
Securing Frame Communication in Browsers

Adam Barth
Stanford University

abarth@cs.stanford.edu

Collin Jackson
Stanford University

collinj@cs.stanford.edu

John C. Mitchell
Stanford University

mitchell@cs.stanford.edu

Abstract
Many web sites embed third-party content in frames, re-
lying on the browser’s security policy to protect them
from malicious content. Frames, however, are often in-
sufficient isolation primitives because most browsers let
framed content manipulate other frames through naviga-
tion. We evaluate existing frame navigation policies and
advocate a stricter policy, which we deploy in the open-
source browsers. In addition to preventing undesirable
interactions, the browser’s strict isolation policy also hin-
ders communication between cooperating frames. We
analyze two techniques for inter-frame communication.
The first method, fragment identifier messaging, pro-
vides confidentiality without authentication, which we
repair using concepts from a well-known network pro-
tocol. The second method, postMessage, provides
authentication, but we discover an attack that breaches
confidentiality. We modify the postMessage API to
provide confidentiality and see our modifications stan-
dardized and adopted in browser implementations.

1 Introduction

Web sites contain content from sources of varying trust-
worthiness. For example, many web sites contain third-
party advertising supplied by advertisement networks or
their sub-syndicates [6]. Other common aggregations
of third-party content include Flickr albums [12], Face-
book badges [9], and personalized home pages offered
by the three major web portals [15, 40, 28]. More ad-
vanced uses of third-party components include Yelp’s
use of Google Maps [14] to display restaurant locations
and the Windows Live Contacts gadget [27]. A web
site combining content from multiple sources is called a
mashup, with the party combining the content called the
integrator and integrated content called a gadget. In sim-
ple mashups, the integrator does not intend to communi-
cate with the gadgets and requires only that the browser

isolate frames. In more complex mashups, the integra-
tor does intend to communicate with the gadgets and re-
quires secure inter-frame communication.

In this paper, we study the contemporary web ver-
sion of a recurring problem in computer systems: isolat-
ing untrusted, or partially trusted, software components
while providing secure inter-component communication.
Whenever a site integrates third-party content, such as
an advertisement, a map, or a photo album, the site runs
the risk of incorporating malicious content. Without iso-
lation, malicious content can compromise the confiden-
tiality and integrity of the user’s session with the inte-
grator. While the browser’s well-known “same-origin
policy” [34] restricts script running in one frame from
manipulating content in another frame, the browser uses
a different policy to determine whether one frame is al-
lowed to navigate (change the location of) another frame.
Although restricting navigation is essential to providing
isolation, navigation also enables one form of inter-frame
communication used in mashup frameworks from lead-
ing companies. Furthermore, we show that an attacker
can use frame navigation to attack another inter-frame
communication mechanism, postMessage.

Isolation. We examine the browser frame as an iso-
lation primitive. Because frames can contain untrusted
content, the browser’s security policy restricts frame in-
teractions. Many browsers, however, insufficiently re-
strict the ability of one frame to navigate another frame
to a new location. These overly permissive frame nav-
igation policies lead to a variety of attacks, which we
demonstrate against the Google AdSense login page and
the iGoogle gadget aggregator. To prevent these attacks,
we propose tightening the browser’s frame navigation
policy while maintaining compatibility with existing web
content. We have collaborated with browser vendors to
deploy this policy in Firefox 3 and Safari 3.1. As the
policy is already implemented in Internet Explorer 7, the
policy is now deployed in the three most-used browsers.

Confidentiality Authentication Network Analogue
Fragment identifier channel X Public Key Encryption
postMessage channel X Public Key Signatures
postMessage (our proposal) X X SSL/TLS

Table 1: Security properties of frame communication channels

Communication. With strong isolation, frames are
limited in their interactions, raising the issue of how iso-
lated frames can cooperate as part of a mashup. We
analyze two techniques for inter-frame communication:
fragment identifier messaging and postMessage. The
results of our analysis are summarized in Table 1.

