RRs to support this PKI:
DNSKEY, RRSIG (RR Signature), and DS (Delegation
Signer). The DNSKEY RR contains the binary-text-
encoded public key along with relevant key parameters such
as the encryption algorithm used. The zone uses the corre-
sponding private key to sign all of the RRSets over which it
is authoritative. Each signature over an RRSet is recorded
in a RRSIG RR. The DS verification RR contains a crypto-
graphic digest of a DNSKEY belonging to a child zone in
a delegation. The DS RR is considered under the author-
ity of the parent zone and can thus be signed by the parent
zone (with a corresponding RRSIG). It is returned by the

parent side of a delegation as an authenticated pointer to a
DNSKEY in the child zone. This [Parent DNSKEY “}"”

signs

Parent DS "= Child DNSKEY] sequence forms a link in
an extensible attestation chain that can impart trust to any
public key obtained via the chain, so long as the chain be-
gins at a trust anchor. In the DNSSEC PKI, a trust anchor
is any DNSKEY or DS RR confirmed as trustworthy via
out-of-band means and configured in the resolver as trust-
worthy. With the recent announcement of root zone signing,
this is expected to be the root DNSKEY.

The operation of the DNSSEC PKI is illustrated in Figure 1,
which lists the DNSSEC packet contents for the name res-
olution “www.example.com A?”, for which the DNSKEY
of the “example.com.” zone are needed. Starting with the
DNSKEY of the root zone as the trust anchor, Reply 3 pro-
vides the DS to attest to the DNSKEYs of “com.”. Re-
ply 5 adds the DNSKEY of “com.” and the DS to attest to
the DNSKEY “example.com.”, which is provided by Reply
7.

3.2.1 Origin Authentication with Regular DNS

In order to inter-operate with non-SEC DNS implemen-
tations, DNSSEC must also provide for cases where a
DNSSEC zone has a non-DNSSEC parent or child zone.
In the insecure parent zone case, since the trust chain can-
not be established all the way back to the DNS root, either
the DNSKEY of the secure zone or a DS generated from the
DNSKEY must be manually configured as a trust anchor at
the recursive resolver. When there is no such manually con-
figured trust anchor, no attestation chain can impart trust to
the DNSKEY of the secure zone. In this case, no records
from the secure zone are verifiable by the recursive resolver
and all records ostensibly from the zone will passed on to
the stub resolver as an insecure answer.

In the case of an insecure child zone of a secure zone, an in-
secure delegation will be created with no DS record within
the secure zone pointing at the child zone. We will see that
this has significant security consequences.

3.3 Integrity Assurance

Given the hierarchical PKI provided by DNSSEC, it is
straightforward for a zone to provide “integrity assurance”
for its existent data. The zone signs all the RRSets over
which it is authoritative and transmits the RRSIG along with
the RRSet in its replies. For example, when responding to
the “www.example.com A?” query, the example.com au-
thoritative server will transmit both the A record and the

RRSIG containing the signature over the A record, as Re-
ply 7 in Figure 1 demonstrates.

DNSSEC allows a zone only to sign RRs over which it is
authoritative. This means that any glue records included in
a delegation response are unsigned, as illustrated in Replies
3 and 5 from Figure 1. As Bernstein has noted and as we
will explain, these glue records may be forged, causing the
local resolver to query an attacking server in its recursive
next step. We show in Section 3.7, however, that this redi-
rection does not allow the network attacker to influence to
end result of name resolution.

3.4 Authenticated Denial of Existence

Thus far, we have discussed how DNSSEC provides in-
tegrity assurance for existent RRs. Authentication and in-
tegrity is also required for responses denying the existence
of any RRs matching a query. If authentication mechanisms
did not exist, for example, an attacker may be able to forge
a response packet denying the existence of an existent do-
main name and have this response cached at the local re-
solver for long periods, creating a directed denial-of-service
attack.

For performance reasons, development of an off-line
method was a strong design consideration for authenticated
denial of existence, preferable by top-level domain opera-
tors over on-line methods such as that proposed by RFC
4470 [7]. The initial DNSSEC scheme for this creates RRs,
named Next Secure (NSEC), that list all of the existent RRs
belonging to an owner name within an authoritative zone,
so that a resolver can verify the non-existence of an RR
against the RR list of its owner name. Each NSEC RR also
contains the next existent owner name in canonical form, so
that the non-existence of an owner name within a zone may
be shown by returning a covering NSEC, whose owner and
next existent names bracket the queried name. As an unde-
sirable consequence, the entire contents of a zone may be
trivially enumerated by following NSEC records and mak-
ing appropriate queries.

