
Dan Boneh

CS155

Computer Security

https://crypto.stanford.edu/cs155

Control Hijacking

Acknowledgments: Lecture slides are from the Computer Security course
thought by Dan Boneh at Stanford University. When slides are obtained
from other sources, a a reference will be noted on the bottom of that slide.
A full list of references is provided on the last slide.

Dan Boneh

Control Hijacking

Basic Control
Hijacking Attacks

Dan Boneh

Control hijacking attacks
• Attacker’s goal:
– Take over target machine (e.g. web server)

• Execute arbitrary code on target by  
hijacking application control flow

• Examples.
– Buffer overflow attacks
– Integer overflow attacks
– Format string vulnerabilities

Dan Boneh

Example 1: buffer overflows

• Extremely common bug in C/C++ programs.
– First major exploit: 1988 Internet Worm. fingerd.

Source: web.nvd.nist.gov

Dan Boneh

What is needed
• Understanding C functions, the stack, and the heap.
• Know how system calls are made
• The exec() system call

• Attacker needs to know which CPU and OS used on the target
machine:
– Our examples are for x86 running Linux or Windows
– Details vary slightly between CPUs and OSs:

• Little endian vs. big endian (x86 vs. Motorola)
• Stack Frame structure (Unix vs. Windows)

Memory Organization

[Brumley]

run time heap

shared libraries

user stack

0x00000000

0xC0000000
(3GB)

%esp

brk

Memory
Program text 
Shared libs

Data
...

•Stack grows down
•Heap grows up

The Stack grows down towards lower addresses.

[Brumley]

Variables
• On the stack
– Local variables
– Lifetime: stack

frame

• On the heap
– Dynamically

allocated via new/
malloc/etc.

– Lifetime: until
freed

run time heap

shared libraries

user stack

0x00000000

0xC0000000
(3GB)

[Brumley]

Procedures

• Procedures are not native to assembly
• Compilers implement procedures
– On the stack
– Following the call/return stack discipline

[Brumley]

Procedures/Functions

• We need to address several issues:
1. How to allocate space for local variables
2. How to pass parameters
3. How to pass return values
4. How to share 8 registers with an infinite number of

local variables
• A stack frame provides space for these values
– Each procedure invocation has its own stack frame
– Stack discipline is LIFO
• If procedure A calls B, B’s frame must exit before A’s

[Brumley]

orange

red

green

Function Call Chain

green

...

green

orange(…)
{

... 
red()  
...

}

red(…)
{

...
green()
...
green()

}
green(…)
{

...
green()
...

}

[Brumley]

orange

red

green

Function Call Chain

green

...

green

Frame for
• locals
• pushing parameters
• temporary space

Call to red  
“pushes”  
new frame

When green  
returns it  
“pops”  
its frame

[Brumley]

On the stack
int orange(int a, int b)
{
 char buf[16];
 int c, d;
 if(a > b)  
 c = a;

 else  
 c = b;

 d = red(c, buf);
 return d;
}

Need to access arguments

Need space to store  
local vars (buf, c, and d)

Need space to put
arguments for callee

Need a way for callee to
return values

Calling convention determines the above features
[Brumley]

cdecl – the default for Linux & gcc
int orange(int a, int b)
{
 char buf[16];

 int c, d;
 if(a > b)  
 c = a;

 else  
 c = b;

 d = red(c, buf);
 return d;
}

…

b

a

return addr

caller’s ebp

callee-save

locals
(buf, c, d ≥ 24

bytes if stored on
stack)

caller-save

buf

c

return addr

orange’s ebp

…

%ebp
frame

%esp  
stack

parameter  
area (caller)

orange’s  
initial  
stack 
frame

to be created  
before 

calling red

after red has  
been called

gr
ow

Don’t worry!  
We will walk through

these 
one by one.

