
Vulnerability Factors in New Web Applications:
Audit Tools, Developer Selection & Languages

Jason Bau, Frank Wang, Elie Bursztein, Patrick Mutchler, John C. Mitchell
Stanford University

Abstract—We develop a web application vulnerability metric
based on the combined reports of 4 leading commercial black box
vulnerability scanners and evaluate this metric using historical
benchmarks and our new sample of applications. We then use
this metric to examine the impact of three factors on web
application security: provenance (developed by startup company
or freelancers), developer security knowledge, and programming
language. Our study evaluates 27 web applications developed by
programmers from 19 Silicon Valley startups and 8 outsourcing
freelancers using 5 programming languages. We correlate the
expected vulnerability rate of a Web application with whether
it is developed by startup company or freelancers, the extent of
developer security knowledge (assessed by a simple quiz), and the
programming language used. We provide statistical confidence
measures and find several results with statistical significance. For
example, applications written in PHP are more prone to severe
vulnerabilities, especially injection, and applications developed
by freelancers tend to have more injection vulnerabilities. Our
summary results provide guidance to developers that we believe
may improve the security of future web applications.

Keywords-security, web applications, developers, languages,
vulnerability scanners

I. INTRODUCTION

Web application vulnerabilities are widely tracked [1] and
widely recognized as a serious problem [2]. Data breaches
resulting from vulnerabilities, for example, have been a recur-
ring problem in past years [3] and will likely continue to be a
major problem in the future [4]. In light of their importance,
we ask: “What factors associated with the development pro-
cess correlate with vulnerability rates?”. Focusing on initial
development decisions, we look at two types of development
teams, Silicon Valley startups and outsourced freelancers, and
measure the impact of additional factors such as developer
security knowledge and programming language selection.

In order to estimate vulnerability rates, we develop a
vulnerability metric based on black-box vulnerability scan-
ners. Although black-box scanners are far from perfect at
detecting actual vulnerabilities, past studies have systemat-
ically measured their performance [5], [6], using both test
sites constructed with known vulnerabilities and back-dated
open source sites in which actual vulnerabilities have been
found over time. Building on the previous study, we measure
improvements in site coverage (crawling) and vulnerability
detection. In addition, by comparing the behavior of different
commercial scanners on the same new sample sites constructed
in our study, we evaluate the collective behavior of 4 leading

commercial scanners, manually audited for false positives, and
suggest that the resulting metric provides a meaningful way
of comparing web applications developed by various teams.

Using our vulnerability metric, we scan 27 early stage web
applications built by 19 startups and 8 teams of freelance
developers hired for this purpose. Developers used 5 different
programming languages, and were given a simple quiz to
determine their familiarity with relevant security concepts.
Because of confidentiality reasons, we could not access the
source code of the startups, so we interviewed them before
the scan to find more information about the company and
codebase (e.g. framework, lines of code, etc.). For verification,
we also interviewed them after the scan to discuss the severe
vulnerabilities and confirm their existence in the codebase,
allowing us to determine whether a report-item is a false
positive.

We collected various kinds of data and present anecdotal
evidence for various observed phenomena. As part of the
analysis, we correlate the expected vulnerability rate of a Web
application with the nature of the developer team, the extent
of the developers’ security knowledge, and the programming
language used. We provide statistical confidence measures
for each category and find several results with statistical
significance. For example, applications written in PHP are
more prone to severe vulnerabilities, especially injection,
and applications developed by freelancers tend to have more
injection vulnerabilities.

Our summary results, collected in Section VII, provide
guidance to developers that we believe may improve the
security of future web applications. Our main findings include
the following:

1) Security scanners are not perfect and are tuned to current
trends in web application development, but a combi-
nation of results from scanners provide a reasonable
comparative measure of code security compared to other
quantitative methods.

2) Variability in scanner performance from one applica-
tion to another implies tool comparisons performed on
singular testbeds are not predictive in a statistically
meaningful way.

3) Freelancers are more prone to introducing injection
vulnerabilities when compared to startup developers, in
a statistically meaningful way.

4) PHP applications have statistically significant higher

rates of injection vulnerabilities than non-PHP applica-
tions, and PHP applications tend not to use frameworks.

5) Startup developers are more knowledgeable about cryp-
tographic storage and same-origin policy compared to
freelancers, again with statistical significance.

To our knowledge, this is the first study that evaluates
security tools, web developers, and applications to understand
and expose root causes of web vulnerabilities at this scale.
From these findings, we offer a few recommendations to
avoid security vulnerabilities in Web applications. For more
comprehensive detection of security vulnerabilities, we believe
that using multiple scanners is helpful, and developers should
test scanners on their own environments rather than relying
on narrow benchmarks. Freelancers tend to produce more
insecure code and tend to be more unreliable, so we recom-
mend carefully auditing their code and managing them tightly.
Moreover, we advise caution when using PHP as a program-
ming language, as our study and various related sources report
higher rates of vulnerabilities in PHP web applications, and
especially caution against “raw” PHP development without
a supporting application framework. Finally, we recommend
against hiring any freelancers that use PHP as this combination
has a very high vulnerability rate.

Section II reviews web programming languages and vul-
nerabilities. In Section III, we describe the details of our
experimental setup and overall process. Section IV establishes
the effectiveness of scanners in terms of crawling and vul-
nerability detection. In Section V, we evaluate and compare
the security knowledge of freelancers and developers and
examine vulnerability rates for each group. We also describe
our experiences interacting with each group. Section VI looks
at vulnerability rates of different programming languages. In
Section VII, we provide a summary of our findings and provide
recommendations for future development. In Section VIII,
we discuss related studies, and Section IX describes future
research resulting from this work.

II. THE INTERNET TODAY

This section provides background information on prominent
web development languages and web application vulnerabili-
ties.

A. Distribution of Languages

As documented by BuiltWith Trends [7], PHP is the most
popular language on the web, with more than 37 percent of the
top one million websites built using PHP. ASP is the second
most popular language and although Java was not strongly
represented in the top one million sites, it appears to be used by
8 percent of the top 10,000 sites [8] and rank third after PHP
and ASP. Because we wanted to survey applications written
in popular web programming languages, we chose PHP, ASP,
and Java as the 3 languages for web application development
for the freelancers. Interestingly, Ruby on Rails is used in
less than 1 percent of the top one million sites but about 3
percent in the top 10,000 site. Although it is a successful
language, we chose not to ask freelancers to develop sites in

TABLE I
DISTRIBUTION OF CVES ACCORDING TO NVD [1]

Language Percent of CVEs
PHP 38.6
ASP 5.8
Java 3.2

Python 0.3
Ruby 0.2

Ruby because of our limited resources - we estimated that it
would be more meaningful to obtain a larger number of data
points on a smaller number of languages.

B. Distribution of Vulnerabilities

As most web security experts likely expect, XSS and injec-
tion are the most pressing and severe vulnerabilities, as shown
by the Open Source Vulnerability Database (OSVDB) [9] and
The Open Web Application Security Project (OWASP) [2].
From OSVDB, we found that XSS and injection were the
two most prevalent vulnerabilities in the web over the last six
years. Some vulnerabilities, like file inclusion, were prevalent
for small periods of time but quickly disappeared. In contrast,
XSS and injection vulnerabilities still seem to be a persistent
problem on the web and have not improved over time [9]. XSS
and injection also occupy the top two spots on the OWASP
Top 10 list. While evaluating the audit tools, developers,
and languages, we therefore isolate and analyze these two
vulnerability types separately.

We use the National Vulnerability Database (NVD) [1]
to give us a first-order approximation of the distribution of
vulnerabilities across languages. This is a very rough count
of common vulnerabilities and exposures (CVEs) reported by
security experts, and it is across all sites and not normalized
or classified by type. We want to emphasize that we use this
data as a baseline for our study to show the distribution of
web vulnerabilities currently reported in the wild. In contrast,
the purpose of our study is to look at early stage applications
in a controlled manner to see if we can understand how such
vulnerabilities are created. Our data is normalized and aimed
at finding the root cause of vulnerabilities.

