
Mobile Platform  
Security Models   

John Mitchell

CS 155 Spring 2016

Acknowledgments: Lecture slides are from the Computer Security course 
thought by Dan Boneh and John Mitchell at Stanford University. When 
slides are obtained from other sources, a  a reference will be noted on the 
bottom of that slide. A full list of references is provided on the last slide.



2

Outline

Introduction 
■ Platforms 
■ App market 
■ Threats 

Android security model  
Apple iOS security model 
Windows 7, 8 Mobile security model



3

Change takes time

Apple Newton, 1987

Palm Pilot, 1997

iPhone, 2007



4

Global smartphone market share



5



6

US Mobile App Traffic

http://www.ironpaper.com/webintel/articles/web-design-statistics-2015/



7

Zillions of  apps



8

App Marketplace 

App review before distribution 
■ iOS: Apple manual and automated vetting 
■ Android  

⬥Easier to get app placed on market 
⬥Transparent automated scanning, removal via Bouncer 

App isolation and protection 
■ Sandboxing and restricted permission 
■ Android 

⬥Permission model 
⬥Defense against circumvention 

 



9

Threats to mobile applications

Privacy 
■ Data leakage, identifier leakage, third-party tags 

and libraries, location privacy 

Security 
■ Phishing, malware & drive-bys, malicious intents on 

Android, Ikee/Zitmo and other mobile malware



10

OWASP Mobile Top Ten

M1: Improper Platform Usage 
M2: Insecure Data 
M3: Insecure Communication 
M4: Insecure Authentication 
M5: Insufficient Cryptography 
M6: Insecure Authorization 
M7: Client Code Quality Issues 
M8: Code Tampering 
M9: Reverse Engineering 
M10: Extraneous Functionality

https://www.owasp.org/index.php/Projects/OWASP_Mobile_Security_Project_-2015_Scratchpad



11

Mobile malware examples

DroidDream (Android) 
■ Over 58 apps uploaded to Google app market 
■ Conducts data theft; send credentials to attackers 

Ikee (iOS) 
■ Worm capabilities (targeted default ssh pwd) 
■ Worked only on jailbroken phones with ssh installed  

Zitmo (Symbian,BlackBerry,Windows,Android) 
■ Propagates via SMS; claims to install a “security certificate” 
■ Captures info from SMS; aimed at defeating 2-factor auth 
■ Works with Zeus botnet; timed with user PC infection



12

Sample FTC concerns

FTC To Study Mobile Device Industry’s Security Update 
Practices (May 9, 2016) 
Federal Court Finds Amazon Liable for Billing Parents for 
Children’s Unauthorized In-App Charges (April 27, 2016) 
Tech Company Settles FTC Charges It Unfairly Installed Apps on 
Android Mobile Devices Without Users’ Permission (February 5, 
2016) 
Defendants in Massive Spam Text Message, Robocalling and 
Mobile Cramming Scheme to Pay $10 Million to Settle FTC 
Charges (October 22, 2014) 
Snapchat Settles FTC Charges That Promises of Disappearing 
Messages Were False (May 8, 2014)

https://www.ftc.gov/news-events/media-resources/mobile-technology

https://www.ftc.gov/news-events/press-releases/2016/05/ftc-study-mobile-device-industrys-security-update-practices
https://www.ftc.gov/news-events/press-releases/2016/05/ftc-study-mobile-device-industrys-security-update-practices
https://www.ftc.gov/news-events/press-releases/2016/04/federal-court-finds-amazon-liable-billing-parents-childrens
https://www.ftc.gov/news-events/press-releases/2016/04/federal-court-finds-amazon-liable-billing-parents-childrens
https://www.ftc.gov/news-events/press-releases/2016/02/tech-company-settles-ftc-charges-it-unfairly-installed-apps
https://www.ftc.gov/news-events/press-releases/2016/02/tech-company-settles-ftc-charges-it-unfairly-installed-apps
https://www.ftc.gov/news-events/press-releases/2014/10/defendants-massive-spam-text-message-robocalling-mobile-cramming
https://www.ftc.gov/news-events/press-releases/2014/10/defendants-massive-spam-text-message-robocalling-mobile-cramming
https://www.ftc.gov/news-events/press-releases/2014/10/defendants-massive-spam-text-message-robocalling-mobile-cramming
https://www.ftc.gov/news-events/press-releases/2014/10/defendants-massive-spam-text-message-robocalling-mobile-cramming
https://www.ftc.gov/news-events/press-releases/2014/10/defendants-massive-spam-text-message-robocalling-mobile-cramming
https://www.ftc.gov/news-events/press-releases/2014/05/snapchat-settles-ftc-charges-promises-disappearing-messages-were
https://www.ftc.gov/news-events/press-releases/2014/05/snapchat-settles-ftc-charges-promises-disappearing-messages-were