[Brumley]

When orange attains control,
1. return address has already been

pushed onto stack by caller …

b

a

return addr

%ebp
(caller)

%esp

[Brumley]

When orange attains control,
1. return address has already been

pushed onto stack by caller
2. own the frame pointer

- push caller’s ebp
- copy current esp into ebp
- first argument is at ebp+8

…

b

a

return addr

caller’s ebp %ebp
and

%esp

[Brumley]

When orange attains control,
1. return address has already been

pushed onto stack by caller
2. own the frame pointer

- push caller’s ebp
- copy current esp into ebp
- first argument is at ebp+8

3. save values of other callee-save
registers if used
- edi, esi, ebx: via push or mov
- esp: can restore by arithmetic

…

b

a

return addr

caller’s ebp

callee-save
%ebp

%esp

[Brumley]

When orange attains control,
1. return address has already been

pushed onto stack by caller
2. own the frame pointer

- push caller’s ebp
- copy current esp into ebp

3. save values of other callee-save
registers if used
- edi, esi, ebx: via push or mov
- esp: can restore by arithmetic

4. allocate space for locals
- subtracting from esp
- “live” variables in registers, which on

contention, can be “spilled” to stack
space

…

b

a

return addr

caller’s ebp

callee-save

locals
(buf, c, d ≥ 24

bytes if stored on
stack)

%ebp

%esp

orange’s  
initial  
stack 

frame

[Brumley]

For caller orange to call callee red,

…

b

a

return addr

caller’s ebp

callee-save

locals
(buf, c, d ≥ 24

bytes if stored on
stack)

%ebp

%esp

[Brumley]

For caller orange to call callee red,
1. push any caller-save registers if their

values are needed after red returns
- eax, edx, ecx

…

b

a

return addr

caller’s ebp

callee-save

locals
(buf, c, d ≥ 24

bytes if stored on
stack)

caller-save

%ebp

%esp

[Brumley]

For caller orange to call callee red,
1. push any caller-save registers if their

values are needed after red returns
- eax, edx, ecx

2. push arguments to red from right to
left (reversed)
- from callee’s perspective, argument 1 is

nearest in stack

…

b

a

return addr

caller’s ebp

callee-save

locals
(buf, c, d ≥ 24

bytes if stored on
stack)

caller-save

buf

c

%ebp

%esp

[Brumley]

For caller orange to call callee red,
1. push any caller-save registers if their

values are needed after red returns
- eax, edx, ecx

2. push arguments to red from right to
left (reversed)
- from callee’s perspective, argument 1 is

nearest in stack
3. push return address, i.e., the next

instruction to execute in orange after
red returns

…

b

a

return addr

caller’s ebp

callee-save

locals
(buf, c, d ≥ 24

bytes if stored on
stack)

caller-save

buf

c

return addr

%ebp

%esp

orange’s  
stack 

frame

[Brumley]

For caller orange to call callee red,
1. push any caller-save registers if their

values are needed after red returns
- eax, edx, ecx

2. push arguments to red from right to
left (reversed)
- from callee’s perspective, argument 1 is

nearest in stack
3. push return address, i.e., the next

instruction to execute in orange after
red returns

4. transfer control to red
- usually happens together with step 3

using call

…

b

a

return addr

caller’s ebp

callee-save

locals
(buf, c, d ≥ 24

bytes if stored on
stack)

caller-save

buf

c

return addr

%ebp

orange’s  
stack 
frame

%esp

[Brumley]

When red attains control,
1. return address has already been

pushed onto stack by orange …

b

a

return addr

caller’s ebp

callee-save

locals
(buf, c, d ≥ 24

bytes if stored on
stack)

caller-save

buf

c

return addr

%ebp

%esp

[Brumley]

When red attains control,
1. return address has already been

pushed onto stack by orange
2. own the frame pointer

…

b

a

return addr

caller’s ebp

callee-save

locals
(buf, c, d ≥ 24

bytes if stored on
stack)

caller-save

buf

c

return addr

orange’s ebp %ebp
and

%esp [Brumley]

When red attains control,
1. return address has already been

pushed onto stack by orange
2. own the frame pointer
3. … (red is doing its stuff) …

…

b

a

return addr

caller’s ebp

callee-save

locals
(buf, c, d ≥ 24

bytes if stored on
stack)

caller-save

buf

c

return addr

orange’s ebp

…
%ebp

%esp [Brumley]

When red attains control,
1. return address has already been

pushed onto stack by orange
2. own the frame pointer
3. … (red is doing its stuff) …
4. store return value, if any, in eax
5. deallocate locals

- adding to esp
6. restore any callee-save registers

…

b

a

return addr

caller’s ebp

callee-save

locals
(buf, c, d ≥ 24

bytes if stored on
stack)

caller-save

buf

c

return addr

orange’s ebp %ebp
and

%esp [Brumley]

When red attains control,
1. return address has already been

pushed onto stack by orange
2. own the frame pointer
3. … (red is doing its stuff) …
4. store return value, if any, in eax
5. deallocate locals