Doing a quick search in NVD of the 5 languages that appear
in our study, we find the number of displayed results and divide
it by the total number CVEs in NVD (51,730 at the time of
search) to get the percentage of CVEs for a given language.
As seen in Table I, we found PHP to by far have the most
vulnerabilities with ASP and Java a distinct second and third
respectively.

III. STUDY SETUP

Our study included 27 total Web applications recruited from
two different types of sources: 19 startups from established
companies such as Inkling to student-built applications in
the seed stage, and 8 freelancers hired from two well-known
freelancer sites, Elance.com and Freelancer.com. We display
some basic statistics regarding the study participants. Figure 1
shows a distribution of languages of the study participants, and
Table II shows the average lines of code for each language.

We spent numerous weeks scanning the applications de-
veloped by the 27 participants with 4 commercial black-
box Web application vulnerability scanners, Acunetix WVS,
HP WebInspect, IBM AppScan, and Qualys Web Application
Scanner and auditing the generated reports to validate critical
detected vulnerabilities, a process about which we will provide
more details in the next two sections.

A. Startups

To recruit the 19 startups for our study, we sent an email
to various lists known to reach Silicon Valley startups. We
offered compensation in exchange for scanning their sites
with the 4 scanners and for their time to do a background
interview, a security quiz, and a post-scan interview. For
responsible disclosure, we provided all startups with copies of
each scanner report and offered help with remediation advice
if desired.

In the background interview, we asked details about their
development and educational background as well as more in-
formation about the application, such as backend language and
framework, lines of code, man-hours spent on development,
man-hours spent on security, etc.

After we scanned their applications, we again interviewed
the developers, asking them to evaluate the accuracy of the
report and give their impression of the scanners. During this
interview, we went over the serious vulnerabilities with them
and asked them to confirm the vulnerability exists in the
codebase, allowing us to also determine if a report-item was
a false positive or not. We also offered help with implement-
ing remediation measures for any vulnerabilities during this
follow-up process, which roughly a third to a half of the
startups requested.

B. Freelancers

To survey a diverse group of freelancers, we hired 3 sets of
freelancers grouped by programming language (PHP, Java/JSP,
and ASP) from 3 different price ranges (< $1000, $1000-
$2500, and > $2500) for a total of 9 freelancers. (One ASP
freelancer could not deliver a usable application at the time
of this writing, 40 days past the promised delivery period of
1 month, hence only 8 freelancers, from 6 different countries,
are included in our study.)

Since we could not scan or obtain pre-existing applications
from freelancers, we ask them to create an application given
a detailed set of specifications. To encourage uniformity,
we gave the same specification to all the freelancers. They
were asked to design a youth sports photo-sharing site with
logins and different permission levels for coaches, parents, and
administrators. The site allowed users to upload and download
photos and documents, leave comments on photos, update and
view contact information, create and sign consent forms, and
send email to all coaches, parents, or admins via a Web form.

To remind the freelancers about security, we mentioned
that our site was mandated by “legal regulations” to be
“secure”, due to hosting photos of minors as well as storing
sensitive contact information. We explicitly mentioned only

0	

1	

2	

3	

4	

5	

6	

7	

8	

9	

10	

PHP	
 Java	
 Ruby	
 Python	
 ASP	

Fig. 1. Distribution of Languages for Study Participants

TABLE II
AVERAGE LINES OF CODE FOR EACH LANGUAGE

Language Average Lines of Code
ASP 24,320
Java 14,630
PHP 17,020

Python 23,125
Ruby 7660

those logged in as a member of a team (as admin, coach, or
parent) should be able to access any of the sensitive photos,
files, or contact information. We asked the freelancers to
enforce these policies but did not offer any further guidance on
implementation. We also did not provide any explicit security
specifications outside of those mentioned above.

Though our specification is simple, a properly function-
ing implementation would need to correctly defend against
most of the OWASP Top 10 Web application vulnerabilities
[2] by correctly sanitizing user input (A1-XSS and A2-
Injection), properly handling logins and permission levels (A3-
Authentication), keeping non-logged-in users from directly
accessing sensitive photos by typing in URLs (A4-Insecure
Direct Object Reference), preventing CSRF on the forms (A5),
correctly storing account passwords (A7), keeping ordinary
users from using admin pages URLs (A8), properly securing
the network connection (A9), and preventing arbitrary redirects
after the login flow (A10). Thus, our specification amounts to
a good test for the security awareness and practices of its
developer.

After each freelancer delivered an application that func-
tioned according to our specification, we scanned the applica-
tion with the same 4 scanners, producing a vulnerability report.
We then audited each report to validate critical vulnerabilities,
including all XSS and Injection vulnerabilities, either by
manually trying attack vectors or by examining source code.

C. Security Quiz

We asked both startup and freelancer developers to answer
basic questions about Web security, in the form of a short-
answer quiz. Table III presents more details regarding the quiz.
These questions were meant to cover concepts learned in an
introductory security class with specific emphasis on the more

TABLE III
QUIZ CATEGORIES AND QUESTION SUMMARY

Q Category Covered Summary
1 SSL Configuration Why CA PKI is needed
2 Cryptography How to securely store passwords
3 Phishing Why SiteKeys images are used
4 SQL Injection Using prepared statements
5 SSL Configuration/XSS Meaning of “secure” cookies
6 XSS Meaning of “httponly” cookies
7 XSS/CSRF/Phishing Risks of following emailed link
8 Injection PHP local/remote file-include
9 XSS Passive DOM-content intro. methods
10 Information Disclosure Risks of auto-backup (˜) files
11 XSS/Same-origin Policy Consequence of error in Applet SOP
12 Phishing/Clickjacking Risks of being iframed

severe vulnerabilities in OWASP Top 10 [2]. The full security
quiz is reproduced in Appendix A, and the questions were
selected from various homework exercises and exam questions
formerly given at an undergraduate computer security class at
a top U.S. university.

For the freelancers, we administered the quiz well before or
after the development cycle, and without providing the correct
answers, to minimize the influence the quiz would have on the
freelancer implementations.

We will give more details regarding the performance of both
groups on the security quiz in Sec. V-A.

IV. AUDIT TOOLS

In this section, we compare the performance of four com-
mercial scanners listed in Table IV first against a previously-
published [5] synthetic testbed, for calibration and longitudinal
study, and then against the broad testbed comprising all 27
participating Web applications. We test the scanners to find
how they have changed from the previous study and to deter-
mine their coverage and other characteristics. We conclude that
although they are imperfect, the combined results of several
scanners provide a reasonable comparative measure of code se-
curity, at least in comparison with other quantitative measures
such as vulnerabilities course from established databases.

A. Synthetic Testbed Study

We checked scanner vulnerability detection capabilities on
a synthetic testbed where the vulnerabilities are known in ad-
vance. The motivation for this testbed calibration are twofold:
First, we re-use a previously published scanner testbed [5],
allowing us to perform a longitudinal study on scanner de-
velopment. Second, this testbed provides us concrete data
on false negatives resulting from scanners missing existent
vulnerabilities, data that is difficult to obtain from scanning
real applications. (We account for false positives by manual
auditing, detailed later in Sec. IV-B1).

The detailed version numbers of four scanners used in our
study are listed in Table IV. These four scanners were all part
of the study in [5], affording us an opportunity to measure their
progress (or regress) in crawling and detection performance
since 2010. We obtained the testbed and raw data from the

TABLE IV
BLACK BOX SCANNERS

Tool Version in [5] Our Version
Acunetix WVS 6.5 7.0.20111005
HP WebInspect 8.0 9.20.247.0
IBM AppScan 7.9 8.5.0.1

Qualys PCI 2009 Enterprise WAS 2.0

0%	

10%	

20%	

30%	

40%	

50%	

60%	

XSS	
 SQLI	
 Other	

Injec7on	

Session	
 CSRF	
 Info	
 Leak	
 Malware	

Acune7x	

HP	

IBM	

Qualys	

Fig. 3. Comparsion of Scanner Vulnerability Detection

authors of [5] and ran the current versions of the tools against
the testbed.

