
Program Analysis for Security

John Mitchell

CS 155 Spring 2016

Acknowledgments: Lecture slides are from the Computer Security course
taught by Dan Boneh at Stanford University. When slides are obtained from
other sources, a a reference will be noted on the bottom of that slide. A full
list of references is provided on the last slide.

MOTIVATION FOR  
PROGRAM ANALYZERS

Software bugs are serious problems

Thanks: Isil and Thomas Dillig

[PopPhoto.com Feb 10]

Facebook missed a  
single security check…

App stores

 How can you tell
whether
 software you

– Develop
– Buy

 is safe to install and
run?

Entry

1

2 3

4

Software

Exit

Behaviors

Entry

1

2

4

Exit

1 2 41 2 4

1 3 4

1 2 4 1 2 4

1 2 3 1 2 4 1 3 4

1 2 4 1 2 3 1 3 4

1 2 3 1 2 3 1 3 4

1 2 4 1 2 4 1 3 4

. .

.

1 2 4 1 3 4

Manual testing
only examines
small subset of
behaviors

7

Program Analyzers

Code
Report Type Line

1 mem leak 324

2 buffer oflow 4,353,245

3 sql injection 23,212

4 stack oflow 86,923

5 dang ptr 8,491

… … …

10,502 info leak 10,921

Program
Analyzer

Spec

Cost of Fixing a Defect

Credit: Andy Chou, Coverity

Cost of security or data privacy
vulnerability?

Two options

• Static analysis
– Inspect code or run automated method to

find errors or gain confidence about their
absence

• Dynamic analysis
– Run code, possibly under instrumented

conditions, to see if there are likely problems

Static vs Dynamic Analysis

• Static
– Consider all possible inputs (in summary

form)
– Find bugs and vulnerabilities
– Can prove absence of bugs, in some cases

• Dynamic
– Need to choose sample test input
– Can find bugs/vulnerabilities
– Cannot prove their absence

Static Analysis

• Long research history
• Decade of commercial products

– FindBugs, Fortify, Coverity, MS tools, …

• Main topic for this lecture

Dynamic analysis

• Instrument code for testing
– Heap memory: Purify
– Perl tainting (information flow)
– Java race condition checking

• Black-box testing
– Fuzzing and penetration testing
– Black-box web application security analysis

• Will come back to later in course

14

Summary

• Program analyzers
– Find problems in code before it is shipped to

customers or before you install and run it

• Static analysis
– Analyze code to determine behavior on all

inputs

• Dynamic analysis
– Choose some sample inputs and run code to

see what happens

STATIC ANALYSIS

Static Analysis: Outline

• General discussion of static analysis tools
– Goals and limitations
– Approach based on abstract states

• More about one specific approach
– Property checkers from Engler et al., Coverity
– Sample security checkers results

• Static analysis for of Android apps

Slides from: S. Bugrahe, A. Chou, I&T Dillig, D. Engler, J. Franklin, A. Aiken, …

Static analysis goals

• Bug finding
– Identify code that the programmer wishes to

modify or improve

• Correctness
– Verify the absence of certain classes of errors

Sound Program Analyzer

Code
Report Type Line

1 mem leak 324

2 buffer oflow 4,353,245

3 sql injection 23,212

4 stack oflow 86,923

5 dang ptr 8,491

… … …

10,502 info leak 10,921

Program
Analyzer

Spec

Sound: may
report many
warnings

May emit
false alarms

Analyze large
code bases

false alarm

false alarm

Software

. . .

Behaviors

Over-approximation of
Behaviors

False
Alarm

Reported
Error

approximation is too coarse…
…yields too many false alarms

Modules

Outline

• General discussion of tools
– Goals and limitations
– Approach based on abstract states

• More about one specific approach
– Property checkers from Engler et al., Coverity
– Sample security-related results

• Static analysis for Android malware
– …

Slides from: S. Bugrahe, A. Chou, I&T Dillig, D. Engler, J. Franklin, A. Aiken, …

entry

X ! 0

Is Y = 0 ?

X ! X + 1 X ! X - 1

Is Y = 0 ?

Is X < 0 ? exit

crash

yes

noyes

no

yes no

Does this program ever crash?

entry

X ! 0

Is Y = 0 ?