- adding to esp
6. restore any callee-save registers
7. restore orange’s frame pointer

- pop %ebp

…

b

a

return addr

caller’s ebp

callee-save

locals
(buf, c, d ≥ 24

bytes if stored on
stack)

caller-save

buf

c

return addr

%ebp

%esp

[Brumley]

When red attains control,
1. return address has already been

pushed onto stack by orange
2. own the frame pointer
3. … (red is doing its stuff) …
4. store return value, if any, in eax
5. deallocate locals

- adding to esp
6. restore any callee-save registers
7. restore orange’s frame pointer

- pop %ebp

8. return control to orange
- ret

- pops return address from stack and jumps
there

…

b

a

return addr

caller’s ebp

callee-save

locals
(buf, c, d ≥ 24

bytes if stored on
stack)

caller-save

buf

c

%ebp

%esp

[Brumley]

When orange regains control,

…

b

a

return addr

caller’s ebp

callee-save

locals
(buf, c, d ≥ 24

bytes if stored on
stack)

caller-save

buf

c

%ebp

%esp

[Brumley]

When orange regains control,
1. clean up arguments to red

- adding to esp
2. restore any caller-save registers

- pops
3. …

…

b

a

return addr

caller’s ebp

callee-save

locals
(buf, c, d ≥ 24

bytes if stored on
stack)

%ebp

%esp

[Brumley]

Dan Boneh

Linux process memory layout

unused 0x08048000

run time heap

shared libraries

user stack

0x40000000

0xC0000000

%esp

brk

Loaded  
from exec

0

Dan Boneh

str
void func(char *str) {  
 char buf[128];

 strcpy(buf, str);  
 do-something(buf);  
}

Suppose a web server contains a function:

When func() is called stack looks like:

argument: str
return address

stack frame pointer

char buf[128]

SP

Dan Boneh

What are buffer overflows?
void func(char *str) {  
 char buf[128];

 strcpy(buf, str);  
 do-something(buf);  
}

What if *str is 136 bytes long?

After strcpy:

argument: str
return address

stack frame pointer

char buf[128]

SP

*str Problem:  
 no length checking in strcpy()

Dan Boneh

char buf[128]

return address

Basic stack exploit
Suppose *str is such that  
 after strcpy stack looks
like:

Program P: exec(“/bin/sh”)

When func() exits, the user gets
shell !

Note: attack code P runs in stack.

(exact shell code by Aleph One)

Program P

low

high

Dan Boneh

The NOP slide
Problem: how does attacker  
 determine ret-
address?

Solution: NOP slide
• Guess approximate stack state  

when func() is called

• Insert many NOPs before program P:
 nop, xor eax, eax, inc ax

char buf[128]

return address

NOP Slide

Program P

low

high

Dan Boneh

Details and examples
• Some complications:
– Program P should not contain the ‘\0’ character.
– Overflow should not crash program before func()

exists.

• (in)Famous remote stack smashing overflows:
– Overflow in Windows animated cursors (ANI).

LoadAniIcon()
– Past overflow in Symantec virus detection

 test.GetPrivateProfileString "file", [long string]

Dan Boneh

Many unsafe libc functions
 strcpy (char *dest, const char *src)
 strcat (char *dest, const char *src)
 gets (char *s)
 scanf (const char *format, …) and many more.

• “Safe” libc versions strncpy(), strncat() are misleading
– e.g. strncpy() may leave string unterminated.

• Windows C run time (CRT):
– strcpy_s (*dest, DestSize, *src): ensures proper

termination

Dan Boneh

Buffer overflow opportunities
• Exception handlers: (Windows SEH attacks)

– Overwrite the address of an exception handler in stack frame.

• Function pointers: (e.g. PHP 4.0.2, MS MediaPlayer Bitmaps)

– Overflowing buf will override function pointer.

• Longjmp buffers: longjmp(pos) (e.g. Perl 5.003)
– Overflowing buf next to pos overrides value of pos.