13

Outline

Introduction 
■ Platforms 
■ App market 
■ Threats 

Android security model  
Apple iOS security model 
Windows 7, 8 Mobile security model



14

Android

Platform outline: 
■ Linux kernel, browser, SQL-lite database 
■ Software for secure network communication 

⬥ Open SSL, Bouncy Castle crypto API and Java library  
■ C language infrastructure 
■ Java platform for running applications 

⬥ Dalvik bytecode, virtual machine



15



16

Android market

Self-signed apps 
App permissions granted on user installation 
Open market 
■ Bad applications may show up on market 
■ Shifts focus from remote exploit to privilege 

escalation



17

Android permissions

Example of permissions provided by Android 

■ “android.permission.INTERNET” 
■ “android.permission.READ_EXTERNAL_STORAGE 
■ “android.permission.SEND_SMS” 
■ “android.permission.BLUETOOTH”  

Also possible to define custom permissions



18

Android permission model

https://www.owasp.org/images/3/3e/Danelon_OWASP_EU_Tour_2013.pdf



19

Android permission model

https://www.owasp.org/images/3/3e/Danelon_OWASP_EU_Tour_2013.pdf



20

Application development process



21

Security Features

Isolation 
■ Multi-user Linux operating system  
■ Each application normally runs as a different user 
Communication between applications 
■ May share same Linux user ID 

⬥ Access files from each other 
⬥ May share same Linux process and Dalvik VM 

■ Communicate through application framework 
⬥ “Intents,” based on Binder, discussed in a few slides 

Battery life 
■ Developers must conserve power 
■ Applications store state so they can be stopped (to save 

power) and restarted – helps with DoS



22

Application sandbox

Application sandbox 
■ Each application runs with its UID in its own Dalvik 

virtual machine 
⬥ Provides CPU protection, memory protection 
⬥ Authenticated communication protection using Unix 

domain sockets 
⬥ Only ping, zygote (spawn another process) run as root 

■ Applications announce permission requirement 
⬥ Create a whitelist model – user grants access 

■ Don’t interrupt user  – all questions asked as install time 
⬥ Inter-component communication reference monitor 

checks permissions



23

Exploit prevention

Open source: public review, no obscurity 
Goals 
■ Prevent remote attacks, privilege escalation 
■ Secure drivers, media codecs, new and custom features 
Overflow prevention 
■ ProPolice stack protection 

⬥ First on the ARM architecture 
■ Some heap overflow protections 

⬥ Chunk consolidation in DL malloc (from OpenBSD) 

ASLR  
■ Avoided in initial release due to performance concerns 
■ Later developed and contributed by Bojinov, Boneh



24

Android Intents

Message between components in same or 
different app 
Intent is a bundle of information, e.g.,   
■ action to be taken 
■ data to act on 
■ category of component to handle the intent 
■ instructions on how to launch a target activity 

Routing can be 
■ Explicit: delivered only to a specific receiver  
■ Implicit: all components that have registered to receive 

that action will get the message



25

Layers of security 
■ Each application executes as its own user identity 
■ Android middleware has reference monitor that 

mediates the establishment of inter-component 
communication (ICC) 

Source: Penn State group Android security paper



26 Source: Penn State group, Android security tutorial



27

Security issues with intents

Sender of an intent can verify that the 
recipient has a permission by specifying a 
permission with the method call 
Senders can use explicit intents to send the 

message to a single component (avoiding 
broadcasting) 
Receivers have to handle malicious intents



28

Attack: Permission redelegation

Definition: an application without a 
permission gains additional privileges through 
another application  
Example of the “confused deputy” problem 



29

Permission redelegation

https://www.owasp.org/images/3/3e/Danelon_OWASP_EU_Tour_2013.pdf



30

Permission redelegation

https://www.owasp.org/images/3/3e/Danelon_OWASP_EU_Tour_2013.pdf



31

How could this happen?