X ! X + 1 X ! X - 1

Is Y = 0 ?

Is X < 0 ? exit

crash

yes

noyes

no

yes no

infeasible path!
… program will never crash

Does this program ever crash?

entry

X ! 0

Is Y = 0 ?

X ! X + 1 X ! X - 1

Is Y = 0 ?

Is X < 0 ? exit

crash

yes

noyes

no

yes no

X = 0

X = 0

X = 1

X = 1

X = 1

X = 1

X = 1

X = 2

X = 2

X = 2

X = 2

X = 2

X = 3

X = 3

X = 3

X = 3

non-termination!
… therefore, need to approximate

Try analyzing without approximating…

X ! X + 1 f

din

dout

dout = f(din)

X = 0

X = 1

dataflow
elements

transfer function
dataflow equation

X ! X + 1 f1

din1

dout1 = f1(din1)

Is Y = 0 ? f2

dout2

dout1

din2 din2 = dout1

dout2 = f2(din2)

X = 0

X = 1

X = 1

X = 1

entry

X ! 0

Is Y = 0 ?

X ! X + 1 X ! X - 1

Is Y = 0 ?

Is X < 0 ? exit

crash

yes

noyes

no

yes no

X = 0

X = 0

X = pos
X = T

X = neg

X = 0

X = T X = T

X = T

Try analyzing with “signs” approximation…

terminates...
… but reports false alarm
… therefore, need more precision

lost
precision

X = T

X = T

X = pos X = 0 X = neg

X = ⊥

X ≠ neg X ≠ pos
true

Y = 0 Y ≠ 0

false

X = T

X = pos X = 0 X = neg

X = ⊥

signs lattice Boolean formula latticerefined signs lattice

entry

X ! 0

Is Y = 0 ?

X ! X + 1 X ! X - 1

Is Y = 0 ?

Is X < 0 ? exit

crash

yes

noyes

no

yes no

X = 0true

X = 0Y=0

X = posY=0 X = neg Y≠0

X = posY=0
X = negY≠0

X = posY=0

X = pos Y=0

X = neg Y≠0

X = 0 Y≠0

Try analyzing with “path-sensitive signs” approximation…

terminates...
… no false alarm
… soundly proved never crashes

no precision loss

refinement

Outline

• General discussion of tools
– Goals and limitations
– Approach based on abstract states

• More about one specific approach
– Property checkers from Engler et al., Coverity
– Sample security-related results

• Static analysis for Android malware
– …

Slides from: S. Bugrahe, A. Chou, I&T Dillig, D. Engler, J. Franklin, A. Aiken, …

Unsound Program Analyzer

Code
Report Type Line

1 mem leak 324

2 buffer oflow 4,353,245

3 sql injection 23,212

4 stack oflow 86,923

5 dang ptr 8,491

… … …

Program
Analyzer

Spec

may emit
false alarms

analyze large
code bases

false alarm

false alarm

Not sound: may
miss some bugs

Demo

• Coverity video: http://youtu.be/_Vt4niZfNeA
• Observations

– Code analysis integrated into development workflow
– Program context important: analysis involves

sequence of function calls, surrounding statements
– This is a sales video: no discussion of false alarms

http://youtu.be/_Vt4niZfNeA

Outline

• General discussion of tools
– Goals and limitations
– Approach based on abstract states

• More about one specific approach
– Property checkers from Engler et al., Coverity
– Sample security-related results

• Static analysis for Android malware
– …

Slides from: S. Bugrahe, A. Chou, I&T Dillig, D. Engler, J. Franklin, A. Aiken, …

Bugs to Detect

Some examples
• Crash Causing Defects
• Null pointer dereference
• Use after free
• Double free
• Array indexing errors
• Mismatched array new/delete
• Potential stack overrun
• Potential heap overrun
• Return pointers to local variables
• Logically inconsistent code

• Uninitialized variables
• Invalid use of negative values
• Passing large parameters by value
• Underallocations of dynamic data
• Memory leaks
• File handle leaks
• Network resource leaks
• Unused values
• Unhandled return codes
• Use of invalid iterators

Slide credit: Andy Chou

34

Example: Chroot protocol checker

• Goal: confine process to a “jail” on the filesystem
− chroot() changes filesystem root for a process