An alternative scheme for hashed authenticated denial of
existence, named NSEC3 [8], is nearly equivalent to NSEC
except that all owner names are cryptographically hashed
and not available in cleartext. The canonical order of exis-
tent names in NSEC3 is the hashed order. Under NSEC3,
zone enumeration of hashed names remains trivial, but the
attacker must expend computational resources in a dictio-
nary attack to learn the zone contents in cleartext. A salt
string is appended to each owner name, the same for each
name in the domain, in order to eliminate pre-computation
of dictionaries by exploding their size. However, since the
salt is available publically via a RR query, NSEC3 is still

vulnerable to the leakage of RR owner names after few days
of post-query computation [12].

With NSEC, all owner names within the zone, including
names only associated with NS records used for delegation,
form the NSEC “next owner” chain. In NSEC3, such an
owner name may ‘“opt-out” of the chain via a bit in the
NSEC3 RR. When the “opt-out” bit is set in an NSEC3
record, one or more unsigned delegations may exist with
owner names that hashes to a value between the two hashed
names in the NSEC3 RR. Opt-out allows top-level zones to
support incremental adoption of DNSSEC at the enterprise
level by excluding delegations to enterprise zones not sup-
porting DNSSEC from the NSEC3 chain. This saves the
TLDs the computational cost of NSEC3-hashing the names
of non-DNSSEC child domains.

When a resolver receives a signed opt-out NSEC3 RR cov-
ering its queried name, it must still consult unsigned in-
formation, such as glue records indicating a delegation, to
decide whether the query answer exists lower in the DNS
hierarchy. The NSEC3 opt-out option allows insecure dele-
gations and thus any RRs to be inserted by an attacker into
the “span” of the NSEC3 record [8]. This NSEC3 charac-
teristic, posing dangers to enterprise-level zones because of
trust implied by domain membership, forms one instance
for the demonstrated attack that we will detail later in this

paper.
3.5 Temporal Specifications

Under DNS, a RR in a DNS reply packet included a spec-
ification of TTL as the time, starting from reply reception,
that the resolver may validly cache the RR. This specifi-
cation of TTL relative to packet reception makes DNS re-
ply packets susceptible to replay attacks. To avoid replay
vulnerability, DNSSEC introduces absolute-time temporal
specifications for its signatures. Each RRSIG RR has a sig-
nature validity period, stated as absolute start and end times.
This introduces a dependency of TTL times upon signature
validity times at the resolver, as TTLs for RRs must not re-
main valid for longer than the valid periods of signatures
attesting to these RRs. The absolute timing eliminates the
possibly of replay after the expiration of the corresponding
RRSIG.

3.6 Packet Format & Attacker Capabilities

Because DNSSEC operates solely by adding RRs to reg-
ular DNS, its packet format is essentially unchanged from
DNS (see Figure 2). The security-related DNSSEC RRs are
carried alongside the original DNS RRs in the same packet

(see Figure 1). DNSSEC does introduces a single enable
bit, DNSSEC OK (DO), located in the EDNSO header con-
tained in the Additional Section of DNS packets. It also de-
fines two bit in the DNS header: Authenticated Data (AD),
which indicates that the sending server has validated the
RRs in the packet, and Checking Disabled (CD), which tell
upstream servers to not perform RR validation.

The DNSSEC signature scheme only allows for individ-
ual RRSets to be signed by an associated RRSIG record.
Thus, the integrity provided by DNSSEC is at individual
RRSet+RRSIG granularity. Essentially, the only guaran-
tee of DNSSEC is that it is impossible, short of private key
compromise, for a network attacker to create a RRSet and
RRSIG pair containing manipulated data validly signed by
the originating zone. We thus incorporate capabilities for
manipulating all other aspects of DNSSEC packets into our
attacker model, including stripping RRSIGs from RRSets,
changing header bits, inserting and deleting recorded RRs,
etc. See Section 4.4 for a detailed description.