1) Crawling: In the crawling test suite, URL links are
written in different encodings (such as decimal) and tech-
nologies (such as Flash or DOM manipulation, in the manner
of a drop down menu), with a unique landing page for each
test that records every page request. Figure 2 shows all tests
whose results have changed for any scanner since 2010, solid
bar representing the current percentage whereas the striped
bar represents the percentage from 2010. It is interesting to
note which categories have experienced change. All of the
Javascript-related categories have seen their crawling results
change, we believe because scanner vendors are attempting,
successfully or otherwise, to adapt their crawling engines
to the increasing number of sites designed with Web 2.0-
style Javascript-based interfaces [10]. With their continued
prevalence, Flash links are now correctly crawled by the HP
scanner, and the Qualys scanner has gained support for URL-
encoded and octal-encoded links. On the other hand, with the
apparent decrease in popularity of Silverlight [11] and Java
applets [12], support has waned for both technologies, with
no vendor now following links encoded in Java applets and
both IBM and Qualys dropping support for Silverlight links.

In addition to these categories with changes, all scanners
both now and back in 2010 were able to follow PHP redirects,
meta-refresh tags, pop-ups, iframe links, and links that appear
based on POSTing certain values from a <select> menu.
Also, both now and in 2010, all scanners except Acunetix were
able to follow a link encoded in VBscript.

2) Vulnerability Detection: We will briefly describe the
testbed here, as further testbed detail can be found in [5].
The testbed is a PHP application with intentional coding
vulnerabilities in 10 categories. It contains 3 types of XSS vul-

0%	

20%	

40%	

60%	

80%	

100%	

JS	
 Event	
 JS	
 DOM	

inser6on	

Flash	
 Silverlight	
 Java	

Applet	

Link	

Encoding	

Current	

2010	

(a) Acunetix

0%	

20%	

40%	

60%	

80%	

100%	

JS	
 Event	
 JS	
 DOM	

inser6on	

Flash	
 Silverlight	
 Java	

Applet	

Link	

Encoding	

Current	

2010	

(b) HP

0%	

20%	

40%	

60%	

80%	

100%	

JS	
 Event	
 JS	
 DOM	

inser6on	

Flash	
 Silverlight	
 Java	

Applet	

Link	

Encoding	

Current	

2010	

(c) IBM

0%	

20%	

40%	

60%	

80%	

100%	

JS	
 Event	
 JS	
 DOM	

inser6on	

Flash	
 Silverlight	
 Java	

Applet	

Link	

Encoding	

Current	

2010	

(d) Qualys

Fig. 2. Scanner crawling results on synthetic testbed on categories that saw change from 2010 results

TABLE V
SCANNER VULNERABILITY DETECTION RESULTS ON SYNTHETIC TESTBED

Category Acunetix HP IBM Qualys
Current ∆ from ’10 Current ∆ from ’10 Current ∆ from ’10 Current ∆ from ’10

XSS Type 1 50% 0% 50% 0% 100% +50% 100% 0%
XSS Type 2 0% -20% 0% -20% 0% 0% 40% 0%

XSS Advanced 30% -20% 30% +30% 10% +10% 40% +20%
XSS Total 24% -18% 24% +12% 18% +12% 47% +12%

SQLI Type 1 43% 0% 14% 0% 14% 0% 29% 0%
SQLI Type 2 0% 0% 0% 0% 0% 0% 0% 0%
SQLI Total 33% 0% 11% 0% 11% 0% 22% 0%

Other Injection 36% -18% 14% -5% 14% -23% 14% +14%
Session 44% +25% 25% 0% 50% +13% 31% +6%
CSRF 20% 0% 40% +40% 40% 0% 0% 0%

Information Leak 50% 0% 25% 0% 50% 0% 50% +25%
Malware 0% 0% 0% 0% 0% 0% 0% 0%

nerabilities: “textbook” reflected (Type 1), “textbook” stored
(Type 2), and more novel forms of reflected XSS such as using
encoding or the <prompt> tag (Advanced), and 2 types of
SQL injection vulnerabilities: ”non-stored” where user input
is directly used in a query (Type 1), and “stored” where user
input first enters the database and then the input is used in
a query (Type 2). It also contains other forms of vulnera-
bilities to server code injection e.g. file includes and header
injection, session management vulnerabilities such as fixation
and insecure login, CSRF vulnerabilities, information leakage

such as directory listings and the presence of predictably
named backup files, and finally the presence of a few malware
files. We did not replicate or test the Server Configuration
vulnerabilities from [5] since the focus of our study is on
vulnerabilities introduced in the development process, rather
than during deployment operations.

Table V presents a summary of how well each scanner
detected the existent vulnerabilities in the synthetic testbed,
again with the gray column reporting current results and the
white reporting change from 2010. Cells in bold indicate the

scanner with the best performance in the given category (row).
The data reports a baseline for the false-negative per-

formance of each scanner. Roughly, the scanners detected
between 21% (HP) and 32% (Acunetix) of all vulnerabilities
in the testbed. The scanners as a group performed best in the
XSS Type 1, Session, and Information Leak categories, with
detection performance for the categories equaling 75%, 38%,
and 43% respectively when averaged across scanners. Average
scanner performance for XSS Advanced, SQLI Type 1, Other
forms of injection, and CSRF were all between 20% and 25%.
Finally, all scanners performed poorly on the “stored” forms
of XSS and SQLI, with average detection rate below 10% for
XSS and at 0% for SQLI, and no scanner was able to detect
any malware, both now or back in 2010, likely because such
detection is outside the scope of the products we used.

To compare scanners on the testbed by category, as seen in
Figure 3, the Qualys scanner was superior in XSS detection,
as it found more Advanced types and was the only scanner to
find any stored vulnerabilities. Acunetix leads in detection of
injection vulnerabilities, whether SQL or other forms, while
IBM detects the most session vulnerabilities. No single scanner
was superior for the CSRF or information leak categories.

It is also interesting to observe how scanner performance
has (or has not) changed in the past 3 years, and how it may
map to the evolving perception of risk in the security industry.
For instance, we note that SQLI detection performance has not
changed for any scanner, possibly indicating a lack of devel-
opmental interest from the industry. We speculate this may be
due both to the perception of SQLI as a “solved problem” due
to the existence of a known solution (prepared statements) and
the increasing popularity of Web application backend storage
that avoids SQL altogether. Further, scanner performance in
detecting “other forms of injection” in the testbed, in particular
PHP local/remote file includes and CRLF/header injection,
has decreased since 2010, possibly because the industry is
optimizing its scanning vectors (limited to maintain scanning
performance in time/traffic) towards vulnerabilities considered
more prevalent or important.

On the other hand, all of the XSS categories have seen
significant change, with 3 scanners improving by 12% for
XSS overall while one detected 18% less vulnerabilities. We
interpret these deltas as indication that the industry is quite
attuned to the need for XSS mitigation and thus as been
actively at work in adapting their products to security needs.
Given how the relative number of vulnerabilities found by
each scanner varies by tested application (as shown in the
next section), we believe these scanner changes are capable
of causing regression in detection performance as well as
progression, and thus we do not necessarily believe decreased
XSS detection performance to be an indictment on overall
scanner quality.

Finally, we mention that the Qualys and IBM scanners have
started flagging UI-spoofing based vulnerabilities, which no
scanner did back in 2010. Qualys reports a legitimate lack of
“clickjacking” protection in our testbed, while IBM reports
vulnerability to “phishing through frames”.

B. New Application Testbed Study

We next ran all four scanners on the 27 applications devel-
oped by the startup and freelancer participants and screened
their report outputs for false positives. In the end, we chose
to manually verify all XSS, SQLI, and other injection vul-
nerabilities while disregarding the other categories for three
reasons. First, these vulnerabilities are prevalent and cause
“severe” code integrity breaches–they currently occupy the top
two spots in the OWASP Top 10 [2]. Second, vulnerabilities
in these categories are directly attributable to developer error,
which is the focus of the second half of this study, as opposed
to errors in system configuration which can be attributable
to system administrators. Further, we tested many startups
using their development environments, which usually did not
have SSL, thus making counting certain session vulnerabilities
somewhat unfair. Third, we found far fewer false positives
in the scanner output for these categories than any other,
especially information leak, which we will now briefly discuss.