• Problem
− chroot() itself does not change current working directory

chroot() chdir(“/”)

open(“../file”,…)

35

Error if open before
chdir

Tainting checkers

36

Finding Local Bugs

#define SIZE 8
void set_a_b(char * a, char * b) {
char * buf[SIZE];
if (a) {

b = new char[5];
} else {

if (a && b) {
buf[SIZE] = a;
return;
} else {
delete [] b;
}
*b = ‘x’;

}
*a = *b;
}

37

char * buf[8];

if (a)

b = new char [5]; if (a && b)

buf[8] = a; delete [] b;

*b = ‘x’;

END

*a = *b;

a !a

a && b !(a && b)

Control Flow Graph

Represent logical structure of
code in graph form

38

char * buf[8];

if (a)

b = new char [5]; if (a && b)

buf[8] = a; delete [] b;

*b = ‘x’;

END

*a = *b;

a !a

a && b !(a && b)

Path Traversal

Conceptually: Analyze each path
through control graph separately

Actually Perform some checking
computation once per node;
combine paths at merge nodes

Conceptually

Actually

39

char * buf[8];

if (a)

if (a && b)

delete [] b;

*b = ‘x’;

END

*a = *b;

!a

!(a && b)

Apply Checking

Null pointers Use after free Array overrun

See how three checkers are run for this path

•
• Defined by a state diagram, with state

transitions and error states

Checker

•
• Assign initial state to each program var
• State at program point depends on state

at previous point, program actions
• Emit error if error state reached

Run Checker

40

char * buf[8];

if (a)

if (a && b)

delete [] b;

*b = ‘x’;

END

*a = *b;

!a

!(a && b)

Apply Checking

Null pointers Use after free Array overrun

“buf is 8 bytes”

41

char * buf[8];

if (a)

if (a && b)

delete [] b;

*b = ‘x’;

END

*a = *b;

!a

!(a && b)

Apply Checking

Null pointers Use after free Array overrun

“buf is 8 bytes”

“a is null”

42

char * buf[8];

if (a)

if (a && b)

delete [] b;

*b = ‘x’;

END

*a = *b;

!a

!(a && b)

Apply Checking

Null pointers Use after free Array overrun

“buf is 8 bytes”

“a is null”

Already knew
a was null

43

char * buf[8];

if (a)

if (a && b)

delete [] b;

*b = ‘x’;

END

*a = *b;

!a

!(a && b)

Apply Checking

Null pointers Use after free Array overrun

“buf is 8 bytes”

“a is null”

“b is deleted”

44

char * buf[8];

if (a)

if (a && b)

delete [] b;

*b = ‘x’;

END

*a = *b;

!a

!(a && b)

Apply Checking

Null pointers Use after free Array overrun

“buf is 8 bytes”

“a is null”

“b is deleted”

“b dereferenced!”

45

False Positives

• What is a bug? Something the user will fix.

• Many sources of false positives
− False paths
− Idioms
− Execution environment assumptions
− Killpaths
− Conditional compilation
− “third party code”
− Analysis imprecision
− …

46

char * buf[8];

if (a)

b = new char [5]; if (a && b)

buf[8] = a; delete [] b;

*b = ‘x’;

END

*a = *b;

a !a

a && b !(a && b)

A False Path

47

char * buf[8];

if (a)

if (a && b)

buf[8] = a;

END

!a

a && b

False Path Pruning

Integer Range Disequality Branch

48

char * buf[8];

if (a)

if (a && b)

buf[8] = a;

END

!a

a && b

False Path Pruning

“a in [0,0]” “a == 0 is true”

Integer Range Disequality Branch

49

char * buf[8];

if (a)

if (a && b)

buf[8] = a;

END

!a

a && b

False Path Pruning

“a in [0,0]” “a == 0 is true”

“a != 0”

Integer Range Disequality Branch

50

char * buf[8];

if (a)

if (a && b)

buf[8] = a;

END

!a

a && b

False Path Pruning

“a in [0,0]” “a == 0 is true”

“a != 0”

Impossible

Integer Range Disequality Branch

51

Outline

• General discussion of tools
– Goals and limitations
– Approach based on abstract states

• More about one specific approach
– Property checkers from Engler et al., Coverity

• Reducing false positive using circumstantial
evidence

– Sample security-related results
• Static analysis for Android malware

– …

Slides from: S. Bugrahe, A. Chou, I&T Dillig, D. Engler, J. Franklin, A. Aiken, …

Environment Assumptions

• Should the return value of malloc() be checked?

int *p = malloc(sizeof(int));
*p = 42;

OS Kernel:
Crash machine.

