The Hacker Strateqgy

Dave Aitel
dave@immunityinc.com

IMMUNITY ... Security Research

mailto:dave@immunityinc.com

« CTO, Immunity Inc.

 History:
- NSA->@stake -> Immunity

« Responsible for new product
development

- Vulnerability Sharing Club

- Immunity CANVAS

- Immunity Debugger

- SILICA)

Hackers use People, Processes an
Technology to obtain a singular
goal: Information dominance

—

Take a sample roduct and
attack it remotely

Obtain Product » Protocol Analysis
v v v
Manual Network Fuzzing Source/Binary
Vulnerability Analysis Analysis
H Open Source

Research

|4

Private Source ,
Research Exploit Development

The unseen ste: Picking your

targets

Target: Bob's
Network Server

A/

Steve's ISAPI
Filter

Carl's Backup

-«

\

Yusef's AntiVirus

Dan's Software
Management

Third party software is often
the problem

This you
think you
understand
Target Software
. Crystal V
SSLeay Zlib Reports
OpenLDAP libcurl Etc Platform API's
(Win32/Posix/etc)
This you may not
even know is being

used

Obtaining hardware and
software is the hardest step

= Subject: [Full-disclosure] scada/plc gear
From: gmaggro <gmaggro@rogers.com>
Sender: full-disclosure-bounces@lists.grok.org.
Date: 01/05/08 14:01
To: Full Disclosure

0K, hawving done some digging a decent little chunk of i1ndustrial
automation gear has started coming my way; 1 of 6 pieces. All totaled
roughly wnder %1000, Small standalone stuff for now; the shipping on
populated PLC chassis like SLG-500 stuff is problematic.

If people have specific technical questions, want a script run agains
piece of gear or a custom protocol capture done I will entertain such
requests. I am also willing to open the cases and pick up the solderi
iron, attempt rom ficmware dumps, etc.

Are there any particular tests or tools someons would like me to worlg
into my routine right from the stact?

Hardware piece #1 1s a Kohler Power Systems modbus/ethernet converter,
pr# GM40165.

Protocol Analysis is often quite easy

pés . 004TT10E

0=004771de: POFP EDI

EDI=00000005
Stack [O00COFCEO]=00000005

0=004771df : MOV EAX EST

EAx=00000024 (Fackst Length)
ESI=00000024 (Packet Lengthl

0=004771=1: POFP ESI

ESI=00000024 (Packest Lengthl

0=0047Tle?: FOF EBF

EBF=00000000
Stack [O00COFCEBS]=00DCFFL10 COODDFFL0

0=004771l=3: FOFP EBX

EBx=00CZ03E0
Stack [00CCFDBC]=00CZ0SE0 COOCEDSE0)

0=004771=4: ADD ESF,10C

ESP=000DFCCO

0=0047Tlea: REETH OC

Feturn to 004757598 (pds 00475798

ps 00475 TSR

(=00475T0k6 -

TEST Efx EA=
EAX=00000034 (Facket Lengthl

Hackers always create custom client
protocol libraries

Custom Client

Exploits Fuzzers
Manual Analysis

Manual Security Analysis

Recon

Authentication Overflows

Other

Crypto Backdoors

10

—

Basic Binary Anlysis For Fun
and Profit

Look at all DLL's loaded by the application
and all exposed API's and text strings

« Trace from all incoming packets to get a feel
for the structure of the application

« Look for dangerous code patterns

 Conduct code coverage review

11

. Immunity Debugger - NIPRINT3.EXE =18 x|
File Wiew Debug Plugins Immlib Options Window Help Jobs

SHUE WX I M HH A L emtwhcP kb2 . s 2 e

Baze Si T Hanh ile St -

BEEEEEEE ; RENTITONTYNF r

S?EESS Fuund mtermudular calls

FEESE Address Disassembly Destination

cenreel noes1737 DWORD PTR DS:[<&USER32.wsprintfA>]|USER32.usprintfA

74F0oc) pEOs17AF DWORD PTR DS:[<&USER32.usprintfA>]|USER32.usprintfA

rEezecl GABB18EY EDI USER3Z .wsprintfn
FEBZEE
FEBESED

;ggﬁg 2a881D36 DWORD PTR DS:[<&USER32 .wsprintfa>]| USER32 .wsprintfh

zecaaal DOOB1E 04 DWORD PTR DS:[<&USER32.wsprintfa>]|USER32.uwsprintfA
fEao] AABS1EEF DWORD PTR DS:[<&USER32.wsprintfa>]|USER32.usprintfA
7rRSEE) GOBS1FB7 DWORD PTR DS:[<&USER32Z.wsprintfA>]|USER32.uwsprintfA