1) False Positives and Vulnerability Count: In terms of raw,
unchecked output, Acunetix reported a total of 4411 vulner-
abilities, HP 28,026, IBM 4895, Qualys 1061, for a grand
total of 38,393. Of these, 24,931 (65%) of the report items
were “information leaks”, and HP by itself reported 20,051
such items. After some examination, we quickly determined a
vast majority of info leak items to be false positives. This
was because a scanner would try fuzzing for auto-backup
files on known URL filenames with many variations (e.g.
#profile.php#, profile.php˜) in order to test for
source code disclosure. However, the scanner then has trouble
determining whether an information leak has occurred based
on the HTTP response. We suspect it relies heavily on the
response code, thus causing false positives in site which, say,
return 200 instead of 404 for “resource not found” messages.
Since scanners contain many vectors for fuzzing, each of these
becomes a false positive, thus rapidly skewing the results. For
this reason we eliminated info leaks from our study.

On the other hand, we found very few false positives for
XSS, SQLI, or other injection items reported by scanners.
Anecdotally, during our post-scan interviews, only two startups
out of 19 found false XSS items, and none found false SQLI
or injection items. We found a similar level of accuracy for
scanner performance on the freelancer sites, where all XSS and
SQLI findings were deemed correct. This result also accords
fairly well with the previous findings on the synthetic testbed
in [5], where only 2 false positive incidents involving XSS or
SQLI were mentioned, involving only 2-3 scanners out of 8.

By manually auditing for false positives, our dataset repre-
sents a baseline measure of the XSS and injection vulnerabili-
ties existent in each app. Other forms of audit, such as manual
review, may reveal more vulnerabilities, but we believe they
will not lower our reported vulnerability counts.

Finally, we count vulnerabilities as distinct if they differ in
either URL or input parameter, as these could all be caused
by different server-side code paths. While we acknowledge
there are other ways of vulnerability accounting that are more

TABLE VI
SUMMARY OF SEVERE VULNERABILITIES FOUND BY SCANNERS

Acunetix HP IBM Qualys
Total XSS and Injection

Found 177 102 254 248

of applications where
scanner found most vulns 5 6 8 4

closely tied to server-side code, our accounting method is
proportional to exposed attack surface, which we believe to
be appropriate for reporting black-box testing results.

2) Results By Application: Figure 4 depicts the number of
severe (XSS, SQLI, or other injection) vulnerabilities found
by each scanner on each application. We present data in
this fashion to illustrate the large variability in the relative
scanner “rankings” from application to application. In total,
as shown in Table VI Acunetix found the most vulnerabilities
on 5 applications, HP on 6, IBM on 8, and Qualys on 4.
Furthermore, there were 11 applications (41%) on which one
or more scanners found more than 10 serious vulnerabilities,
and on each of these applications the worst-performing scanner
found at most 2 vulnerabilities, and always at least 10 less than
the best-performing scanner.

Given this amount of variability in detection performance
across applications, we think that it is likely imprudent to
assign relative values to scanners based on results from a
single or even a few narrowly-focused benchmarks, however
carefully designed they may be. We recommend potential
customers of these products to make thorough comparative
evaluations of the scanner in their own environments and
possibly incorporate more than one audit tool in their security
process. In some sense, this variability reflects the reality for
applications facing attackers: it only takes one correct vector
for an application that was previously “secure” to become
completely vulnerable. However, such variability seems to
confirm that black-box scanners rely on a set of vendor-
developed detection heuristics that behave brittlely when faced
with broad application coding practices and deployment con-
ditions. For researchers, this may represent a challenge and
opportunity to apply systematic methods to yield consistency
in vulnerability detection.

3) Statistical Study: With the variability by application
mentioned in the previous section, we perform some sta-
tistical analysis on the set of vulnerability data to see if
some humanly identifiable scanner detection rate trends are
statistically significant. Our analysis views each application
as a sample in a population of 27 and each scanner as an
instrument which measures vulnerabilities per (1000) line of
code as a normalized detection metric for each sample. We
then consider detection of all “severe” vulnerabilities (XSS +
Injection) and also XSS and Injection vulnerabilities separately
as three experimental runs over the same population. For each
of the three experimental runs, we compute the average over
27 samples of the metric measured by each scanner. These are
reported in Table VII.

At first glance, our data shows that, in accordance with

the results from the synthetic testbed, the Qualys scanner
performs superior to the others in XSS detection while the
Acunetix scanner (tied with IBM) is best at detecting injection
vulnerabilities. The data also seems to indicate that the Qualys
scanner identifies injection vulnerabilities at a lower rate than
the others.

However, to quantify the statistical significance in compar-
ing the average normalized detection rate between scanners,
we conduct both an 1-way ANOVA test between all scan-
ner means and also paired student’s t-tests with Bonferroni
correction between all pairs of scanners’ detection results
on the 27 samples. These tests produce a p-value which
indicates the degree of statistic confidence in the comparison
of means. (All p-values are two-tailed in this paper.) ANOVA
results for the three categories are (F=1.161 p=0.328) for
XSS, (F=1.367 p=0.257) for injection, and (F=0.977 p=0.407)
for XSS+injection, indicating no statistically significant differ-
ences in mean detection performance in any category between
the 4 groups, at the common 95% confidence level.

For the student’s t-test, since we apply the pairwise test 6
times, a stricter p value of 0.0083 using the Bonferroni correc-
tion is required for 95% confidence. This level was also not
met by any comparison, since the lowest p-values for pairwise
comparison are 0.044 for Acunetix-Qualys in injection and
0.069 for IBM-Qualys in injection. We thus conclude that, in
rough accordance with our manual observation of variability
in the previous section, there are no statistically significant
comparisons between the average detection performance of
scanners in any category, using our testbed of 27 sample
applications.

Since we cannot even compare average performance mean-
ingfully despite having 27 real-life samples, we strongly
believe this statistical conclusion argues that any tool compar-
isons performed on a narrower (or singular) testbed will not
be generalizable, and therefore, not be predictive. Furthermore,
for the remainder of this study, we will combine the audited
vulnerability reports from all four scanners into a single metric
when evaluating application vulnerabilities, in an effort to
reduce susceptibility to variation in a single tool and create
a more reliable metric.

4) Scanner Handling of Javascript: Finally, we wish to
relay two anecdotes that occurred during our weeks of testing
which highlight some scanner limitations and successes when
it comes to dealing with client-side Javascript.

First, two of the startups were coded in a very Javascript-
heavy fashion on the client side. One rich-content creation
application generated most of its interface with DOM ma-
nipulation performed by Javascript organized by backbone.js
[13]. While the application used Javascript pushstate()
[14] to update the browser URL bar (so that copy-and-
pasted links would bring users to the appropriate application
state), there were no links coded in HTML at all–the served
index.html only consisted of the <head> element plus several
<script> tags linking in Javascript libraries and setting the
user session state needed by those libraries. Despite the appli-
cation containing a large number of distinct URLs and pages

0	

20	

40	

60	

80	

100	

120	

140	

160	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	
 13	
 14	
 15	
 16	
 17	
 18	
 19	
 20	
 21	
 22	
 23	
 24	
 25	
 26	
 27	

Acune1x	

HP	

IBM	

Qualys	

Fig. 4. XSS and Injection vulnerabilities found by scanners for each study participant

TABLE VII
AVERAGE SCANNER VULNERABILITY DETECTION RATE OVER 27 APPS AND STATISTICAL CONFIDENCE OF PAIRWISE MEAN COMPARISON

Category Acunetix HP IBM Qualys p-value from
vulns detected

1000 LOC
vulns detected

1000 LOC
vulns detected

1000 LOC
vulns detected

1000 LOC
1-way ANOVA

XSS+Injection 0.55 0.34 1.47 1.89 0.41
XSS 0.22 0.19 1.15 1.85 0.33

Injection 0.32 0.14 0.32 0.04 0.26

when users interact with it via browser, all of the scanners
experienced serious trouble even crawling this application to
discover links and user inputs to test. No scanner was able to
find any meaningful vulnerabilities in this application, largely
due the inability to discover application pages beyond the
initial landing page. A second application, written in Java and
compiled to Javascript with Google Web Toolkit [15], also
caused all scanners to remain stuck on the index page. This
behavior stands in contrast from the advertising and interface
options for some browsers, which promise Javascript execution
in order to find links.