3.7 Robustness Against Cache Poisoning

DNSSEC is effective against the cache-poisoning attacks
described in Section 2.3. In the presence of the attacker
capabilities listed in Section 4.4, which model a man-in-
the-middle network attacker, our finite-state model check-
ing results in Section 5.2 demonstrate that signed DNSSEC
records obtained using only secure delegations are not vul-
nerable to forgery. An end-user trusting only secure query
responses is thus safe from such a network attacker.

We will also now detail how DNSSEC successfully pro-
tects against out-of-path (Kaminsky) cache-poisoning. Re-
call that the Kaminsky attack works by redirecting the IP
addresses associated with glue NS and A records, causing
the recursive resolver to query a DNS server controlled by
an attacker. As noted by Bernstein, redirection of the child
zone query to an attacking DNSSEC server is still possible
under DNSSEC, since glue records are unsigned and forge-
able. However, with the DNSSEC protocol, a DS record
with RRSIG will also be sent in a secure delegation re-
sponse. The authenticity of this signed DS record is veri-
fiable by the recursive resolver via the attestation chain (it
should not follow delegation responses without a signed and
attested DS), thus giving the recursive resolver a way to ver-
ify the public key of the child zone.

With a trusted public key for the child zone, the resolver can
validate whether a RR contained in a response sent by the
attacking server is properly signed by the child zone. Short
of key compromise, the attacking server therefore cannot
falsify any signed RRSets in this child zone, including DS
records for further secure delegation. Since the ultimate

RRs requested by name resolution, usually A or MX, are
available in signed form in their authoritative zone, a re-
solver never has to rely on an unsigned record as its final
answer. Thus, as long as a DNSSEC resolver accepts only
RRSets appropriately signed by their authoritative zone as
final query answers, the response packets may come from
any server, redirected or not, without allowing the attacker
to violate the ultimate integrity of a DNSSEC name resolu-
tion.

In fact, server redirection does not increase the packet
forgery capabilities of the network attacker. Once an at-
tacker has caused a recursive resolver to query its attack-
ing DNSSEC server, it can form any type of response to
the resolver that it chooses except create a valid RRSet
and RRSIG pair signed with the zone’s private key. These
are exactly the same capabilities that we ascribed to the
man-in-the-middle network attacker in Section 3.6, albeit
made more convenient for the attacker by eliminating the
race with a legitimate DNSSEC server. Thus, glue record
forgery does not present any additional security threat to
DNSSEC beyond the normal capabilities of a network at-
tacker, though it may allow the attacker to more easily in-
hibit DNSSEC performance with rogue packets that, for ex-
ample, consume resolver CPU time.

4 Finite State Model Checking

In order to evaluate the security of the DNSSEC proto-
col, we performed a finite-state “rational reconstruction” of
DNSSEC using Mury [14], a Nondeterministic Finite Au-
tomaton (NFA) enumerator to check its operations against
safety invariants derived from its stated security goals. In
the rational reconstruction process, decribed in [21], the
most basic parts of the protocol messages are modeled and
executed in the model checker, to see if any safety invariants
are violated. When invariants are violated, more protocol
components are added until the invariants pass or cannot
be passed. The entire process thus aids in understanding
the component design of the protocol and ensures that the
properties expressed in the invariants test the functionality
of each protocol component.

Furthermore, since Mury tries all possible combinations of
modeled attacker capabilities, when the reconstructed pro-
tocol runs to completion without violating any invariants,
we may draw the conclusion that the protocol preserves the
expressed safety invariants against the attacker described in
the model. In this section, we will detail our reconstruction
of the protocol, the network attacker mode, and the secu-
rity invariants. We will also report on an inconsistency in
the temporal dependencies of the DNSSEC attestation chain
found by our modeling.

4.1 Overview of Mury Model

Our model is based on a typical usage scenario of the
DNSSEC service. Table 3 summarizes this finite-state
model. We model three layers of the DNSSEC hierar-
chy, representing root zone servers (“.”), TLD zone servers
(“com.”), and an authoritative server for a single zone (“ex-
ample.com.”). The root zone DNSKEY is our modeled trust
anchor. In the state machine, these zone servers are sim-
ply modeled as a set of transition rules on network state;
they do not introduce any additional state themselves. We
also model a local recursive resolver, representing ISP-run
DNSSEC resolvers, as a set of transition rules on network
state as well as local state, representing name resolution sta-
tus and knowledge of the DNSSEC hierarchy, such as zone
keys, DS RRs, and server addresses. The network is sim-
ply a set of modifiable packet state structures. The final
aspect of our model is the attacker model, which consists
both of transition rules modifying network state and addi-
tional state representing packet knowledge recorded by the
attacker.