;;Eﬁg g@ae828cY DWORD PTR DS:[<&USER32.uwsprintfa>]|USER3Z.uwsprintfaA
7rroaaf BOO82EFC DWORD FTR DS [<&USEH32 w5pr1ntFH>] USEHEE w5pr1ntFH

TEEEEE g =
FEZF BT Hed SO TS Tl | SHELL YT : F?5 [T PUSH DUNAD PTR 55 [Egp+g] rE TP

SEE a0pa| boPEanan| Feorhas| LeriE o2 IFF75 24 PUSH DWORD PTR SS:[EBP+2k] <%s>
i3 BLOOOFAA PUSH HiprSetu.B8008F 08BY Format = "%s\y%s™
2] PUSH EAX s
F15 ZCBSAF 88 DWORD PTR DS:[<&USER3Z.wsprintfa’> wsprintfn
B3CL 18 ADD ESP,.18
837D BC @@ CHP DHDHD PTR 53: [EBP:gq_———”//
Fy 28 SHORT HlprSE z ot
BE35 BCBABFA0 MDU ESI " ! [<&KERHEL32 .1strcal KERHEL3Z .lstrcath
BD8S BBFFFFFE P PTR 53:[EBP-184]
b3 B OAL-# irSetu.B00F BBB A FStringToAdd = "\
N F ConcatString
E3I =1strcath

PUSH DWORD PTR S5:[EBP+C] rStringToAdd
il85 BAFFFFFF LEA EAX,DWORD PTR S5:[EBP-188]
g PUSH EAX ConcatString
i Db E3ZI ~1strcath
g L% B8 LEA EAX,DWORD PTR SS:[EBP+8]
2] PUSH EAX rpHandle
e 10800200 PUSH 28619 Access = KEY_ READ
BD8S @BFFFFFF LEA EAX,DYORD PTHR S5:[EBP-1880]
A 08 PUSH @ Reserved = @
3] PUSH EAX Subkey
F7% 28 PUSH DWORD PTR SS5:[EBP+2@] hKey
F15 Z4ACAF OO DWORD PTR DS:-[<&ADUAPI32 _RegOpenker LRegOpenKeyE=A
LA TEST EAX,EAX

lical procedures

CWIMN, #;ilmmunit'f Deb... EHLIE} £ &)

—

What you can find in 1 hour
of binary analysis

« Basic data flow from the network
* Coding style (the use of bad API's, f.e.)

» Simple backdoors (“DEBUG” string in
command list, etc)

« Potential vulnerabilities

13

One Week of Binary Analysis
should get you at least one good
vulnerability
« But will probably get you several exploitable

bugs, and potentially an exploit as well

 Real binary analysis is almost never just
static analysis

- Which is why automated static analyzers
are at a severe disadvantage from a
human

« This data will feed quite well into your fuzzer

14

OLU'R

One month of o' analysis
will get you a vulnerability no
one else will ever find

« Defeating the automated systems such as
Prefix/Prefast, the SDL and SafeSEH+NX

+ASDL may require this amount of effort

« A lot of what you will do is build custom
binary analysis scripts and protocol libraries

« Vulnerabilities no one else will ever have are
extremely useful

15

—

What binary anlysis is and is
not

 In its most advanced form, you
transform the program into another
kind of program or equation and
“solve” it to find vulnerabilities

« Most people scan for code patterns or
have code scanning for code patterns

 Finding some bug classes is insanely
hard this way 16

Source Code Analysis

 Not as hard as you think from a
hacker's perspective

- Auditing entire Solaris source tree for one
bug can be done in a morning

- Doing intense study of some part of the
Linux kernel can take several weeks

e http://taossa.com/

17

http://taossa.com/

—

Hackers do hae the sorce
code

 Maintaining global information
dominance means that source code to
almost every product is available to a
skilled hacker group

« This puts them at an immediate
advantage over security teams

 They also have a tendency to work at
software vendors 18

.

