
1

Unwanted Traffic: 
Denial of Service Attacks

Dan Boneh

CS 155

Acknowledgments: Lecture slides are from the Computer Security course
thought by Dan Boneh and John Mitchell at Stanford University. When
slides are obtained from other sources, a a reference will be noted on the
bottom of that slide. A full list of references is provided on the last slide.

2

What is network DoS?

Goal: take out a large site with little computing work

How: Amplification
■ Small number of packets ⇒ big effect

Two types of amplification attacks:
■ DoS bug:

⬥Design flaw allowing one machine to disrupt a
service

■ DoS flood:
⬥Command bot-net to generate flood of requests

3

DoS can happen at any layer

This lecture:

■ Sample Dos at different layers (by order):
⬥Link
⬥TCP/UDP
⬥Application

■ Generic DoS solutions
■ Network DoS solutions

Sad truth:
■ Current Internet not designed to handle DDoS attacks

4

Warm up: 802.11b DoS bugs

Radio jamming attacks: trivial, not our focus.

Protocol DoS bugs: [Bellardo, Savage, ’03]

■ NAV (Network Allocation Vector):
⬥15-bit field. Max value: 32767
⬥Any node can reserve channel for NAV seconds
⬥No one else should transmit during NAV period
⬥… but not followed by most 802.11b cards

■ De-authentication bug:
⬥Any node can send deauth packet to AP
⬥Deauth packet unauthenticated
⬥… attacker can repeatedly deauth anyone

5

Smurf amplification DoS attack

Send ping request to broadcast addr (ICMP Echo Req)
Lots of responses:
■ Every host on target network generates a ping

reply (ICMP Echo Reply) to victim

Prevention: reject external packets to broadcast address

gatewayDoS  
Source

DoS  
Target

1 ICMP Echo Req 
Src: Dos Target
Dest: brdct addr

3 ICMP Echo Reply  
Dest: Dos Target

6

Modern day example (Mar ’13)

2006: 0.58M open resolvers on Internet (Kaminsky-Shiffman)
2014: 28M open resolvers (openresolverproject.org)

 ⇒ 3/2013: DDoS attack generating 309 Gbps for 28 mins.

DNS  
Server

DoS  
Source

DoS  
Target

DNS Query  
SrcIP: Dos Target
 (60 bytes)

EDNS Reponse

(3000 bytes)

DNS Amplification attack: (×50 amplification)

7
Feb. 2014: 400 Gbps via NTP amplification (4500 NTP servers)

8

Review: IP Header format

Connectionless
■ Unreliable
■ Best effort

Version Header Length
Type of Service

Total Length
Identification

Flags

Time to Live
Protocol

Header Checksum

Source Address of Originating Host

Destination Address of Target Host

Options

Padding

IP Data

Fragment Offset

0 31

9

Review: TCP Header format

TCP:
■ Session based
■ Congestion control
■ In order delivery

Source Port Dest port
SEQ Number
ACK Number

Other stuff

U
R
G

P
S
R

A
C
K

P
S
H

S
Y
N

F
I
N

0 31

10

Review: TCP Handshake

C S

SYN:

SYN/ACK:

ACK:

Listening

Store SNC , SNS

Wait

Established

SNC⟵randC
ANC⟵0

SNS⟵randS
ANS⟵SNC

SN⟵SNC
AN⟵SNS

11

TCP SYN Flood I: low rate (DoS bug)

C

SYNC1

SYNC2

SYNC3

SYNC4

SYNC5

S Single machine:

• SYN Packets with 
 random source IP  
 addresses

• Fills up backlog queue  
 on server

• No further connections  
 possible

12

SYN Floods (phrack 48, no 13, 1996)

OS
Backlog  

queue size

Linux 1.2.x 10
FreeBSD 2.1.5 128
WinNT 4.0 6

Backlog timeout: 3 minutes

• Attacker needs only 128 SYN packets every 3
minutes

• Low rate SYN flood

13

A classic SYN flood example

MS Blaster worm (2003)
■ Infected machines at noon on Aug 16th:

⬥SYN flood on port 80 to windowsupdate.com
⬥50 SYN packets every second.

■ each packet is 40 bytes.
⬥Spoofed source IP: a.b.X.Y where X,Y random.

MS solution:
■ new name: windowsupdate.microsoft.com

14

Low rate SYN flood defenses

Non-solution:
■ Increase backlog queue size or decrease timeout

Correct solution (when under attack) :
■ Syncookies: remove state from server
■ Small performance overhead

15

Syncookies

Idea: use secret key and data in packet to gen. server SN

Server responds to Client with SYN-ACK cookie:
■ T = 5-bit counter incremented every 64 secs.