4.2 Root, and Authoritative Servers

Model

TLD,

The behaviors of the root, TLD, and authoritative zone
servers require no server state and are entirely described by
network state transition rules. Our modeled root and TLD
behaviors are quite simple. They respond to network state
containing a query packet addressed to them and will write
a response to the network containing either a secure delega-
tion, with DS and RRSIG authoritative RRs and NS and A
glue RRs.

The modeled behavior of the authoritative “example.com.”
server is more complex, as it covers the entire set of zone
responses to an RR query. The full set is enumerated in
Figure 4.3.1. Response 1 represents the simple case where
the query matches an RR existent in the zone. Responses 2-
4 represent when the query matches an existent delegation
point instead of an RR in the zone. Response 2 is the secure
delegation case. Responses 3 and 4 represent the options
for an insecure delegation: a NS glue record used for inse-
cure delegation in DNSSEC may either be recorded by the
NSEC3 chain (response 3), or unrecorded, with the cover-
ing NSEC3 setting opt-out instead (response 4).

Finally, responses 5 and 6 represent cases when the query
matches neither existent RR nor delegation. The zone must
then indicate non-existence of the queried RR by returning
the covering NSEC3, which may happen to have opt-out set
(response 5), or not (response 6). Our modeled authorita-
tive zone has RR content that will elicit each of these six re-

States

H Transition Rules

Local Resolver State
Knowledge of TLD and Authoritative Zone
Address (and validity)
DS (and validity)
DNSKEY (and validity)
Names to Resolve (namel-name6)
Answer (and validity)
Network
Set of Packets
Attacker Knowledge
Set of Packets

Local Resolver
Query Generation
Local Resolver State — Network
Reply Handling
Network — Local ResolverState
TTL and Signature Expiration
Local ResolverState — Local Resolver State
Root, TLD, and Authoritative Zone Servers
Query Response
Network — Network
Attackers
Learning Legitimate Replies
Network — Attacker Knowledge
Forgery Generation
Attacker Knowledge, Network — Network

Table 3. Overview of DNSSEC Murp Model. Arrows denote StatesRead — StatesWritten.

sponses when queries for namel through name6 are sent by
the resolver, allowing Mury to enumerate all possible states
of an authoritative zone responding to a query.

4.3 Local Recursive Resolver Model

The modeled local recursive resolver tries to resolve the set
of six names that elicit the full range of DNSSEC response
behavior as described in the previous section. These six
names also form the basis of our invariants, as we check that
the information associated with the names in the authori-
tative zone matches the understanding the resolver learns
from replies. The resolver state records the answer supplied
by the authoritative zone to each of the six query targets,
along with the temporal validity of the answer. When any
answer is in the expired state, the resolver will try to re-
solve the corresponding name by writing a query packet to
the authoritative zone server, provided its knowledge of au-
thoritative server address is valid. For the purpose of query-
ing and authenticating replies, the local resolver state also
maintains TLD and authoritative zone address, DNSKEY,
and DS, and will appropriately query when these expire.
(The root server address and DNKSEY are not modeled as
resolver state because they are hard-coded in a resolver im-
plementation).

4.3.1 TTL and Signature Expiration

We model validity expiration for all query answers and all
server addresses, DNSKEYSs, and DSs. In DNSSEC, all of
this information is stored as a RR. RRs have an associated
TTL and, if signed, also a signature validity period for the
corresponding RRSIG. As per RFC 4033, TTLs for RRs

must expire when the corresponding RRSIGs expire; this is
strictly enforced in our model by combining RR TTL and
RRSIG validity into a single entity. Also, all modeled va-
lidity states initialize to *expired’, and transition rules exist
for each record that change a ’valid’ state to an ’expired’
state.