Heap  
or 

stack
 buf[128] FuncPtr

Dan Boneh

Corrupting method pointers
• Compiler generated function pointers (e.g. C++ code)

• After overflow of buf :

ptr

data

Object T

FP1
FP2
FP3

vtable

method #1
method #2
method #3

pt
rbuf[256]

da
ta

object T

vtable

NOP 
slide

shell  
code

Dan Boneh

Finding buffer overflows
• To find overflow:
– Run web server on local machine
– Issue malformed requests (ending with “$$$$$”)
• Many automated tools exist (called fuzzers – next

week)
– If web server crashes,  

 search core dump for “$$$$$” to find overflow location

• Construct exploit (not easy given latest defenses)

Dan Boneh

Control Hijacking

More Control
Hijacking Attacks

Dan Boneh

More Hijacking Opportunities

• Integer overflows: (e.g. MS DirectX MIDI Lib)

• Double free: double free space on heap

– Can cause memory mgr to write data to specific location

– Examples: CVS server

• Use after free: using memory after it is freed

• Format string vulnerabilities

Dan Boneh

Integer Overflows (see Phrack 60)

Problem: what happens when int exceeds max value?

int m; (32 bits) short s; (16 bits) char c; (8 bits)

 c = 0x80 + 0x80 = 128 + 128 ⇒ c = 0

 s = 0xff80 + 0x80 ⇒ s = 0

 m = 0xffffff80 + 0x80 ⇒ m = 0

Can this be exploited?

Dan Boneh

An example
void func(char *buf1, *buf2, unsigned int len1, len2) {

char temp[256];
if (len1 + len2 > 256) {return -1} // length check
memcpy(temp, buf1, len1); // cat buffers
memcpy(temp+len1, buf2, len2);
do-something(temp); // do stuff

}

What if len1 = 0x80, len2 = 0xffffff80 ?
 ⇒ len1+len2 = 0

Second memcpy() will overflow heap !!

Dan Boneh

Source: NVD/CVE

Integer overflow exploit stats

Dan Boneh

Format string bugs

Dan Boneh

Format string problem
 int func(char *user) {
 fprintf(stderr, user);
 }

Problem: what if *user = “%s%s%s%s%s%s%s” ??
– Most likely program will crash: DoS.
– If not, program will print memory contents. Privacy?

– Full exploit using user = “%n”

Correct form: fprintf(stdout, “%s”, user);

Dan Boneh

Vulnerable functions
Any function using a format string.

Printing:
 printf, fprintf, sprintf, …
 vprintf, vfprintf, vsprintf, …

Logging:
 syslog, err, warn

Dan Boneh

Exploit
• Dumping arbitrary memory:

– Walk up stack until desired pointer is found.

– printf(“%08x.%08x.%08x.%08x|%s|”)

• Writing to arbitrary memory:
– printf(“hello %n”, &temp) -- writes ‘6’ into temp.

– printf(“%08x.%08x.%08x.%08x.%n”)

Dan Boneh

Control Hijacking

Platform
Defenses

Dan Boneh

Preventing hijacking attacks
1. Fix bugs:

– Audit software
• Automated tools: Coverity, Prefast/Prefix.

– Rewrite software in a type safe languange (Java, ML)
• Difficult for existing (legacy) code …

2. Concede overflow, but prevent code execution

3. Add runtime code to detect overflows exploits
–Halt process when overflow exploit detected
– StackGuard, LibSafe, …

Dan Boneh

Marking memory as non-execute (DEP)

Prevent attack code execution by marking stack and heap as non-
executable

• NX-bit on AMD Athlon 64, XD-bit on Intel P4 Prescott
– NX bit in every Page Table Entry (PTE)

• Deployment:
– Linux (via PaX project); OpenBSD
– Windows: since XP SP2 (DEP)

• Visual Studio: /NXCompat[:NO]

• Limitations:
– Some apps need executable heap (e.g. JITs).
– Does not defend against `Return Oriented Programming’ exploits

Dan Boneh

Examples: DEP controls in Windows

DEP terminating a program

Dan Boneh

Attack: Return Oriented Programming (ROP)

• Control hijacking without executing code

args
ret-addr

sfp

local buf

stack

exec()
printf()

“/bin/sh”

libc.so

Dan Boneh

Response: randomization
• ASLR: (Address Space Layout Randomization)

– Map shared libraries to rand location in process memory
 ⇒ Attacker cannot jump directly to exec function

– Deployment: (/DynamicBase)
• Windows 7: 8 bits of randomness for DLLs
• Windows 8: 24 bits of randomness on 64-bit processors

• Other randomization methods:
– Sys-call randomization: randomize syscall id’s

– Instruction Set Randomization (ISR)

Dan Boneh

ASLR Example
Booting twice loads libraries into different locations:

Note: everything in process memory must be randomized
 stack, heap, shared libs, base image

• Win 8 Force ASLR: ensures all loaded modules use ASLR

Dan Boneh

Control Hijacking
Defenses

Hardening the
executable

Dan Boneh

Run time checking: StackGuard
• Many run-time checking techniques …
– we only discuss methods relevant to overflow protection

• Solution 1: StackGuard
– Run time tests for stack integrity.
– Embed “canaries” in stack frames and verify their

integrity prior to function return.

strretsfplocal top  
of 

stack
canarystrretlocal canary

Frame 1Frame 2
sfp

Dan Boneh

Canary Types

• Random canary:
– Random string chosen at program startup.
– Insert canary string into every stack frame.
– Verify canary before returning from function.

• Exit program if canary changed.
• Turns potential exploit into DoS.

– To corrupt, attacker must learn current random string.

• Terminator canary: Canary = {0, newline, linefeed, EOF}

– String functions will not copy beyond terminator.
– Attacker cannot use string functions to corrupt stack.

Dan Boneh

StackGuard (Cont.)
• StackGuard implemented as a GCC patch

– Program must be recompiled

• Minimal performance effects: 8% for Apache

• Note: Canaries do not provide full protection
– Some stack smashing attacks leave canaries unchanged

• Heap protection: PointGuard
– Protects function pointers and setjmp buffers by encrypting

them: e.g. XOR with random cookie
– More noticeable performance effects

Dan Boneh

StackGuard enhancements: ProPolice

• ProPolice (IBM) - gcc 3.4.1. (-fstack-protector)

– Rearrange stack layout to prevent ptr overflow.

args
ret addr

SFP
CANARY

local string buffers

local non-buffer variables
Stack  

Growth pointers, but no arrays

String 
Growth

copy of pointer args

Protects pointer args and
local pointers from a buffer
overflow

Dan Boneh

MS Visual Studio /GS [since 2003]

Compiler /GS option:
– Combination of ProPolice and Random canary.
– If cookie mismatch, default behavior is to call _exit(3)

Function prolog:
 sub esp, 4 // allocate 4 bytes for cookie
 mov eax, DWORD PTR ___security_cookie
 xor eax, esp // xor cookie with current esp
 mov DWORD PTR [esp], eax // save in stack

Function epilog:
 mov ecx, DWORD PTR [esp]
 xor ecx, esp
 call @__security_check_cookie@4
 add esp, 4

Enhanced /GS in Visual Studio 2010:
– /GS protection added to all functions, unless can be proven

unnecessary

Dan Boneh

/GS stack frame
args

ret addr
SFP

CANARY
local string buffers

local non-buffer variables
Stack  

Growth pointers, but no arrays

String 
Growth

copy of pointer args

exception handlers

Canary protects ret-addr and  
exception handler frame

Dan Boneh

Evading /GS with exception handlers

• When exception is thrown, dispatcher walks up exception
list until handler is found (else use default handler)

high
memnext handlernext handlernext handler buf

SEH frameSEH frame

After overflow: handler points to attacker’s code
exception triggered ⇒ control hijack

ptr to attack
code

Main point: exception is triggered before canary is checked

next

Dan Boneh

Defenses: SAFESEH and SEHOP
• /SAFESEH: linker flag

– Linker produces a binary with a table of safe exception handlers
– System will not jump to exception handler not on list

• /SEHOP: platform defense (since win vista SP1)
– Observation: SEH attacks typically corrupt the “next” entry in SEH

list.
– SEHOP: add a dummy record at top of SEH list
– When exception occurs, dispatcher walks up list and verifies dummy

record is there. If not, terminates process.

Dan Boneh

Summary: Canaries are not full proof
• Canaries are an important defense tool, but do not

prevent all control hijacking attacks:

– Heap-based attacks still possible

– Integer overflow attacks still possible

– /GS by itself does not prevent Exception Handling
attacks

 (also need SAFESEH and SEHOP)

Dan Boneh

What if can’t recompile: Libsafe
• Solution 2: Libsafe (Avaya Labs)
– Dynamically loaded library (no need to recompile app.)
– Intercepts calls to strcpy (dest, src)

• Validates sufficient space in current stack frame: 
 |frame-pointer – dest| > strlen(src)

• If so, does strcpy. Otherwise, terminates application

destret-addrsfp top  
of 

stack
src buf ret-addrsfp

Libsafe strcpy main

Dan Boneh

More methods …
➢ StackShield

▪ At function prologue, copy return address RET and SFP to
“safe” location (beginning of data segment)

▪ Upon return, check that RET and SFP is equal to copy.