App w/ permissions exposes a public interface 
Study in 2011 
■ Examine 872 apps 
■ 320 of these (37%) have permissions and at least 

one type of public component 
■ Construct attacks using 15 vulnerabilities in 5 apps 

Reference 
■ Permission Re-Delegation: Attacks and Defenses, 

Adrienne Felt, Helen Wang, Alexander Moshchuk, 
Steven Hanna, Erika Chin, Usenix 2011



32

Example: power control widget

Default widgets provided by Android, present on all 
devices 

Can change Wi-fi, BT, GPS, Data Sync, Screen Brightness 
with only one click  
Uses Intent to communicate the event of switching 
settings 
A malicious app without permissions can send a fake 
Intent to the Power Control Widget, simulating click to 
switch settings 

https://www.owasp.org/images/3/3e/Danelon_OWASP_EU_Tour_2013.pdf



33

Vulnerable versions    (in red)

Apps with permissions need to manage security

https://www.owasp.org/images/3/3e/Danelon_OWASP_EU_Tour_2013.pdf



34

Outline

Introduction 
■ Platforms 
■ App market 
■ Threats 

Android security model  
Apple iOS security model 
Windows 7, 8 Mobile security model



35

Apple iOS

From: iOS App Programming Guide



36

Reference

         iOS Security (9.3), May 2016



37

iOS Application Development

Apps developed in Objective-C using Apple SDK 
Event-handling model based on touch events 
Foundation and UIKit frameworks provide the key services used by 
all iOS applications



38

iOS Platform

Cocoa Touch: Foundation framework, OO support for 
collections, file management, network operations; UIKit 
Media layer:  supports 2D and 3D drawing, audio, video 
Core OS and Core Services: APIs for files, network, … 
includes SQLite, POSIX threads, UNIX sockets 
Kernel: based on Mach kernel like Mac OS X 

  
     Implemented in C and Objective-C



39

Apple iOS Security

Device security 
■ Prevent unauthorized use of device 
Data security 
■ Protect data at rest; device may be 

lost or stolen 
Network security 
■ Networking protocols and encryption 

of data in transmission  
App security 
■ Secure platform foundation

https://www.apple.com/business/docs/iOS_Security_Guide.pdf



40

`

Runtime protection 
■ System resources, kernel shielded from user apps 
■ App “sandbox” prevents access to other app’s data  
■ Inter-app communication only through iOS APIs  
■ Code generation prevented 

Mandatory code signing 
■ All apps must be signed using Apple-issued certificate 

Application data protection 
■ Apps can leverage built-in hardware encryption



41

Limit app’s access to files, preferences, 
network, other resources 
Each app has own sandbox directory 
Limits consequences of attacks 
Same privileges for each app

iOS Sandbox  



42

File encryption

The content of a file is encrypted with a per-file key, which is wrapped 
with a class key and stored in a file’s metadata, which is in turn 
encrypted with the file system key.  
■ When a file is opened, its metadata is decrypted with the file system key, revealing 

the wrapped per-file key and a notation on which class protects it  
■ The per-file key is unwrapped with the class key, then supplied to the hardware AES 

engine, decrypting the file as it is read from flash memory 
The metadata of all files is encrypted with a random key. Since it’s 
stored on the device, used only for quick erased on demand.



43

“Masque Attack”

iOS app installed using enterprise/ad-hoc 
provisioning could replace genuine app 
installed through the App Store, if both 
apps have same bundle identifier 
This vulnerability existed because iOS 
didn't enforce matching certificates for 
apps with the same bundle identifier 



44

Comparison: iOS vs Android

App approval process 
■ Android apps from open app store 
■ iOS vendor-controlled store of vetted apps 

Application permissions 
■ Android permission based on install-time manifest 
■ All iOS apps have same set of “sandbox” privileges 

App programming language 
■ Android apps written in Java; no buffer overflow… 
■ iOS apps written in Objective-C



45

Comparison

iOS Android Windows

Unix x x

Windows

Open market x

Closed market x

Vendor signed x

Self-signed x

User approval of permissions x

Managed code x

Native code x



46

Comparison

iOS Android Windows

Unix x x

Windows x

Open market x

Closed market x x

Vendor signed x

Self-signed x x

User approval of permissions x 7-> 8

Managed code x x

Native code x



47

Conclusion

Overview: Platform, market, threats 
Android security model  
■ Platform security features 
■ Isolated process with separate VM 
■ Permission model 
■ App communication via intents 
Apple iOS security model 
■ App sandbox based on file isolation 
■ File encryption 
Windows Mobile security model