4.3.2 Reply Validation Logic

The local resolver model also contains logic that validates
the contents of a reply packet and decides what actions to
take with regards to the query based on received informa-
tion. This logic is of utmost importance to the security of a
DNSSEC implementation. For example, incorrect resolver
validation behavior that accepts unsigned RRs from an ex-
pected DNSSEC zone opens up a downgrade path for at-
tackers to exploit. We distilled the guidance of RFC 4035
into our model.

In particular, our modeled resolver places RRSets contained
in replies into two separate entities for use in this logic:
an Atrtested Cache, whose contents are secure RRSets that
have a full attestation chain back to the trust anchor, and a
Non-Attested Cache, whose contents are RRSets the zone
expects to be insecure, such as glue records or data from
regular DNS zones. The attested cache consists of zone
DNSKEYs and DSes as well as signed A and NSEC3 RRs
from reply packets. For instance, to include an A record
signed by the authoritative zone in the attested cache, the
resolver’s TLD and authoritative zone DSes and DNSKEY's
must all be valid. The unattested cache consists of zone
addresses and glue records from reply packets. RRSets de-
termined to be bogus, such as those with invalid signatures,
or indeterminate, such as those with incomplete attestation
chains, are discarded by validation logic. We believe that

Zone Receives RR Query

« T

RR Exists RR Not
in Zone In Zone
1 Returns RR in RR Does
Signed RR Child Zone Not Exist
2 Secure Insecure Returns NSEC3
Delegation Delegation Covering Query

3NS Glue Record 4NS Glue Record not
in NSEC3 Chain in NSEC3 Chain
(Opt-out)

NSEC3 NSEC3

Figure 3. Zone Response Behavior to an RR Query

the attested/non-attested cache distinction may be useful to
future DNSSEC implementers.

The resolver decides what actions to take on behalf of each
query based on the contents of the attested and non-attested
caches. Table 4 summarizes these logical rules.

4.4 Modeled Attacker Capabilities

Our Murp model checks DNSSEC in the presence of a net-
work attacker possessing all reply packet manipulation ca-
pabilities short of key compromise. The attacker’s ultimate
goal is to induce the resolver to accept a corrupted query an-
swer. This is a standard attacker model, used by many pre-
vious studies including [19, 21]. The full list of attacker ca-
pabilities in our finite-state model is summarized here. Due
to the nature of a non-deterministic finite automaton (NFA),
all attacks involving any combination of the capabilities are
exercised. To prevent state-space explosion in Mury, only
hostnames recognized by the modeled resolver, i.e., namel
through nameo6, are used by the attacker model.

1. Attacker may overhear any packets intended for the au-
thoritative, TLD, or root server.
2. Attacker may record any reply packets to the resolver.
3. Attacker may modify any recorded reply packet and
resend them to the resolver. However, the attacker may
not compromise cryptography, thus limiting its packet
modification capabilities to the following:
(a) Attacker may modify any header bits
(b) Attacker may modify the Question section.
(c) Attacker may strip any number of RRs from a
reply, including RRSIGs for other RRs.

5 Opt-out 6 Non-opt-out

Matching RRSets in
Attested Cache Non-Attested Action
Cache

A Answer

DS NS, A Secure
Delegation

NSEC3 (owner name | NS, A Insecure

matches query, shows Delegation

glue NS exists)

NSEC3 (covering | NS, A Insecure

query, opt-out) Delegation

NSEC3 (covering Denial-of-

query, opt-out) Existence

NSEC3 (covering Authenticated

query, no opt-out) Denial-of-
Existence

Figure 4. Modeled Resolver Action Logic, Depending
on Resolver Cache Contents Matching Query

(d) Attacker may add any number of recorded A,
NSEC3, DS, NS, or RRSIG RRs to a reply, so
long as the added RRs were not modified by the
attacker.

(e) Attacker may create authoritative A, NSEC3, and
DS RRs with corresponding RRSIGs signed by
the attacker’s own key, and add them to a reply.

(f) Attacker may modify the contents of any A or NS
glue record.

4.5 Security Invariants

We run the DNSSEC model in Mury to check if any reach-
able state violates any security invariants. These invari-
ants, which characterize the intended security properties of
DNSSEQC, are all logical expressions based on the state of
the local recursive resolver. The first set of invariants checks
that the local resolver has not recorded an spoofed answer
for one of the queried names. Thus, if the answer to name[1-
6] is valid, its answer must be the value intended by the
authoritative server: An A RR with the correct address for
name 1, an indication of secure delegation with the proper
DS for name 2, indications of insecure delegation with the
correct child zone address for names 3 and 4, and indica-
tions of non-existence of names 5 and 6.