This first anecdote serves to illustrate our observation
that the scanners, originally designed as HTTP request
fuzzers/response interpreters more naturally suited for a server-
reliant Web application model, are still in the process of adapt-
ing to more client-Javascript heavy Web 2.0 applications. For
instance, the IBM tool includes an entirely separate module
that analyzes Javascript code downloaded during scans. While
tighter integration of Javascript analysis modules with the
crawling engine would likely result in superior site coverage
and detection performance, we can report that this code-
analysis module was successful in one instance, successfully
detecting a Type-0 DOM-based XSS vulnerability, on a site
which used a vulnerable version of swfobject.js [16]

from 2009. (The swfobject.js developers later patched
the very same vulnerable lines of code that the IBM module
flagged [17].)

V. STARTUP DEVELOPERS VS. FREELANCERS

Having used the participating applications together as a
testbed for judging individual scanners, we now combine all
legitimate vulnerabilities found by all scanners together as
a single metric for judging the coding quality of groups of
developers categorized by startup versus freelancer, security
quiz score, and also programming language usage.

We first describe the results we obtained from the security
quiz and scanning of the web applications and highlight some
interesting differences in security knowledge between startup
developers and freelancers. We also look at the distribution
of vulnerabilities and identify correlations between education
and vulnerabilities as well as show certain deficiencies in free-
lancers. We also provide some of our experiences interacting
with freelancers and developers.

A. Security Quiz Results

We graded the quizzes on a simple scale in an attempt to
reduce noise in the data. For any given question, a person could
receive full, half, or no credit. One of the authors graded all the

TABLE VIII
AVERAGE STARTUP AND FREELANCER DEVELOPER SCORE ON SECURITY

QUIZ

Category Startup Freelancer p-value of comparison
XSS 39% 39% 0.99

Injection 70% 56% 0.33
Crypto Storage 90% 50% 0.0004

SSL 59% 59% 0.99
UI 66% 50% 0.12

Info Leak 68% 44% 0.24
SOP 63% 13% 0.011
Total 61% 48% 0.17

quizzes to maintain consistency, and since the questions were
gathered from a security class, the answers were compared
against the corresponding key. Table VIII presents the average
results for startups and freelancers as a group, as well as the p-
value calculated for the mean comparison by a student’s t-test.
The scores are in percentage correct, out of 100.

On average, startup developers performed slightly better
than the startup developers on average (around 61 percent
to 48). However, the difference is not statistically significant.
The range and standard deviation of the scores was greater
for the startup developers with some developers receiving
perfect or close to perfect and others scoring below 50 percent.
We also took a more in-depth look into the scores of the
individual categories of questions asked. Startup developers
and freelancers both struggled with questions regarding XSS,
with a score around 39%. Startup developers performed equiv-
alently or better than freelancers on all categories, only with
statistical significance in the cryptographic storage (p=0.0004,
more discussion below in Sec. V-D) and same origin policy
categories (p=0.011). (The next lowest p-value was .12 for the
higher average scores for startups in the UI security category.)
We speculate that the significant difference in performance
between freelancers and startups may be due to the “same-
origin policy” concept and terminology being more familiar
to American developers linked to Silicon Valley than to
international freelancers.

B. Vulnerability Rate Results

For completeness, Table IX presents the rate of
XSS+injection, XSS-only, and injection-only vulnerabilities
detected by the 4 scanners as a group for each application. It
also serves as the raw data for all the statistical comparisons
by category that we perform in Sections V and VI.

Figures 5, 6, and 7 present these vulnerability rates plotted
against the developers’ score on the security quiz. From
Figures 5 and 6, the human eye can discern a loose negative
correlation between the number of vulnerabilities per line of
code and the security quiz score. (Negative correlation here is
the direction that matches intuition, that a higher security quiz
score equals fewer security vulnerabilities.) Table X lists the
Pearson product-moment correlation coefficients (r) between
application vulnerability rates and the security quiz score of
their developers, along with the p-value calculated for each

TABLE IX
DETECTED VULNERABILITY RATES (vulns

1000LOC
) BY APPLICATION.

THIS DATA IS PLOTTED IN FIGURES 5, 6, AND 7

No. Provenance Language XSS+Injection XSS Injection
1 Startup Java 0.24 0.00 0.24
2 Startup PHP 0.97 0.97 0.00
3 Startup PHP 0.10 0.00 0.10
4 Startup Ruby 0.10 0.00 0.10
5 Startup PHP 20.00 16.50 3.50
6 Startup Java 0.00 0.00 0.00
7 Startup PHP 1.30 0.67 0.63
8 Startup PHP 7.00 4.00 3.00
9 Startup Python 0.08 0.08 0.00

10 Startup Python 0.10 0.06 0.04
11 Startup PHP 2.11 1.79 0.32
12 Startup Ruby 0.33 0.33 0.00
13 Startup Java 0.00 0.00 0.00
14 Startup Python 0.00 0.00 0.00
15 Startup Java 0.00 0.00 0.00
16 Startup Ruby 0.40 0.30 0.10
17 Startup Python 0.20 0.20 0.00
18 Startup Ruby 1.10 1.10 0.00
19 Startup Ruby 25.47 25.09 0.38
1 Freelancer PHP 37.41 33.69 3.72
2 Freelancer ASP 3.54 2.12 1.41
3 Freelancer ASP 0.00 0.00 0.00
4 Freelancer Java 0.00 0.00 0.00
5 Freelancer PHP 1.40 1.40 0.00
6 Freelancer PHP 3.65 0.00 3.65
7 Freelancer Java 5.88 1.25 4.63
8 Freelancer Java 1.17 0.50 0.67

Average 4.17 3.34 0.83

TABLE X
CORRELATION BETWEEN APPLICATION VULNERABILITY RATES AND

SECURITY QUIZ SCORES OF THEIR DEVELOPERS

Group XSS+Injection XSS Injection
r p r p r p

All 27 -0.245 0.22 -0.205 0.31 -0.359 0.066
Freelancers -0.079 0.85 -0.068 0.87 -0.102 0.81

Startups -0.303 0.21 -0.261 0.28 -0.440 0.059

coefficient. The correlations are reported for all 27 participant
and for the startup and freelancer groups.

We can see that all r values are negative, which at least
accords with intuition. We also point out that there exists
borderline significant correlation between the rate of injection
vulnerabilities and the security quiz score for startups and for
all participants, so more knowledgable programmers appear
to be somewhat effective in translating their knowledge into
prevention of injection vulnerabilities, possibly due to the
existence of an effective canonical solution (prepared state-
ments) for SQL injection. Interestingly (but probably without
significance), the negative correlation was slightly stronger
between injection vulnerability rates and security score over
the entire quiz, rather than a score just over injection questions.

We also find it noteworthy that the correlation in every
category is stronger for startups than for freelancers. We
speculate that this may be because startup participants are
more invested in the security of their applications (as evi-
denced by their choice to participate in exchange for security
reports) and so put more effort into translating their knowledge

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

Freelancer ASP

Freelancer Java

Freelancer PHP

Startup Java

Startup PHP

Startup Python

Startup Ruby

Score on Security Quiz

In
je

ct
io

n
 a

nd
 X

S
S

 P
er

 1
0

0
0

L
O

C

Fig. 5. Rate of injection and XSS vulns versus developer quiz score

TABLE XI
COMPARISON OF AVERAGE VULNERABILITY RATES (vulns

1000LOC
)

BETWEEN FREELANCERS AND STARTUPS

XSS+Injection XSS Injection
Freelancer avg 6.63 4.87 1.76

Startup avg 3.13 2.69 0.44
p-value 0.37 0.54 0.027

into practice. We believe freelancers, on the other hand, are
incentivised by the bidding process in their hiring towards
producing minimally-viable functionality in the shortest time.
They also often create sites for customers who cannot verify
the quality of their work. Since security features are fairly
easy to eliminate without any noticeable difference to the
functionality of the application, freelancers looking to make
shortcuts may not bother with them, despite knowing the
proper techniques. Thus, the chief characteristic that distin-
guishes between freelancers and startups (shown not to be
quiz score) may be motivation. We will provide some further
evidence of this divide in the next section.