Automated SOUTCe COa
analyzers don't solve the
problem

High false positive rate

No ability to read and understand comments
- Can't prioritize

- Can't follow unstated data flow

Only find the simple bug-classes, such as
strcpy()

Microsoft has the world's best source code
analyzers - it helps, but it's no solution 19

On Tools

Tools are very useful, we build a lot of tools,
and use them all the time here at Microsoft.
Some of those tools have found their way into
our SDKs and Visual Studio so our customers
can use them too. But I would never claim that
these tools make code "free of security
defects." - Michael Howard (Microsoft SWI)

20

The defensive side

 Manual analysis
- Burns out programmers quickly

* Secure Software Design Programs
such as Microsoft's threat modeling
work to some degree

« Moving to a more secure platform

provides the largest benefit
21

How to build a fuzzer that
finds bugs you care about

.

22

K s OWI N

Your fuzzer and anothe
hacker's tuzzer will not find
all the same bugs!

Diagram
usually

(f he Venn'

looks like

23

What kind of fuzzer to write?

I prefer block based
- Use Python (everyone does)
- Sulley is a good option
- SPIKE 3.0
- Peach
- etc

24

Fuzzing 1s a many year
process

 For each vulnerability that comes out, make
sure your fuzzer can find it, then abstract it
a bit more

« There's two basic things you need to add

- Transtformations
« A->AAAAAAA... AAAAAA
- Syntax patterns
 GET /<fuzz string> HTTP/1.0\r\n\r\n

25

Myth: Fuzzingnly catches
low hanging fruit

 Fuzzing can catch many vulnerabilities
that are hard to see tfrom the naked
eye or from static analysis

- DTLogin Arbitrary Free, is one example

« Off by ones
« Race conditions

26

% Iil III|

Looking at emergent behaviours
in the hacker community from
small to large

UGA1491001

27

Things you can't see that no
doubt exist

* “Vendor Management” Teams

« X.25 Attack Research was very popular
in the late 90's and remains so to this
day

« SCADA is certainly on everyone's radar

28

Hackers maintain a pipeline
of things:

 What protocols are most buggy that no
one else is looking at

* Bug classes that are hard to scan for
by automated technologies

 Bugs themselves
« Exploitation techniques

29

Odays are a hacker obsession

 An Oday is a vulnerability that is not publicly
known

- IDS/IPS cannot find them
- Can your forensics team figure them out?

« Modern Odays often combine multiple attack
vectors and vulnerabilities into one exploit

- Many of these are used only once on high

value targets .

As of June 16 2007:

Real-world Oday Statistics
Average Oday lifetime: 348 days

Shortest life: 99 days

Longest life: 1080 (3 years)

31

The Market Ways Wins:
Oday is for sale. Deal with it.

» Tippingpoint « WabiSabiLabi
» Eeye * Breakingpoint
* Gleg.net » etc

 Dsquare

« Idefense

e Digital

Armaments 32

Classes of Vulnerabilities

« The classic example is the format
string bug
- printf(user supplied string,args);

- Easy to scan for with automatic tools or
compiler options

- Commonly available in code in 2000
- Now an extinct species

33

—

Vulnerability Classes ou
know about

« Stack/Heap overflows
 Format Strings

 Race conditions

« Uninitialized variable problems

» Integer overtlows and indexing
problems

34

—

Vulnerability classes ou
don't know about

« Race conditions
» Sophisticated timing attacks

« Extremely complex multi-vector
overtlows

« Kernel attacks

e Lots of vulnerabilities in hardware
you've never seen attacked publicly

35

IDS, Anti-Virus, etc.

« Be faster to attack than the defender
can deploy patches

- Attack frameworks, better debuggers

 Attack with vulnerabilities that are
unknown (Odays)

- New bug classes, better debuggers, new
exploit techniques

36

The Fture

* Look for more embedded system
attacks

* L.ook for more interesting bug classes
e Vista/Windows 7 — not the answer
« Hacker Teamwork

37

Thank you for your time

Contact us at:
admin@immunityinc.com

IMMUNITY ... Security Research Team
38