Another invariant checks that no key other than the correct
TLD and authoritative zone keys become accepted in re-
solvers attested cache. The next invariants check that the
local resolver’s knowledge of the addresses of the TLD and
authoritative servers have not been spoofed.

The last invariant checks for the integrity of the attestation
chain. We feel that it is a desirable property that a record be

considered valid at the local recursive resolver for only as
long as all of the other records that form this record’s attes-
tation chain back to the trust anchor remain valid. For ex-

ample, for an A RR with owner name www.example.com.,
signs

the RR attestation chain is [1 “. DNSKEY” = 2 “com.

DS+RRSIG” %" 3 “com. DNSKEY” & 4 “exam-
ple.com. DS” St 5 “example.com. DNSKEY” TR 6
“www.example.com. A+RRSIG”]. In our model, this maps
to the invariant that while any of the query answers at the
resolver are valid (representing 6), none of auth DNSKEY
(5), auth_DS (4), tid_DNSKEY (3), or tld_DS (2) should ex-
pire, since this would break the attestation chain to the trust
anchor.

4.5.1 Temporal Inconsistency Discovered

The attestation chain temporal integrity invariant is in fact
violated during our run of Mury. The DNSSEC proto-
col only specifies temporal constraints between TTL of a
RR and the signature validity period of its corresponding
RRSIG; there are no constraints between the TTL of an RR
and the validity period of another signature in its attesta-
tion chain. Thus, a signature within the attestation chain
may expire before the RR to which it is suppose to attest,
since there are no further constraints specified by the RFCs
on a valid attestation chain for the data once it enters the
cache. A fully trusted attestation chain does exists at the
time that an signed RR is received and validated by the lo-
cal recursive resolver; this invariant violation is thus signifi-
cant in admittedly extra-ordinary scenarios where data from
a once-trusted authoritative zone is later found untrustwor-
thy, such as key compromise.

Using the example from the previous section, consider the
case where the key of “example.com.” is compromised,
leading to a signed “example.com.” DS+RRSIG that vali-
dates a key controlled by the attacker. If the TTLs of RRs
under the authority of “example.com.”, such as the A RR
for “www.example.com.”, depended upon the validity of all
of the signatures tracing back to the trust anchor, this period
of compromise would at least be bound by the expiration of
“example.com.” DS during the routine key rollover for “ex-
ample.com.”. However, if RRs for “example.com.” depend
only on the expiration of their associated RRSIG, then the
attacker may create RRSIGs with arbitrarily long validity
periods, extending the period of compromise for RRs under
the authority of “example.com.” indefinitely, even past key
rollover.

One potential remedy for this invariant violation requires
resolver logic be strengthened beyond RFC 4033’s recom-
mendations. The resolver cache may specify that a RRSet
may not have TTL expiration time after the expiration time

of ANY signatures that form its attestation chain, not just
the RRSIG directly associated with the RRSet. However,
this potentially synchronizes multiple TTL expirations for
RRs in lower zones and across multiple resolvers on a
RRSIG lifetime in an ancestor zone. Synchronicity in TTLs
may mean potentially unacceptable increases in query traf-
fic. Thus, we favor an alternative solution: since the prob-
lem arises when data from a supposed trusted zone is later
repudiated, resolvers should cap TTL and signature life-
times even when authoritative zone says they should be
longer. While no protocol specification exists for an arti-
ficial resolver cap on the TTL and signature lifetime spec-
ified by an authoritative zone, this is prudent practice for
resolvers to limit the exposure period of their customers to
harmful data, in an extra-ordinary circumstance.

5 DNSSEC Security Invariant
Violations and Guarantees

5.1 Inherent Security Violations

Our Mury model checking found several security prop-
erty violations in the DNSSEC protocol, some of them
exploitable by a network attacker. The violations are de-
scribed here and also summarized in Table 1.