Overall, the loose correlation between vulnerability rate
and quiz score implies some disconnect between security
knowledge and its implementation in practice. Even motivated
developers might understand the source and solution to these
security vulnerabilities but not know how to avoid or solve
these vulnerabilities in practice. Or they may not understand
the potential vulnerabilities but still avoid them due to frame-
work features (or sheer luck). The underlying reasons for this
disconnect are outside the scope of this study. However, we
also find the relation between knowledge and implementation
for the cryptographic storage area particularly illustrative and
will analyze it in more detail below in Sec. V-D.

C. Freelancer and Startup Comparisons

We now look at the effect of the type of developer (startup
developer and freelancer) on the average number of severe vul-
nerabilities per line of code (XSS and injection), summarized

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Freelancer ASP

Freelancer Java

Freelancer PHP

Startup Java

Startup PHP

Startup Python

Startup Ruby

Score on Security Quiz

In
je

ct
io

n
V

ul
ns

 P
er

 1
0

00
 L

O
C

Fig. 6. Rate of injection vulnerabilities versus developer quiz score

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

Freelancer ASP

Freelancer Java

Freelancer PHP

Startup Java

Startup PHP

Startup Python

Startup Ruby

Score on Security Quiz

X
S

S
 P

er
 1

00
0

LO
C

Fig. 7. Rate of XSS vulnerabilities versus developer quiz score

in Table XI. We find no meaningful comparisons for the XSS
and XSS+injection categories, but freelancers produced more
injection vulnerabilities on average compared to the startup
developers with statistical significance of 97 percent (p-value =
0.03, calculated by student’s t-test). Freelancers are also worse
in a nearly-identical and statistically-significant way if we look
at just SQL injections rather than all injections.

Cross-referencing our data about security knowledge in
Table VIII, we did not find that freelancers knew signifi-
cantly less than startup developers about avoiding injection
vulnerabilities. Given the effectiveness of the textbook solution
here, the worse injection vulnerability performance of the
freelancers seems again to be attributable to motivation.

D. Freelancer Cryptography Case Study

In our security quiz, we asked the common cryptography
question regarding storage of passwords in databases. This
question was particularly interesting because we had access
to the username-password databases for the freelancers, and

TABLE XII
FREELANCER SECURITY QUIZ RESPONSE AND ACTUAL

IMPLEMENTATION FOR PASSWORD DATABASE

Freelancer Security Quiz Response Actual Implementation
20 hash only hash only
21 hash only hash + salt
22 hash + salt hash + salt
23 hash only hash only
24 hash only hash + same salt
25 use login hash only
26 hash only plaintext
27 hash only plaintext

there was a straight forward way to check if their knowledge
matched their actual practice. This is an interesting area to
explore because unlike the other vulnerabilities such as XSS
and injection, the problem is very specific and isolated in the
code base, and the solution to this problem is clearly defined
– hashing the password with a unique salt that is stored in
cleartext. Their answer on the quiz had some correlation to
their practices, but not as strong as we would expect. As seen
in Table XII, only one freelancer who knew to hash and salt
the password with a unique value actually did that in practice,
and one did it despite answering it incorrectly on the quiz. A
majority of people who knew to hash the password did so, but
two freelancers stored passwords in plaintext despite knowing
that the password needed to be hashed. Therefore, this data
is more definitive evidence that although developers claim to
know correct security practices, it does not always mean these
practices will be implemented correctly.

On the other hand, we found the code of one freelancer
particularly interesting. Freelancer 21 answered the quiz ques-
tion incorrectly by saying that the password only needed to
be hashed, but in practice, he actually hashed and salted
the passwords. Here, he appears to be benefitting from code
he does not understand or has not reviewed, similar to how
developers benefit from frameworks in general. However, we
did not find strong evidence that a framework was incorporated
in his source code in a modular fashion, rather, it appears to be
copy-and-pasted as a part of a larger library. Thus, the security
benefit gained from third-party code in this case is likely at
the cost of maintainability.

Although we could not examine the startups’ password
databases due to privacy and security reasons, we believe
that there might be a similar trend. It is also interesting to
note that startup developers clearly outperformed freelancers
on this quiz question. We believe this might be because the
participating startup developers are more attuned to news
of recent security breaches involving password databases at
LinkedIn, Sony, and others, and also because of their university
computer-science education included basic cryptography and
security as part of the curriculum.

E. Summary

From our data, we find statistically significant data that
freelancers are more prone to producing injection vulnera-
bilities than startup developers, but in general we find weak

correlation between knowing a security vulnerability and actu-
ally avoiding it in practice. We did find borderline significant
correlation between developer knowledge and resultant appli-
cation vulnerability rates for injection vulnerabilities, possibly
because there is a known solution to a large number of these
vulnerabilities. Correlations between knowledge and security
were in all cases weaker for freelancers than for startup
developers, which may point to a question of motivation. The
lack of strong correlation, exemplified by the clearly defined
and well-known security problem of storing passwords in a
database, shows that knowledge might be a factor but does not
strongly determine the prevention of security vulnerabilities.
We believe this disconnect between knowledge and result
to highlight an interesting area, requiring further research to
better understand developers and their practices.

F. Our Experience with Freelancers

We now share some of our dealings with the freelancers in
the hope that it is informative for future customers and also
researchers pursuing studies of a similar nature.

We found freelancers to be generally unreliable. We re-
ceived bids from over 100 freelancers, and the average
promised delivery time was between 30-40 calendar days. For
the freelancers we hired, the average promised delivery period
was 35 days. However, only 2 freelancers delivered within 2
days of what they promised. The freelancer as a group missed
their promised deadline by 21 days, and one did not finish
even 40 days after the promise date and had to be excluded
from the study. As a result of this experience, we believe it
might be difficult to contact a freelancer to fix a potential
security vulnerability after the site is complete. Incidentally,
although we intentionally selected freelancers from different
price ranges, we did not find any clear correlation between
price and vulnerability rate or on-time delivery.

In comparison, our experience with startup developers was
far more positive. The startup developers were far more
reliable and responsive to our questions and requests, usually
responding within a day or two and frequently taking the
initiative to inquire whether our results were ready.

VI. LANGUAGES

We now look at the data on programming languages and vul-
nerabilities for startup developers and freelancers. We begin by
reporting preliminary statistics regarding the freelancers and
startups use of languages. The distribution of programming
languages was predetermined (ASP, JSP, PHP). We received
the most bids for ASP (53), with PHP (45) in second, and
JSP (15) a distant third. The average prices were very similar.
The highest was PHP ($3000) with ASP ($2600) and JSP
($2450) as second and third respectively. The average time
for completion had JSP as the shortest with 31 days with ASP
and PHP tied around 38 days.

Out of the 19 startups, as seen in Table 1, the most popular
language was PHP, followed by Ruby.

Table XIII lists the average vulnerability rates for each
language in our study. To test for statistical significance of

TABLE XIII
AVERAGE VULNERABILITY RATES (vulns

1000LOC
)

OF APPLICATIONS BUILT IN EACH LANGUAGE

XSS+Injection XSS Injection
PHP 8.22 6.56 1.66
Java 1.04 0.25 0.79
Ruby 5.48 5.37 0.12

Python 0.10 0.09 0.01
ASP 1.77 1.06 0.71

the mean comparison between the 5 languages, we performed
a 1-way ANOVA test and obtained values of (F=0.93 p=0.47)
for the XSS+injection category, (F=0.84 p=0.52) for the XSS
category, and (F=1.48 and p=0.24) for the injection category.
ANOVA results thus state that pairwise comparisons of the
mean vulnerability rates between two language groups, such
as between PHP applications and Java applications, are not
statistically significant.