File server:
Pause filesystem.

Spreadsheet:
Lose unsaved changes.

Game:
Annoy user.

Library:
?

Medical device:
malloc?!

Web application:
200ms downtime

IP Phone:
Annoy user.

53

Statistical Analysis

• Assume the code is usually right

int *p = malloc(sizeof(int));
*p = 42;

int *p = malloc(sizeof(int));
if(p) *p = 42;

int *p = malloc(sizeof(int));
*p = 42;

int *p = malloc(sizeof(int));
*p = 42;

int *p = malloc(sizeof(int));
if(p) *p = 42;

int *p = malloc(sizeof(int));
*p = 42;

int *p = malloc(sizeof(int));
if(p) *p = 42;

int *p = malloc(sizeof(int));
if(p) *p = 42;3/4

deref
1/4
deref

54

Outline

• General discussion of tools
– Goals and limitations
– Approach based on abstract states

• More about one specific approach
– Property checkers from Engler et al., Coverity
– Sample security-related results

• Static analysis for Android malware
– …

Slides from: S. Bugrahe, A. Chou, I&T Dillig, D. Engler, J. Franklin, A. Aiken, …

Application to Security Bugs

• Stanford research project
− Ken Ashcraft and Dawson Engler, Using Programmer-Written

Compiler Extensions to Catch Security Holes, IEEE Security
and Privacy 2002

− Used modified compiler to find over 100 security holes in Linux
and BSD

− http://www.stanford.edu/~engler/
• Benefit
− Capture recommended practices, known to experts, in tool

available to all

56

Sanitize integers before use

Linux: 125 errors, 24 false; BSD: 12 errors, 4 false

array[v]
while(i < v)
 …

v.clean Use(v)v.tainted

Syscall
param

Network
 packet

copyin(&v, p, len)

 any<= v <= any

memcpy(p, q, v)
copyin(p,q,v)
copyout(p,q,v)

 ERROR

Warn when unchecked integers from untrusted
sources reach trusting sinks

Example security holes

/* 2.4.9/drivers/isdn/act2000/capi.c:actcapi_dispatch */ 
isdn_ctrl cmd;  
...  
while ((skb = skb_dequeue(&card->rcvq))) {  
 msg = skb->data;  
 ...  
 memcpy(cmd.parm.setup.phone,
 msg->msg.connect_ind.addr.num,  
 msg->msg.connect_ind.addr.len - 1);

• Remote exploit, no checks

58

Example security holes

/* 2.4.5/drivers/char/drm/i810_dma.c */

if(copy_from_user(&d, arg, sizeof(arg)))
 return –EFAULT;
if(d.idx > dma->buf_count)
 return –EINVAL;
buf = dma->buflist[d.idx];
Copy_from_user(buf_priv->virtual, d.address, d.used);

• Missed lower-bound check:

59

Results for BSD and Linux

• All bugs released to implementers; most serious fixed

Gain control of system 18 15 3 3
Corrupt memory 43 17 2 2
Read arbitrary memory 19 14 7 7
Denial of service 17 5 0 0
Minor 28 1 0 0
Total 125 52 12 12

 Linux BSD
Violation Bug Fixed Bug Fixed

60

Outline

• General discussion of tools
– Goals and limitations
– Approach based on abstract states

• More about one specific approach
– Property checkers from Engler et al., Coverity
– Sample security-related results

• Static analysis for Android malware
– …

Slides from: S. Bugrahe, A. Chou, I&T Dillig, D. Engler, J. Franklin, A. Aiken, …

STAMP Admission System

Static

Dynamic

STAMP

Static Analysis
More behaviors,

fewer details

Dynamic Analysis
Fewer behaviors,

more details

Alex Aiken,
John Mitchell,
Saswat Anand,
Jason Franklin
Osbert Bastani,
Lazaro Clapp,
Patrick Mutchler,
Manolis Papadakis

Data Flow Analysis

getLoc() sendSMS()

sendInet()

Source:
Location Sink: SMS

Sink: Internet

Location SMS Location Internet

• Source-to-sink flows
o Sources: Location, Calendar, Contacts, Device ID etc.
o Sinks: Internet, SMS, Disk, etc.

