
1

The Hacker Strategy

Security Research

Dave Aitel
dave@immunityinc.com

mailto:dave@immunityinc.com

2

Who am I?
● CTO, Immunity Inc.
● History:

– NSA->@stake -> Immunity

● Responsible for new product
development
– Vulnerability Sharing Club
– Immunity CANVAS
– Immunity Debugger
– SILICA

3

Hackers use People, Processes and
Technology to obtain a singular

goal: Information dominance

4

Take a sample product X and
attack it remotely

Obtain Product Protocol Analysis

FuzzingManual Network
Vulnerability Analysis

Source/Binary
Analysis

Exploit Development

Open Source
ResearchPrivate Source

Research

5

The unseen step: Picking your
targets

Target: Bob's
Network Server

Carl's Backup Dan's Software
Management

Steve's ISAPI
 Filter Yusef's AntiVirus

6

Third party software is often
the problem

Target Software

Platform API's
(Win32/Posix/etc)

Etc

Zlib
Crystal
Reports

OpenLDAP libcurl

SSLeay

This you
think you

understand

This you may not
even know is being

used

7

Obtaining hardware and
software is the hardest step

8

Protocol Analysis is often quite easy

9

Hackers always create custom client
protocol libraries

Custom Client

Fuzzers
Manual Analysis

Exploits

10

Manual Security Analysis

Other

Authentication

Crypto

Overflows

Backdoors

Recon

11

Basic Binary Analysis For Fun
and Profit

● Look at all DLL's loaded by the application
and all exposed API's and text strings

● Trace from all incoming packets to get a feel
for the structure of the application

● Look for dangerous code patterns

● Conduct code coverage review

Not The Ideal
Coding Style

13

What you can find in 1 hour
of binary analysis

● Basic data flow from the network
● Coding style (the use of bad API's, f.e.)
● Simple backdoors (“DEBUG” string in

command list, etc)
● Potential vulnerabilities

14

One Week of Binary Analysis
should get you at least one good

vulnerability
● But will probably get you several exploitable

bugs, and potentially an exploit as well

● Real binary analysis is almost never just
static analysis

– Which is why automated static analyzers
are at a severe disadvantage from a
human

● This data will feed quite well into your fuzzer

15

One month of binary analysis
will get you a vulnerability no

one else will ever find
● Defeating the automated systems such as

Prefix/Prefast, the SDL and SafeSEH+NX
+ASDL may require this amount of effort

● A lot of what you will do is build custom
binary analysis scripts and protocol libraries

● Vulnerabilities no one else will ever have are
extremely useful

16

What binary analysis is and is
not

● In its most advanced form, you
transform the program into another
kind of program or equation and
“solve” it to find vulnerabilities

● Most people scan for code patterns or
have code scanning for code patterns

● Finding some bug classes is insanely
hard this way

17

Source Code Analysis

● Not as hard as you think from a
hacker's perspective
– Auditing entire Solaris source tree for one

bug can be done in a morning
– Doing intense study of some part of the

Linux kernel can take several weeks

● http://taossa.com/

http://taossa.com/

18

Hackers do have the source
code

● Maintaining global information
dominance means that source code to
almost every product is available to a
skilled hacker group

● This puts them at an immediate
advantage over security teams

● They also have a tendency to work at
software vendors

19

Automated source code
analyzers don't solve the

problem
● High false positive rate

● No ability to read and understand comments

– Can't prioritize
– Can't follow unstated data flow

● Only find the simple bug-classes, such as
strcpy()

● Microsoft has the world's best source code
analyzers – it helps, but it's no solution

20

On Tools

Tools are very useful, we build a lot of tools,
and use them all the time here at Microsoft.
Some of those tools have found their way into
our SDKs and Visual Studio so our customers
can use them too. But I would never claim that
these tools make code "free of security
defects." - Michael Howard (Microsoft SWI)

21

The defensive side

● Manual analysis
– Burns out programmers quickly

● Secure Software Design Programs
such as Microsoft's threat modeling
work to some degree

● Moving to a more secure platform
provides the largest benefit

22

How to build a fuzzer that
finds bugs you care about

23

Your fuzzer and another
hacker's fuzzer will not find

all the same bugs!

Hacker's bugs Your bugs

The Venn
Diagram
usually

looks like
this

24

What kind of fuzzer to write?

● I prefer block based
– Use Python (everyone does)
– Sulley is a good option
– SPIKE 3.0
– Peach
– etc

25

Fuzzing is a many year
process

● For each vulnerability that comes out, make
sure your fuzzer can find it, then abstract it
a bit more

● There's two basic things you need to add

– Transformations
● A->AAAAAAA...AAAAAA

– Syntax patterns
● GET /<fuzz string> HTTP/1.0\r\n\r\n

26

Myth: Fuzzing only catches
low hanging fruit

● Fuzzing can catch many vulnerabilities
that are hard to see from the naked
eye or from static analysis
– DTLogin Arbitrary Free, is one example

● Off by ones
● Race conditions

27

Looking at emergent behaviours
in the hacker community from

small to large

28

Things you can't see that no
doubt exist

● “Vendor Management” Teams
● X.25 Attack Research was very popular

in the late 90's and remains so to this
day

● SCADA is certainly on everyone's radar

29

Hackers maintain a pipeline
of things:

● What protocols are most buggy that no
one else is looking at

● Bug classes that are hard to scan for
by automated technologies

● Bugs themselves
● Exploitation techniques

30

0days are a hacker obsession

● An 0day is a vulnerability that is not publicly
known

– IDS/IPS cannot find them
– Can your forensics team figure them out?

● Modern 0days often combine multiple attack
vectors and vulnerabilities into one exploit

– Many of these are used only once on high
value targets

31

Real-world 0day Statistics
As of June 16 2007:

Average 0day lifetime: 348 days

Shortest life: 99 days

Longest life: 1080 (3 years)

32

The Market Always Wins:
0day is for sale. Deal with it.

● Tippingpoint
● Eeye
● Gleg.net
● Dsquare
● Idefense
● Digital

Armaments

● WabiSabiLabi
● Breakingpoint
● etc

33

Classes of Vulnerabilities

● The classic example is the format
string bug
– printf(user_supplied_string,args);
– Easy to scan for with automatic tools or

compiler options
– Commonly available in code in 2000
– Now an extinct species

34

Vulnerability Classes you
know about

● Stack/Heap overflows
● Format Strings
● Race conditions
● Uninitialized variable problems
● Integer overflows and indexing

problems

35

Vulnerability classes you
don't know about

● Race conditions
● Sophisticated timing attacks
● Extremely complex multi-vector

overflows
● Kernel attacks
● Lots of vulnerabilities in hardware

you've never seen attacked publicly

36

Now: Defeating Patching,
IDS, Anti-Virus, etc.

● Be faster to attack than the defender
can deploy patches
– Attack frameworks, better debuggers

● Attack with vulnerabilities that are
unknown (0days)
– New bug classes, better debuggers, new

exploit techniques

37

The Future

● Look for more embedded system
attacks

● Look for more interesting bug classes
● Vista/Windows 7 – not the answer
● Hacker Teamwork

38

Thank you for your time

Contact us at:

admin@immunityinc.com

Security Research Team