However, we further try comparisons that partition the
entire population into two groups. In particular, we split
our entire population into ”PHP” and ”Not PHP”, as PHP
has the most number of samples. Viewed in this way,
and applying the student’s t-test, we find that the aver-
age rate of injection vulnerabilities is higher for the PHP
group (mean=1.66 vuln/1000LOC) than the non-PHP group
(mean=0.42 vuln/1000LOC) with a significant p-value of 0.03.
(The PHP group also has an average rate of XSS+injection
vulnerabilities (mean=8.22 vuln/1000LOC) higher than the
non-PHP group (mean=2.14 vuln/1000LOC) with a borderline
p-value of 0.10). No other language groups have a signifi-
cant comparison to their complement set in the same way.
Moreover, this data matches well with our approximation
using CVEs from NVD in Section II, which showed that
PHP had significantly more reported CVEs compared to other
languages. This might imply that vulnerabilities in PHP are a
widespread issue, which is magnified since PHP is the most
used programming language.

We speculate PHP’s statistically-significant higher rate of
injection vulnerabilities is due to a propensity for PHP de-
velopers to forgo a framework and any associated database
interfaces, instead creating their own (improperly sanitized)
SQL queries in raw PHP. We did not observe any of the
three PHP freelancers using a framework, and only 2 of the 6
startups using PHP reported using a framework (CakePHP and
Yii). This lack of framework usage, combined with developer
mistakes in manual sanitization in generating HTTP responses,
could also explain PHP’s higher rate of XSS, leading to
the borderline statistically-significant higher rate of all severe
vulnerabilities (XSS+injection).

Whether PHP users are naturally disinclined towards frame-
works remains an open question. However, in contrast to
PHP, all users of Python (most often Django) and Ruby
(all Rails) in our study reported using a framework. In fact,
on the background survey of startups, only developers that
used PHP answered ”none” or left the question blank when
asked about backend frameworks used, likely because the

other languages in our study all originated as general purpose
languages that would be quite inconvenient to Web developers
without framework support. In any event, we did observe in
our study that frameworks were not a complete panacea, as
on Ruby-on-Rails application had the second highest number
of confirmed XSS in the entire study.

Finally, because we made observations about freelancer and
PHP vulnerability rates in the previous section and this, we
naturally wondered about the combination of the two. The
3 freelancers using PHP produced an average vulnerability
rate 3.39 times the average vulnerability rate for the entire
population for all severe vulnerabilities, 3.51 times for XSS,
and 2.95 times for injection. Using a z-test to check the
significance of this sub-population mean, we found p-values
of 0.054, 0.079, and 0.051 respectively, meaning those who
hire PHP freelancers would appear headed for a statistically
significant bad time.

VII. SUMMARY AND RECOMMENDATIONS

We now summarize the major findings of the paper and
provide advice to application owners and scanner consumers
based on these findings.
Regarding scanners:

• Due to variability in performance from application to
application, it is difficult to predict which scanner will
perform best on a single chosen application. We recom-
mend developers thoroughly evaluate scanners on their
own environments and not rely on results from testbeds,
and possibly use more than one tool.

• Longitudinal results seem to indicate most scanner devel-
opment effort on crawling dynamic Javascript events and
Flash, and on detecting XSS and UI-spoofing vulnerabil-
ities. Conversely, results appear to show stasis for SQL-
injection detection and dropping support for crawling
Silverlight and Java applets and detecting remote/local
file-includes and header injection.

• Scanners’ “Information Leak” report items are majority
false positives.

Regarding developer selection and education:
• Freelancers are more prone to producing injection vul-

nerabilities on applications than startup developers, in a
statistically-significant way.

• We believe there is evidence in our study to attribute
the difference in vulnerability rates between startups and
freelancers to “motivation”. Correlations are in all cases
stronger between developer knowledge and measured
security for startups than for freelancers, and despite their
worse results for injection vulnerability rate, freelancers
scored similarly to startups on the security quiz questions
covering injection.

• Overall, correlation between developer security knowl-
edge and the vulnerability rates of their applications is
not as strong as we hoped. This apparent disconnect is
interesting and worth further study on developers and
their practices.

• Startup developers and freelancers score comparably on
the entire security quiz. The difference is not statistically
significant.

• Startup developers did score significantly higher on ques-
tions covering cryptographic storage and the same-origin
policy.

• We found freelancer and their estimates of delivery
schedule to be unreliable.

Regarding language selection:
• PHP applications have higher rates of injection vulner-

abilities than non-PHP applications, in a statistically-
significant way.

• The combination of PHP and freelancers leads to roughly
3x higher rate of vulnerabilities, in a statistically-
significant way. We recommend that new application
developers avoid this combination or require the use of a
development framework. Owners of existing applications
of this particular provenance should check their applica-
tions for serious vulnerabilities.

• In our study, PHP applications appear much less inclined
to use frameworks than applications developed in other
languages.

VIII. RELATED WORK

A. Vulnerability Statistics

The MITRE corporation runs large databases for vulner-
ability statistics and classifications, including the National
Vulnerabiiity Database (NVD) [1], and the Common Weakness
Enumeration (CWE) [18]. While these databases are valuable
repositories of vulnerability data over a large number of appli-
cations, their entries are collected from voluntary disclosures
by security researchers or companies and so report rough
statistics that are not scrutinized to remove duplicates, normal-
ize vulnerability counts to application size, etc. We view the
statistics provided by our study, while from a smaller sample,
as complementary to these sources, since we provide carefully
curated data from a designed experiment on newly created
code that attempts to measure vulnerability rates caused by
selected developer characteristics.

B. Comparison of Languages

Several academic and industry white papers also provide
statistics on Web application vulnerabilities, typically clas-
sifying applications by language. Our study is the first of
which we are aware that investigates developer education and
background as factors in the resultant vulnerability rates of
their applications. Finifter et. al. [19] examined 9 applications
(3 PHP, 3 Perl, 3 Java) built around the same spec with a
single manual reviewer (Finifter) and a single black-box tool
(BurpSuite [20]), finding “little evidence that programming
language plays a role in application security” but rather placing
such influence in frameworks. In our study of 27 samples,
we were able to find statistically significant evidence that
PHP was more prone to certain vulnerabilities than other
languages, which may possibly be caused by the disinclination
of PHP developers towards frameworks. Incidentally, Finifter’s

nine applications had vulnerability rates for XSS+SQLI in the
range of 0.07 to 0.91 per 1000 LOC, which is compatible
with the range we observed. Walden et al. [21] compared the
vulnerability rates of 14 PHP and 11 Java applications and
found higher rates for PHP, but without statistical significance.

WhiteHat Security’s annual report [22] is another data
source for real life vulnerability statistics with a large sample.
It classifies vulnerability counts and reports vulnerability and
remediation durations by application industry, and type of
vulnerabilities, and has classified by language in past editions
(though not in 2012). Our work is one of a fairly different
nature than theirs, distinguished mainly by our consideration
of causal factors for vulnerabilities versus their focus on
baseline counts and remediation, which make our reports again
complementary.

C. Comparison of Vulnerability Detection Tools

There has also been a developing body of work, from both
academic and industry sources, focused on benchmarking and
evaluating various techniques for web application vulnerability
detection, including black-box scanners, using a testbed or one
to two applications. Bau et. al. [5] evaluated 8 commercial
scanners for crawling and vulnerability detection performance
using a custom testbed, which is reused by our study to provide
longitudinal data on scanner developments since 2010–results
from that study can be found in Sec. IV-A. Doupé et. al.
[6] studied 11 commercial and open-source scanners, also on
a single testbed site, and produced a performance ranking.
They also found crawling to be a central challenge to scanner
performance in general. Austin [23] evaluated the security
of two applications with a variety of techniques including
manual pen-testing, static analysis (with Fortify 360 [24]), and
automated pen-testing (with IBM AppScan) and found that
automated pen-testing was most effective in terms of imple-
mentation vulnerabilities discovered per hour, but systematic
manual pen-testing may be effectively performed in tandem to
discover flaws in design.