▪ Implemented as assembler file processor (GCC)

➢ Control Flow Integrity (CFI)
▪ A combination of static and dynamic checking

▪ Statically determine program control flow

▪ Dynamically enforce control flow integrity

Dan Boneh

Control Flow Guard (CFG) (Windows 10)

Poor man’s version of CFI:
• Protects indirect calls by checking against a bitmask of

all valid function entry points in executable

ensures target is 
the entry point of a 
function

Dan Boneh

Control Flow Guard (CFG) (Windows 10)

Poor man’s version of CFI:
• Protects indirect calls by checking against a bitmask of

all valid function entry points in executable

ensures target is 
the entry point of a 
function

• Does not prevent attacker from causing  
a jump to a valid wrong function

Dan Boneh

Control Hijacking

Advanced 
Hijacking Attacks

Dan Boneh

Heap Spray Attacks

A reliable method for exploiting heap
overflows

Dan Boneh

Heap-based control hijacking
• Compiler generated function pointers (e.g. C++ code)

• Suppose vtable is on the heap next to a string object:

ptr

data

Object T

FP1
FP2
FP3

vtable

method #1
method #2
method #3

pt
rbuf[256]

da
ta

object T

vtable

Dan Boneh

Heap-based control hijacking
• Compiler generated function pointers (e.g. C++ code)

• After overflow of buf we have:

ptr

data

Object T

FP1
FP2
FP3

vtable

method #1
method #2
method #3

pt
rbuf[256]

da
ta

object T

vtable

shell  
code

Dan Boneh

 A reliable exploit?
 <SCRIPT language="text/javascript">
 shellcode = unescape("%u4343%u4343%...");
 overflow-string = unescape(“%u2332%u4276%...”);

 cause-overflow(overflow-string); // overflow buf[]
 </SCRIPT>

Problem: attacker does not know where browser  
 places shellcode on the heap

pt
rbuf[256]

da
tashellcodevtable

???

Dan Boneh

Heap Spraying [SkyLined 2004]

Idea: 1. use Javascript to spray heap  
 with shellcode (and NOP slides)

 2. then point vtable ptr anywhere in spray area

heap

vtable

NOP slide shellcode

heap spray area

Dan Boneh

Javascript heap spraying
 var nop = unescape(“%u9090%u9090”)
 while (nop.length < 0x100000) nop += nop

 var shellcode = unescape("%u4343%u4343%...");

 var x = new Array ()
 for (i=0; i<1000; i++) {
 x[i] = nop + shellcode;
 }

• Pointing func-ptr almost anywhere in heap will  
cause shellcode to execute.

Dan Boneh

Many heap spray exploits

• Improvements: Heap Feng Shui [S’07]

– Reliable heap exploits on IE without spraying
– Gives attacker full control of IE heap from Javascript

[RLZ’08]

Dan Boneh

(partial) Defenses
• Protect heap function pointers (e.g. PointGuard)

• Better browser architecture:
– Store JavaScript strings in a separate heap from browser heap

• OpenBSD heap overflow protection:

• Nozzle [RLZ’08] : detect sprays by prevalence of code on heap

non-writable pages

prevents  
cross-page  
overflows

Dan Boneh

References on heap spraying
[1] Heap Feng Shui in Javascript,  

 by A. Sotirov, Blackhat Europe 2007

[2] Engineering Heap Overflow Exploits with JavaScript  
 M. Daniel, J. Honoroff, and C. Miller, WooT 2008

[3] Nozzle: A Defense Against Heap-spraying Code Injection
Attacks,

 by P. Ratanaworabhan, B. Livshits, and B. Zorn

[4] Interpreter Exploitation: Pointer inference and JiT spraying,  
 by Dion Blazakis

Dan Boneh

Acknowledgments/References
• Acknowledgments: Some of the slides are fully or

partially obtained from other sources. Reference is noted
on the bottom of each slide, when the content is fully
obtained from another source. Otherwise a full list of
references is provided on the last slide.

• [DanBoneh] CS 155: Computer Security, Dan Boneh,
Stanford University, 2015.

• [Brumley] CS1848: Introduction to Computer Security,
Carnegie Mellon University, 2016.

