Acknowledgments: Lecture slides are from the Security
Engineering thought by Dan Fleck at George Mason University.
When slides are obtained from other sources, a a reference will
be noted on the bottom of that slide. A full list of references is
provided on the last slide.

Fuzzing

Dan Fleck
CS 469: Security Engineering

Sources:
http://www.cse.msu.edu/~cse825//lectures/Fuzzing.pdf
http://www.cs.berkeley.edu/~dawnsong/teaching/f12-cs161/lectures/lec5-fuzzing-

se.pdf
http://weis2007.econinfosec.org/papers/29.pdf
http://www.cs.berkeley.edu/~dawnsong/teaching/f12-cs161/readings/toorcon.pdf
http://www.immunityinc.com/downloads/DaveAitel_TheHackerStrategy. pdf
http://www.uninformed.org/?v=5&a=5&t=pdf
http://msdn.microsoft.com/en-us/library/cc162782.aspx

http://www.cse.msu.edu/~cse825//lectures/Fuzzing.pdf
http://www.cse.msu.edu/~cse825//lectures/Fuzzing.pdf
http://weis2007.econinfosec.org/papers/29.pdf
http://weis2007.econinfosec.org/papers/29.pdf
http://www.immunityinc.com/downloads/DaveAitel_TheHackerStrategy.pdf
http://www.immunityinc.com/downloads/DaveAitel_TheHackerStrategy.pdf
http://www.uninformed.org/?v=5&a=5&t=pdf
http://www.uninformed.org/?v=5&a=5&t=pdf

What 1s Fuzzing?

- A form of vulnerability analysis

* Process:

Many slightly anomalous test cases are input into the
application

Application is monitored for any sign of error

Example

Standard HTTP GET request
* § GET /index.html HTTP/1.1

Anomalous requests

* § AAAAAA...AAAA /index.html HTTP/1.1

§ GET ///////index.html HTTP/1.1

§ GET %n%n%n%nY%n%n.html HTTP/1.1

§ GET /AAAAAAAAAAAAA . html HTTP/1.1

§ GET /index.htmlHTTTTTTTTTTTTTP/1.1
§ GET /index.html HTTP/1.1.1.1.1.1.1.1

° §etc...

User Testing vs Fuzzing

+ User testing
Run program on many normal inputs, look for bad things to
happen
Goal: Prevent normal users from encountering errors

* Fuzzing
Run program on many abnormal inputs, look for bad things
to happen
Goal: Prevent attackers from encountering exploitable
errors

Types of Fuzzers

* Mutation Based - “Dumb Fuzzing”
mutate existing data samples to create test data

- Generation Based - “Smart Fuzzing”
define new tests based on models of the input

+ Evolutionary
Generate inputs based on response from program

Fuzzing

« Automatically generate random test cases
» Application is monitored for errors
* Inputs are generally either
files (.pdf, png, .wav, .mpg)
network based (http, SOAP, SNMP)

Mutation Based Fuzzing

« Little or no knowledge of the structure of the inputs is
assumed

* Anomalies are added to existing valid inputs

* Anomalies may be completely random or follow some
heuristics

* Requires little to no set up time
- Dependent on the inputs being modified

* May fail for protocols with checksums, those which
depend on challenge response, etc.

« Example Tools:
Taof, GPF, ProxyFuzz,

"4
Peach Fuzzer, etc. PE C
Cop Fruzz=ZER

Mutation Based Example: PDF Fuzzing

* Google .pdf (lots of results)
* Crawl the results and download lots of PDFs

* Use a mutation fuzzer:

1. Grab the PDF file

2. Mutate the file

3. Send the file to the PDF viewer

4. Record if it crashed (and the input that crashed it)

Mutation- Super easy to Little to no Limited by May fail for
based setup and protocol initial corpus protocols with
automate knowledge checksums, or

required other
‘+ + == complexity ==

Generation Based Fuzzing

Test cases are generated from some description of the
format: RFC, documentation, etc.

Anomalies are added to each possible spot in the inputs

Knowledge of protocol should give better results than
random fuzzing

Can take significant time to set up

Examples

SPIKE, Sulley, Mu-4000,
Codenomicon,
Peach Fuzzer, etc...