■ L = MACkey (SAddr, SPort, DAddr, DPort, SNC, T) [24 bits]

⬥key: picked at random during boot

■ SNS = (T . mss . L) (|L| = 24 bits)

■ Server does not save state (other TCP options are lost)

Honest client responds with ACK (AN=SNS , SN=SNC+1)

■ Server allocates space for socket only if valid SNS

[Bernstein, Schenk]

16

SYN floods: backscatter [MVS’01]

SYN with forged source IP ⇒ SYN/ACK to random host

17

Backscatter measurement

Listen to unused IP addresss space (darknet)

Lonely SYN/ACK packet likely to be result of SYN attack

2001: 400 SYN attacks/week
2013: 773 SYN attacks/24 hours (arbor networks ATLAS)

■ Larger experiments: (monitor many ISP darknets)
⬥Arbor networks

0 232monitor

/8 network

Estonia attack (ATLAS ‘07)

Attack types detected:
■ 115 ICMP floods, 4 TCP SYN floods

Bandwidth:
■ 12 attacks: 70-95 Mbps for over 10 hours

All attack traffic was coming from outside Estonia
■ Estonia’s solution:

⬥Estonian ISPs blocked all foreign traffic until
attacks stopped

 ⇒ DoS attack had little impact inside Estonia

18

19

SYN Floods II: Massive flood (e.g BetCris.com)

Command bot army to flood specific target: (DDoS)

■ 20,000 bots can generate 2Gb/sec of SYNs (2003)

■ At web site:
⬥Saturates network uplink or network router
⬥Random source IP ⇒  

 attack SYNs look the same as real SYNs

■ What to do ???

20

Prolexic / CloudFlare

Idea: only forward established TCP connections to site

Prolexic
Proxy

Web  
site

Lots-of-SYNs

Lots-of-SYN/ACKs

Few ACKs
Forward
to site

21

Other junk packets

Proxy must keep floods of these away from web site

Attack Packet Victim Response Rate: attk/day 
[ATLAS 2013]

TCP SYN to open port TCP SYN/ACK 773

TCP SYN to closed port TCP RST

TCP ACK or TCP DATA TCP RST

TCP RST No response

TCP NULL TCP RST

ICMP ECHO Request ICMP ECHO Response 50

UDP to closed port ICMP Port unreachable 387

22

Stronger attacks: TCP con flood

Command bot army to:

■ Complete TCP connection to web site
■ Send short HTTP HEAD request
■ Repeat

Will bypass SYN flood protection proxy

… but:
■ Attacker can no longer use random source IPs.

⬥Reveals location of bot zombies

■ Proxy can now block or rate-limit bots.

A real-world example: GitHub (3/2015)

Javascript-based DDoS:

23

function imgflood() {
 var TARGET = 'victim-website.com/index.php?’
 var rand = Math.floor(Math.random() * 1000)
 var pic = new Image()
 pic.src = 'http://'+TARGET+rand+'=val'
}
setInterval(imgflood, 10)

imageFlood.js

github.com
honest

end user

popular  
server

inject
imageFlood.js

Would HTTPS  
prevent this DDoS?

DoS via route hijacking
YouTube is 208.65.152.0/22 (includes 210 IP addr)

 youtube.com is 208.65.153.238, …

Feb. 2008:
■ Pakistan telecom advertised a BGP path for
 208.65.153.0/24 (includes 28 IP addr)
■ Routing decisions use most specific prefix
■ The entire Internet now thinks
 208.65.153.238 is in Pakistan

Outage resolved within two hours
… but demonstrates huge DoS vuln. with no solution!

24

25

DoS at higher layers
SSL/TLS handshake [SD’03]

■ RSA-encrypt speed ≈ 10 × RSA-decrypt speed
⇒ Single machine can bring down ten web servers

Similar problem with application DoS:
■ Send HTTP request for some large PDF file
■ Easy work for client, hard work for server.

Web
Server

Client Hello

Server Hello (pub-key)

Client key exchangeRSA
Encrypt RSA

Decrypt

26

DoS Mitigation

27

1. Client puzzles
Idea: slow down attacker

Moderately hard problem:
■ Given challenge C find X such that

 LSBn (SHA-1(C || X)) = 0
n

■ Assumption: takes expected 2n time to solve
■ For n=16 takes about .3sec on 1GhZ machine
■ Main point: checking puzzle solution is easy.

During DoS attack:
■ Everyone must submit puzzle solution with requests
■ When no attack: do not require puzzle solution

28

Examples

TCP connection floods (RSA ‘99)
■ Example challenge: C = TCP server-seq-num
■ First data packet must contain puzzle solution

⬥Otherwise TCP connection is closed

SSL handshake DoS: (SD’03)
■ Challenge C based on TLS session ID
■ Server: check puzzle solution before RSA decrypt.

Same for application layer DoS and payment DoS.

29

Benefits and limitations

Hardness of challenge: n
■ Decided based on DoS attack volume.

Limitations:

■ Requires changes to both clients and servers

■ Hurts low power legitimate clients during attack:
⬥Clients on cell phones and tablets cannot connect

30

Memory-bound functions

CPU power ratio:
■ high end server / low end cell phone = 8000
 ⇒ Impossible to scale to hard puzzles

Interesting observation:
■ Main memory access time ratio:

⬥high end server / low end cell phone = 2

Better puzzles:
■ Solution requires many main memory accesses

⬥Dwork-Goldberg-Naor, Crypto ‘03
⬥Abadi-Burrows-Manasse-Wobber, ACM ToIT ‘05

31

2. CAPTCHAs

Idea: verify that connection is from a human

Applies to application layer DDoS [Killbots ’05]
■ During attack: generate CAPTCHAs and process

request only if valid solution
■ Present one CAPTCHA per source IP address.