From industry, the WebGoat [25] and WIVET [26] projects
are well-known vulnerability and crawling testbeds respec-
tively often used in scanner development and for cursory
scanner comparisons. SecToolMarket [27] is a Website that
benchmarks over 60 scanner editions using a single synthetic
testbed, with result trends, such as a high relative rate of
detection on Type 1 XSS and a much lower one on file-
inclusions, that appear to match our findings in this paper.

However, using the broadest testbed (27 organic and 1
synthetic applications) of which we are aware for evaluating
vulnerability detection tools, our study was able observe
something unique from all previous benchmarking efforts:
great variability in the relative performance of scanners from
one application to the next. This variability across applications
rendered no comparison of average detection rates between
scanners statistically meaningful. Application owners should
not expect comparative results from singular testbeds to hold
in their environment, and researchers should similarly avoid

relying on narrow benchmarks, however well designed they
might be, to judge between vulnerability detection techniques.

IX. CONCLUSION

Our study, undertaken with a breadth of samples in both
tools (4 scanners) and applications (19 startups and 8 free-
lancers), demonstrates that developer background and pro-
gramming language are both statistically significant factors in
certain instances on the vulnerability rates of Web applications.
We found that freelancers are significantly more prone to
injection vulnerabilities than startups, but that the difference
may be more attributable to motivation than education. We also
found that PHP applications have significantly more injection
vulnerabilities than other languages, which may be explained
by low rate of PHP developers in our study using supporting
frameworks.

We found an interesting apparent disconnect between devel-
oper security knowledge and actual measurable vulnerability
rate, which can be the basis of future research into developers
and their engineering practices.

Regarding black-box scanning, our study observed evidence
that the scanner industry is working on increasing crawling
and detection support for client-Javascript heavy applications
and cross-site scripting, possibly at the expense of other
vulnerabilities with well-understood solutions such as file-
inclusion and SQL injection. With the breadth of applications
in our study, we demonstrated a large amount of variability
of scanner performance across applications. Thus, the size
of the testbed required to make statistically meaningful and
predictive comparisons of tool performance is greater than
the size of our study. Finally, we believe that this variability
presents a research opportunity for how to systematically
improve the consistency of scanner performance across all
applications.

ACKNOWLEDGMENT

The authors would like to thank Qualys, Acunetix, IBM,
and HP.

REFERENCES

[1] National Vulnerability Database. http://nvd.nist.gov/
[2] OWASP Top 10 Project. https://www.owasp.org/index.php/Category:

OWASP Top Ten Project
[3] Number of Incidents. http://datalossdb.org/statistics
[4] G. Sharath and R. Rashmi, “Analysis of Reliability in Web Service for

Fuzzy Keyword Search in Encrypted Data,” International Journal of
Computer Trends and Technology, vol. 3.4, 2012.

[5] J. Bau, E. Bursztein, D. Gupta, and J. Mitchell, “State of the Art:
Automated Black-Box Web Application Vulnerability Testing,” vol. 0.
Los Alamitos, CA, USA: IEEE Computer Society, May 2010, pp. 332–
345.

[6] A. Doupé, M. Cova, and G. Vigna, “Why Johnny Can’t Pentest: An
Analysis of Black-Box Web Vulnerability Scanners,” in Proceedings
of the 7th international conference on Detection of intrusions and
malware, and vulnerability assessment, ser. DIMVA’10. Berlin,
Heidelberg: Springer-Verlag, 2010, pp. 111–131. http://dl.acm.org/
citation.cfm?id=1884848.1884858

[7] BuiltWith Trends. http://builtwith.com/
[8] Framework Usage Statistics. http://trends.builtwith.com/framework
[9] Vulnerabilities in OSVDB Disclosed by Type by Quarter. http:

//osvdb.org/

[10] JQuery Usage. http://trends.builtwith.com/javascript/jQuery
[11] SilverLight. http://trends.builtwith.com/framework/Silverlight
[12] Java Applet Usage. http://trends.builtwith.com/docinfo/Applet
[13] Backbone.js. http://backbonejs.org
[14] “The History Interface,” HTML5: Edition for Web Authors. http:

//www.w3.org/TR/html5-author/history.html#dom-history-pushstate
[15] Google web toolkit. https://developers.google.com/web-toolkit/
[16] swfobject. http://code.google.com/p/swfobject/
[17] swfobject revision 402. http://code.google.com/p/swfobject/source/

detail?r=402
[18] Common weakness enumeration. http://cwe.mitre.org/
[19] M. Finifter and D. Wagner, “Exploring the Relationship Between

Web Application Development Tools and Security,” in Proceedings
of the 2nd USENIX conference on Web application development, ser.
WebApps’11. Berkeley, CA, USA: USENIX Association, 2011, pp.
9–9. http://dl.acm.org/citation.cfm?id=2002168.2002177

[20] PortSwigger Web Security. Burpsuite. http://portswigger.net/burp/
[21] J. Walden, M. Doyle, R. Lenhof, and J. Murray, “Java vs. PHP:

Security Implications of Language Choice for Web Applications,” in
International Symposium on Engineering Secure Software and Systems
(ESSoS), 2010.

[22] (2011) Whitehat security statistics report. https://www.whitehatsec.com/
resource/stats.html

[23] A. Austin and L. Williams, “One Technique is Not Enough: A
Comparison of Vulnerability Discovery Techniques,” in Proceedings of
the 2011 International Symposium on Empirical Software Engineering
and Measurement, ser. ESEM ’11. Washington, DC, USA: IEEE
Computer Society, 2011, pp. 97–106. http://dx.doi.org/10.1109/ESEM.
2011.18

[24] HP Fortify. Fortify Source Code Analyzer. https://www.fortify.com/
products/hpfssc/source-code-analyzer.html

[25] OWASP WebGoat Project. https://www.owasp.org/index.php/Category:
OWASP WebGoat Project

[26] Web Input Vector Extractor Teaser. http://code.google.com/p/wivet/
[27] Sectoolmarket. http://www.sectoolmarket.com/

APPENDIX
SECURITY QUIZ QUESTIONS

1) Most recent browser editions issue security warnings
when a website issues a self-signed or unsigned SSL
certificate. Aside from avoiding these pesky browser
warnings, why should a popular website not use self-
signed or unsigned certificates?

2) Many web sites / web applications utilize user logins,
and therefore need to store the passwords associated
with each user. What standard security measures should
be taken when storing user passwords to a database?

3) Why do banking sites display an image chosen by the
customer (a firetruck, a tennis racket, etc.) on their login
screens?

4) What is the best way to protect against SQL injection?
5) What does the “secure” flag mean? If a cookie is set as

“secure”, how will it be sent back to the server?
6) What type of attack was the “httponly” cookie designed

to protect against?
7) A naive user (or administrator!!) of your web application

clicks on a link in his email inbox that takes him to the
malicious site attacker.com that is controlled by hackers.
What types of threats does this behavior pose to your
legitimate web application?

8) Here is some PHP code (remember in PHP file names
may be URLs)
$dateOfAppointment = $_GET[’date’];
include($dateOfAppointment . " events.php");

Why is this code a bad idea?

9) Which of the following techniques, if used as the ONLY
technique by which user input is introduced to a Web
page, is most effective at preventing Javascript cross-site
scripting (XSS)?

a) Filter out all instances of script tags from user input
b) Encode all user inputs as html entities
c) Introduce all user inputs into the page using only

document.createTextNode
d) Other

10) Certain unix editors, such as emacs, leave auto-backup
files whenever you use them to edit a file. What bad
things can happen if these types backup files appear on
a production server?

11) There was a recent bug in the implementation of Java
applets with regards to redirects. Assume that access-
ing the URL: http://example.com?redirect=malicious.
com/applet will redirect the browser to fetch mali-
cious.com/applet. The bug caused the JVM to consider
an applet served with this redirected URL as “belong-
ing” to example.com rather than malicious.com, whose
servers actually deliver the applet. What fundamental
web security principle does this implementation violate,
and how might an attacker exploit this?

12) Assume that example.com allows all of its pages to
be shown in a iframe of a page served by a third
party domain. What security risks might this pose to
example.com?