Applications of Data Flow Analysis

• Vulnerability Discovery

Privacy Policy
This app collects your:
Contacts
Phone Number
Address

FB
API

Send
Internet

Source:
FB_Data Sink: Internet

Web Source:
Untrusted_Data

SQL
Stmt Sink: SQL

• Malware/Greyware Analysis
o Data flow summaries enable enterprise-specific policies

• API Misuse and Data Theft Detection

• Automatic Generation of App Privacy Policies
o Avoid liability, protect consumer privacy

Challenges

• Android is 3.4M+ lines of complex code
o Uses reflection, callbacks, native code

• Scalability: Whole system analysis impractical

• Soundness: Avoid missing flows

• Precision: Minimize false positives

STAMP Approach

• Model Android/Java
o Sources and sinks
o Data structures
o Callbacks
o 500+ models

• Whole-program analysis
o Context sensitiveSTA
M

P

Android

Models

App App

Too expensive!

OS

HW

Data We Track (Sources)

• Account data

• Audio

• Calendar

• Call log

• Camera

• Contacts

• Device Id

• Location

• Photos (Geotags)

• SD card data

• SMS

30+ types of
sensitive data

Data Destinations (Sinks)

• Internet (socket)

• SMS

• Email

• System Logs

• Webview/Browser

• File System

• Broadcast Message

10+ types of
exit points

Currently Detectable Flow Types

Unique Flow Types = Sources x Sink

396 Flow Types

Example Analysis

Contact Sync for Facebook (unofficial)

Contact Sync Permissions
Category Permission Description

Your Accounts AUTHENTICATE_ACCOUNTS Act as an account authenticator

MANAGE_ACCOUNTS Manage accounts list

USE_CREDENTIALS Use authentication credentials

Network Communication INTERNET Full Internet access

ACCESS_NETWORK_STATE View network state

Your Personal Information READ_CONTACTS Read contact data

WRITE_CONTACTS Write contact data

System Tools WRITE_SETTINGS Modify global system settings

WRITE_SYNC_SETTINGS Write sync settings (e.g. Contact sync)

READ_SYNC_SETTINGS Read whether sync is enabled

READ_SYNC_STATS Read history of syncs

Your Accounts GET_ACCOUNTS Discover known accounts

Extra/Custom WRITE_SECURE_SETTINGS Modify secure system settings

Possible Flows from Permissions

Sources Sinks

INTERNETREAD_CONTACTS

WRITE_SETTINGSREAD_SYNC_SETTINGS

WRITE_CONTACTSREAD_SYNC_STATS

GET_ACCOUNTS WRITE_SECURE_SETTINGS

WRITE_SETTINGSINTERNET

Expected Flows

Sources Sinks

INTERNETREAD_CONTACTS

WRITE_SETTINGSREAD_SYNC_SETTINGS

WRITE_CONTACTSREAD_SYNC_STATS

GET_ACCOUNTS WRITE_SECURE_SETTINGS

WRITE_SETTINGSINTERNET

Observed Flows

FB
API

Write
Contacts

Send
Internet

Source:
FB_Data

Sink:
Contact_Book

Sink: InternetRead
Contacts

Source:
Contacts

Example Study: Mobile Web Apps

• Goal
Identify security concerns and vulnerabilities
specific to mobile apps that access the web using
an embedded browser

• Technical summary
• WebView object renders web content
• methods loadUrl, loadData, loadDataWithBaseUrl, postUrl
• addJavascriptInterface(obj, name) allows JavaScript code

in the web content to call Java object method name.foo()

Sample results
Analyze 998,286 free web apps from June 2014

Summary

• Static vs dynamic analyzers

• General properties of static analyzers
– Fundamental limitations
– Basic method based on abstract states

• More details on one specific method
– Property checkers from Engler et al., Coverity
– Sample security-related results

• Static analysis for Android malware
– STAMP method, sample studies

Slides from: S. Bugrahe, A. Chou, I&T Dillig, D. Engler, J. Franklin, A. Aiken, …