5.1.1 Glue Record Redirection Violation

The first violation occurs due to the forgeability of glue
records used in delegations, making all delegations vul-
nerable to redirection. Since attackers may modify un-
signed glue records, Mury found invariant violations result-
ing from the attacker changing TLD server and authorita-
tive server addresses stored in local recursive resolver state.
However, even with this server redirection, since the TLD
and authoritative zones in our model are reached by se-
cure delegations, Mury did not find forgery of any signed
query answers from the authoritative zone at the recursive
resolver. See Section 5.2 for details of the model checking
result. The mechanism for this protection was previously
described in Section 3.7, which also notes how this redi-
rection allows the attacker to more easily hinder resolver
performance.

Glue record manipulation by the attacker also led to the vi-
olation of invariants checking the integrity of insecure del-
egations returned by the authoritative zone. Redirection of
an insecure delegation, which always points to a standard
DNS child zone, is the exact mechanism of the Kaminsky
attack. Data served by the attacking server is accepted and

cached at the recursive resolver without validation, expos-
ing the end-user to cache poisoning. Such an attack can
only be prevented by the adoption of DNSSEC by the child
zone, which secures the delegation.

5.1.2 Inter-operation with DNS

To generalize the consequences of inter-operation with stan-
dard DNS zones, we note that a DNSSEC local recursive
resolver cannot provide secure answers to the stub resolver
unless the resolution process queries only DNSSEC zones
starting at the trust anchor. An intervening standard DNS
zone requires an insecure delegation, meaning the local
DNSSEC resolver will not be able to form the full attes-
tation chain required to verify the final answer from the
trust anchor. Since it precludes verification at the recursive
resolver, any DNS-DNSSEC inter-operation causes an in-
secure, forgeable answer to be passed to the stub resolver.
Since users are not informed of insecure query results due
to the current absence of software interface indicators, inter-
operation with DNS effectively exposes users trusting in
DNSSEC resolvers to attacker exploitation.

Insecure delegations caused by DNS-DNSSEC inter-
operation, and also NSEC3 opt-out, as described in the next
sub-section, are instances of configurations whereby an in-
secure sub-namespace is created in a DNSSEC namespace.
These types of configurations form the basis of our labora-
tory cookie-theft experiment in Section 6. Zone operators
desiring the best DNSSEC security, especially at the enter-
prise level, should take care to avoid them.

5.1.3 NSEC3 Opt-out Violation

The next class of security invariant violations results from
the attacker being able to change the content of a DNSSEC
reply packet by subtracting or adding RRs. We found that
the attacker was able to convert an insecure delegation to a
unauthenticated denial-of-existence and vice-versa. To un-
derstand this, recall from Figure 4 that an insecure delega-
tion using opt-out requires the presence of an authoritative
NSEC3 record with opt-out, its associated RRSIG, and A
and NS glue records, and that an unauthenticated denial of
existence requires an authoritative opt-out NSEC3 record
and its associated RRSIG. The network attacker has the ca-
pability to convert between these two response types simply
by adding or subtracting the glue records.

The conversion from insecure delegation to denial-of-
existence is useful for an attacker as a denial-of-service at-
tack that may linger on the local resolver due to its caching
of denial-of-existence responses. On the other hand, the
ability to insert an insecure delegation may be used by an

attacker to insert any arbitrary RR with an owner name that
hashes between the names on the NSEC3 RR. This secu-
rity violation confirms the property of NSEC3 opt-out as
described in RFC5155 [8].

For example, an attacker may insert an A RR for
spoof.example.com using an opt-out NSEC3 with
owner name www.example.com and next name
mail.example.com, as long as ‘spoof’ hashes between
‘www’ and ‘mail’. We will show that this property is
exploitable by experimentally carrying out a browser
cookie-stealing attack detailed in Section 6. Attacks of this
nature may only be prevented by the domain operator of
“example.com.” not using opt-out and including all owner
names into the NSEC3 chain.

5.1.4 Mismanaged Signature Expiration

In this sub-section, we provide mitigation advice for a vul-
nerability, first mentioned by Bernstein [12], which is ac-
tually a consequence of the lack of signature revocation in
DNSSEC. The vulnerability occurs when the signature ex-
piration of A RRSets and associated RRSIGs is misman-
aged. RRSIGs have a 30-day validity period according to
the default settings in BIND, and DNSSEC lacks a revoca-
tion mechanism that can hasten the expiration date. Sup-
pose that a domain owner decides to relinquish one set of
IP addresses in favor of another and creates new A RRSets
and RRSIGs. During the period when the RRSIGs asso-
ciated with the old A RRSet are still valid, if attackers gain
control of any IP address relinquished by the domain owner,
they will be able to replay a completely valid DNSSEC re-
sponse pointing an A RR at an attack server. This attack can
be completely mitigated by domain owners not relinquish-
ing IP addresses until they are certain all RRSIGs for RRs
pointing to these IP addresses have expired.