LN VA WNE

Example Specification for ZIP file

<!--

A. Local file header -->

<Block name="LocalFileHeader">»

</Block>

<String name="1fh_Signature" valueType="hex" value="584b8304" token="true" mut
<Number name="1lfh_Ver" size="16" endian="little" signed="false"/>

i%éuncated for space]

<Number name="1fh_CompSize" size="32" endian="little" signed="false">
<Relation type="size" of="1fh_CompData"/>

</Number>

<Number name="1fh_DecompSize" size="32" endian="little" signed="false"/>

<Number name="1fh_FileNamelLen" size="16" endian="little" signed="false">
<Relation type="size" of="1fh_FileName"/>

</Number>

<Number name="1fh_ExtraFldLen" size="16" endian="little" signed="false">
<Relation type="size" of="1fh_FldName"/>

</Number>

<String name="1fh_FileName"/>

<String name="1fh_FldName"/>

<!-- B. File data -->

<Blob name="1fh_CompData"/>

Src: http://www.flinkd.org/2011/07/fuzzing-with-peach-pa

Mutation vs Generation

Mutation- Super easy to Little to no Limited by May fail for
based setup and protocol initial corpus protocols with
automate knowledge checksums, or
required other
‘+ ‘+ == complexity ==
Generation- Writing have to have Completeness Can deal with
based generator is spec of complex
labor intesive protocol checksums
for complex (frequently and
protocols not a problem dependencies
for common

ones http,
snmp, etc..J™ + %

White box vs. black box fuzzing

* Black box fuzzing: sending the malformed input without
any verification of the code paths traversed

* White box fuzzing: sending the malformed input and
verifying the code paths traversed. Modifying the inputs
to attempt to cover all code paths.

black box + mutation 10 min 50% 25%
black box + generation 30 min 80% 50%
white box + mutation 2 hours 80% 50%
white box + generation 2.5 hours 99% 100%

Source: http://msdn.microsoft.com/en-us/library/cc162782

Evolutionary Fuzzing

- Attempts to generate inputs based on the response
of the program

- Autodafe

Prioritizes test cases based on which inputs have reached
dangerous API functions

* EFS
Generates test cases based on code coverage metrics

+ This technique is still in the alpha stage :)

Challenges

* Mutation based - can run forever. When do
we stop?

- Generation based - stop eventually. Is it
enough?

* How to determine if the program did
something “bad”?

* These are the standard problems we face in
most automated testing.

Code Coverage

Some of the answers to our problems are found in code
coverage

To determine how well your code was tested, code
coverage can give you a metric.

But it’s not perfect (is anything?)

Code coverage types:

Statement coverage - which statements have been
executed

Branch coverage - which branches have been taken
Path coverage - which paths were taken.

Code Coverage - Example

if (a > 2)
a = 2;
if (b > 2)

How many test cases for 100% line coverage?

How many test cases for 100% branch coverage?
How many test cases for 100% paths?

Code Coverage Tools

* If you have source: gcov, Bullseye, Emma

* If you don’t:
* Binary instrumentation: PIN, DynamoRIO

 Valgrind : instrumentation framework for building dynamic
analysis tools

- Pai Mei : a reverse engineering framework consisting of
multiple extensible components.

Lots more to discuss on Code Coverage in a

Software Engineering class.. but lets move on.

Why does Code Coverage help?

* Lets jump to an example on Page 27 of :

* http://www.cs.berkeley.edu/~dawnsong/teaching/f12-
cs161/readings/toorcon.pdf

http://www.cs.berkeley.edu/~dawnsong/teaching/f12-cs161/readings/toorcon.pdf
http://www.cs.berkeley.edu/~dawnsong/teaching/f12-cs161/readings/toorcon.pdf
http://www.cs.berkeley.edu/~dawnsong/teaching/f12-cs161/readings/toorcon.pdf

[Phone Security Flaw: July 2007

Shortly after the iPhone
was released, a group of
security researchers at
Independent Security
Evaluators decided to
investigate how hard it
would be for a remote
adversary to compromise
the private information
stored on the device

acker's Life: Charlie Miller Keeps the

1 World On lts Toes

lacklisted him. Twitter hired him.

& green military jacket and cap, Charlie Miller explains to 2 group of hackers and cyber

nw he'd build & cyber azmy in Nosth Xores. He boasts that his army could infiltrate =il

December 28, 2012 1:53 PM

and power gnds, interrupe celiphone service, and take over millions of computers arou

:the bargain-basement price of $49 million. * In this presentation, delivered at the 2010
ein Las Vegas, he's included doctored photos of himsel! standing beside Noth Xovea's

m Jong I, w3

th the premise that he's been kudnapped.

Success

* Within two weeks of part
time work, we had
successfully

e discovered a vulnerability

e developed a toolchain for
working with the 1Phone's
architecture

 created a proof-of-
concept exploit capable of
delivering files from the
user's iPhone to a remote
attacker

* Notified apple of the
vulnerability and proposed a
patch.