32

3. Source identification

Goal: identify packet source

Ultimate goal: block attack at the source

33

1. Ingress filtering (RFC 2827, 3704)

Big problem: DDoS with spoofed source IPs

Ingress filtering policy: ISP only forwards packets  
with legitimate source IP (see also SAVE protocol)

ISP Internet

Implementation problems

 ALL ISPs must do this. Requires global trust.
■ If 10% of ISPs do not implement ⇒ no defense

■ No incentive for deployment

2014:
■ 25% of Auto. Systems are fully spoofable  

 (spoofer.cmand.org)
■ 13% of announced IP address space is spoofable

Recall: 309 Gbps attack used only 3 networks (3/2013)

35

2. Traceback [Savage et al. ’00]

Goal:
■ Given set of attack packets
■ Determine path to source

How: change routers to record info in packets

Assumptions:
■ Most routers remain uncompromised
■ Attacker sends many packets
■ Route from attacker to victim remains relatively

stable

36

Simple method

Write path into network packet
■ Each router adds its own IP address to packet
■ Victim reads path from packet

Problem:
■ Requires space in packet

⬥Path can be long
⬥No extra fields in current IP format

■ Changes to packet format too much to expect

37

Better idea

DDoS involves many
packets on same path

Store one link in each
packet
■ Each router

probabilistically stores
own address

■ Fixed space regardless
of path length

R6 R7 R8

A4 A5A1 A2 A3

R9 R10

R12

V

38

Edge Sampling

Data fields written to packet:
■ Edge: start and end IP addresses
■ Distance: number of hops since edge stored

Marking procedure for router R
 if coin turns up heads (with probability p) then
 write R into start address
 write 0 into distance field
 else
 if distance == 0 write R into end field
 increment distance field

39

Edge Sampling: picture

Packet received

■ R1 receives packet from source or another router

■ Packet contains space for start, end, distance

R1 R2 R3

packet s e d

40

Edge Sampling: picture

Begin writing edge

■ R1 chooses to write start of edge

■ Sets distance to 0

R1 R2 R3

packet R1 0

41

Edge Sampling

packet R1 R2 1

R1 R2 R3

Finish writing edge

■ R2 chooses not to overwrite edge

■ Distance is 0
⬥Write end of edge, increment distance to 1

42

Edge Sampling

packet R1 R2 2

R1 R2 R3

Increment distance

■ R3 chooses not to overwrite edge

■ Distance >0
⬥Increment distance to 2

43

Path reconstruction

Extract information from attack packets

Build graph rooted at victim
■ Each (start,end,distance) tuple provides an edge

packets needed to reconstruct path
E(X) <

where p is marking probability, d is length of path

ln(d)
p(1-p)d-1

44

More traceback proposals

Advanced and Authenticated Marking Schemes for IP
Traceback
■ Song, Perrig. IEEE Infocomm ’01
■ Reduces noisy data and time to reconstruct paths

An algebraic approach to IP traceback
■ Stubblefield, Dean, Franklin. NDSS ’02

Hash-Based IP Traceback
■ Snoeren, Partridge, Sanchez, Jones, Tchakountio, 

Kent, Strayer. SIGCOMM ‘01

45

Problem: Reflector attacks [Paxson ’01]

Reflector:
■ A network component that responds to packets
■ Response sent to victim (spoofed source IP)

Examples:
■ DNS Resolvers: UDP 53 with victim.com source

⬥At victim: DNS response

■ Web servers: TCP SYN 80 with victim.com source
⬥At victim: TCP SYN ACK packet

■ Gnutella servers

46

DoS Attack

Single Master

Many bots to  
generate flood

Zillions of reflectors to
hide bots
■ Kills traceback and

pushback methods

47

Capability based defense

48

Capability based defense

Anderson, Roscoe, Wetherall.
■ Preventing internet denial-of-service with

capabilities. SIGCOMM ‘04.

Yaar, Perrig, and Song.
■ Siff: A stateless internet flow filter to mitigate DDoS

flooding attacks. IEEE S&P ’04.

Yang, Wetherall, Anderson.
■ A DoS-limiting network architecture.  

SIGCOMM ’05

49

Capability based defense

Basic idea:
■ Receivers can specify what packets they want

How:
■ Sender requests capability in SYN packet

⬥Path identifier used to limit # reqs from one source
■ Receiver responds with capability
■ Sender includes capability in all future packets

■ Main point: Routers only forward:
⬥Request packets, and
⬥Packets with valid capability

50

Capability based defense

Capabilities can be revoked if source is attacking
■ Blocks attack packets close to source

R1
R2

R3 R4
dest

Source AS Transit AS Dest AS

Attack packets  
dropped

51

Take home message:

Denial of Service attacks are real.  
Must be considered at design time.

Sad truth:
■ Internet is ill-equipped to handle DDoS attacks
■ Commercial solutions: CloudFlare, Prolexic

Many good proposals for core redesign.

52

THE END