5.2 DNSSEC Guarantees from Model Checking
Completion

After removing the invariant that checked the integrity of
zone server addresses, the invariant that checked the in-
tegrity of the denial-of-existence expressed by NSEC3 with
opt-out, and the invariant that check the integrity of insecure
delegations, our Mury model ran to completion, exhausting
all possible network attack combinations, without violating
another invariant. The completion of execution implies that
the modified protocol, as modeled, not containing opt-out
NSEC3 or insecure delegations, contains no further vulner-
abilities short of cryptographic compromise. This means
that, when acquired by the resolver using a full chain of se-
cure delegations, signed existent DNSSEC RRs and signed

non-opt-out NSEC3 denials-of-existence are safe against
forgery by the network attacker described in our model,
which is incapable of key compromise.

5.3 Faulty Resolver Logic Vulnerabilities

DNSSEC security depends on correct implementation of
appropriate resolver logic. Section 5.1 described DNSSEC
security violations found even with correct resolver vali-
dation logic, i.e. inherent to the DNSSEC protocol. To
demonstrate the importance of resolver logic to DNSSEC
implementation security, we will discuss some common
attack paths that become exploitable vulnerabilities with
faulty resolver logic. We begin with the attack paths and
then discuss how to prevent them with correct validation
logic.

Attackers may arbitrarily modify headers and add or sub-
tract individual RRs from DNSSEC replies, opening up
downgrade paths to DNS. For instance, an attacker that
strips all RRSIG, DS, and NSEC3 RRs from a DNSSEC
response packet will create a valid DNS packet. Also, an
attacker may modify unsigned packet contents to introduce
inconsistent information into reply packets. For example,
attackers may set the AD (Authenticated Data) in a reply
packet containing a forged RR with an invalid RRSIG, in
an attempt to cause the resolver to accept the indicated suc-
cess of remote validation and forgo its own validation. Fi-
nally, as previously stated, attackers may modify unsigned
RRs contained in the reply packet, such as the glue A
and NS RRs contained within the “additional” packet sec-
tion.

5.3.1 Eliminating Vulnerabilities By Attested Cache
Resolver Design

The resolver must thus be scrupulously designed to min-
imize susceptibility to attack by only trusting the validly
signed content of reply packets. A resolver must not ac-
cept valid DNS responses where DNSSEC responses are
expected, to eliminate downgrade attacks. Resolver logic
must also not trust header fields. As a consequence, each
resolver must perform its own verification of RR data in
reply packets and not rely on upstream servers to indicate
validation and query success/failure.

In effect, to answer user RR queries for a particular zone,
the local recursive resolver must build an attested cache
containing both RRs authoritative to that zone and a full at-
testation chain from the trust anchor to the zone, using only
validly signed RRs contained in reply packets. Glue records
may only be used as guides for which DNSSEC server to

query next in a delegation and cannot be accepted into the
attested cache. (The resolver logic we outlined in Section
4.3.2 is an instance of this attested cache implementation
style.)

The importance of properly treating the unsigned records
in a reply was anecdotally demonstrated during the time
that this paper was being written, as a vulnerability was
discovered where BIND incorrectly added unsigned RRs
from the “additional” sections of DNSSEC responses to its
cache [10]. The vulnerability was deemed a severe risk for
DNSSEC users of BIND.

Resolvers must only securely answer the user’s query when
all of the information necessary to answer queried RR
with integrity guarantee is contained within this attested
cache, for example when a matching RR with valid RRSIG
along with its full attestation chain exists or when the non-
existence of the queried RR can be proven using NSEC3
RRs with valid RRSIGs and full attestation chains. Secure
answers provided strictly from resolver attested cache are
guaranteed against forgery, short of attacker compromise of
zone keys, and end users may trust the integrity of resolver
answers indicating such authentication via the AD bit, if re-
ceived over a secure channel.

However, we again note that even a completely correct re-
solver cannot excise the inh