* Apple subsequently resolved
the issue and release and
released a patch.

[CSE484]

CVE-2007-3944 Issued and Patched

WebKil

CVL-ID: CVL-2007-3944

Available for: Mac OS X v10.3.9, Mac OS X Server v1(C.3.9, Mac OS X v10.1.10, Mac OS X Server viC.1.10
Impact: Viewing a maliciously crafted wek page may lead to arbitrary code execution

Descriprion” Description’ Heap huffar overflows exIst In the Perl Comparihle Regular Fxpressions (PCRF)
likrary used by the JavaScript engine in Safari. By enticing a user to visit a malicicusly crafted web page, an
attacker may trigger the issue, which may lead tc arbitrary ccde execution. This update addresses the issue
Ly petforming additiondl validation o’ JavaScript regular expressions, Credit tum and Jake
Honoroff of Independent Security Evaluators for reporting these issucs.

[CSE484]

1Phone Attack

e 1Phone Safari downloads malicious web page

e Arbitrary code is run with administrative privileges
e Can read SMS log, address book, call history, etc.
e Can transmit collected data to attacker
e Can perform physical actions on the phone
e system sound and vibrate the phone for a second

e could dial phone numbers, send text messages,
or record audio (as a bugging device)

[CSE484]

How Was This Discovered?

* WebKit 1s open source

* “WebKit 1s an open source web browser engine.
WebKit is also the name of the Mac OS X system

framework version of the engine that's used by
Safari, Dashboard, Mail, and many other OS X
applications.”

* So we know what they use for code testing

e Use code coverage to see which portions of code is
not well tested

e Tools gcov, 1CoV, etc., measure test coverage

[CSE484]

Collect Coverage for the Test Suite

LTP GCOV extension - code coverage report

Current view: directory
Test: testsuite.info

Date: 2007-06-01 Instrumented lines: 13622
Code covered: 59.3 % Executed lines: 8073
Dhctomm. _m:—
1000 % 1/1 lines

/Syaten/Library/Frameworka/JavaVd. framework/Headers

1 lar/ : g

[Usera/cmiller/woot /HebKit /JavascriptCore/bindinga
/ lfemi WebXit sqi/

[Users/cmiller/woot/WebKit/JavaScriptCore/bindings/ini
/ / : W

Users/amiller/woot /WebXit/JavaScriptCore/kis

Mum;mummmmmum

793 % 572377219 lines
547 % 1338/2445 lines

/Users/omiller/woot /We 1 tCore

{usx/include 1000 % 2/2lines
fusx/include/architecture/ile6 1000 % 3/3 lines
fusr/i +4 500 % 4/8 lines

fusr/share 89.7 % 96 /107 lines

HHNNIHHMHHWHH

JavaseriptCore/kis 848 % 357 7421 lines
xia S 00% 0/39lines
wtf 769 % 528 / 687 lines
wtf/unicode/icu 1000 % 21 /21 lines

Generated by: LTFP GCOV extension version 1.5

[CSE484]

What to Focus on?

* 59.3% of 13,622 lines in JavaScriptCore were covered

e 79.3% of main engine covered

e 54.7%ofPerlCompatibleRegularExpression(PCRE)covered

* Next step: focus on PCRE
* Wrote a PCRE fuzzer (20 lines of perl)

e Ran it on standalone PCRE parser (pcredemo from
PCRE library)

o Started getting errors: PCRE compilation failed at
offset 6: internal error: code overflow
[CSE484] .

e Evil regular expressions crash mobile Safari

The Attacker Plan

Obtain product

Manual Network
Vulnerability
analysis

Closed source
research

Protocol Analysis

Weaponization
(exploit
development)

But... why do it?

Source/Binary
Analysis

Open source
research

Last step...Sell 1t!
- Market for 0-Days ~S10K-100K

——
é?aeno DAY
, INITIATIVE

eEye Digital Security®

0 VERISIGN

The Bug Bounty List

Welcome to Bugcrowd's community powered list of tug bounty programs

Lessons about Fuzzing

Protocol knowledge is helpful

Generational beats random, better specification make
better fuzzers

Using more fuzzers is better
Each one will vary and find different bugs

The longer you run (typically) the more bugs you’ll find

Guide the process, fix it when it break or fails to reach
where you need it to go

Code coverage can serve as a useful guide

Acknowledgments

[CSE484] CSE484/CSE584, BLACK BOX TESTING AND FUZZING, Dr. Benjamin Livshits