• Fragment identifier messaging uses characteristics
of frame navigation to send messages between
frames. As it was not designed for communica-
tion, the channel has less-than-desirable security
properties: messages are confidential but senders
are not authenticated. To understand these prop-
erties, we draw an analogy between this commu-
nication channel and a network channel in which
senders encrypt their messages to their recipi-
ent’s public key. For concreteness, we examine
the Microsoft.Live.Channels library [27],
which uses fragment identifier messaging to let
the Windows Live Contacts gadget communicate
with its integrator. The protocol used by Win-
dows Live is analogous to the Needham-Schroeder
public-key protocol [29]. We discover an attack
on this protocol, related to Lowe’s anomaly in the
Needham-Schroeder protocol [23], in which a mali-
cious gadget can impersonate the integrator to the
Contacts gadget. We suggested a solution based
on Lowe’s improvement to the Needham-Schroeder
protocol [23], and Microsoft implemented and de-
ployed our suggestion within days.

• postMessage is a new browser API designed for
inter-frame communication [19]. postMessage
is implemented in Opera, Internet Explorer 8, Fire-
fox 3, and Safari. Although postMessage has
been deployed since 2005, we demonstrate an attack
on the channel’s confidentiality using frame navi-
gation. In light of this attack, the postMessage
channel provides authentication but lacks confiden-
tiality, analogous to a channel in which senders
cryptographically sign their messages. To se-
cure the channel, we propose a change to the
postMessage API. We implemented our change
in patches for Safari and Firefox. Our proposal has
been adopted by the HTML 5 working group, Inter-
net Explorer 8, Firefox 3, and Safari.

Organization. The remainder of the paper is organized
as follows. Section 2 details the threat model for these at-
tacks. Section 3 surveys existing frame navigation poli-
cies and converges browsers on a secure policy. Sec-
tion 4 analyzes two frame communication mechanisms,
demonstrates attacks, and proposes defenses. Section 5
describes related work. Section 6 concludes.

2 Threat Model

In this paper, we are concerned with securing in-browser
interactions from malicious attackers. We assume an
honest user employs a standard web browser to view con-
tent from an honest web site. A malicious “web attacker”
attempts to disrupt this interaction or steal sensitive infor-
mation. Typically, a web attacker places malicious con-
tent (e.g., JavaScript) in the user’s browser and modifies
the state of the browser, interfering with the honest ses-
sion. To study the browser’s security policy, which deter-
mines the privileges of the attacker’s content, we define
the web attacker threat model below.

Web Attacker. A web attacker is a malicious princi-
pal who owns one or more machines on the network. In
order to study the security of browsers when rendering
malicious content, we assume that the browser gets and
renders content from the attacker’s web site.

• Network Abilities. The web attacker has no spe-
cial network abilities. In particular, the web attacker
can send and receive network messages only from
machines under his or her control, possibly acting
as a client or server in network protocols of the at-
tacker’s choice. Typically, the web attacker uses at
least one machine as an HTTP server, which we
refer to for simplicity as attacker.com. The
web attacker can obtain SSL certificates for do-
mains he or she owns; certificate authorities such
as instantssl.com provide such certificates for
free. The web attacker’s network abilities are decid-
edly weaker than the usual network attacker consid-
ered in studies of network security because the web
attacker can neither eavesdrop on messages sent to
other recipients nor forge messages from other net-
work locations. For example, a web attacker cannot
act as a “man-in-the-middle.”

• Interaction with Client. We assume the honest
user views attacker.com in at least one browser
window, thereby rendering the attacker’s content.
We make this assumption because we believe that
an honest user’s interaction with an honest site
should be secure even if the user separately vis-
its a malicious site in a different browser window.
We assume the web attacker is constrained by the
browser’s security policy and does not employ a
browser exploit to circumvent the policy. The web
attacker’s host privileges are decidedly weaker than
an attacker who can execute a arbitrary code on the
user’s machine with the user’s privileges. For exam-
ple, a web attacker cannot install or run a system-
wide key logger or botnet client.

Attacks accessible to a web attacker have significant
practical impact because the attacks can be mounted
without any complex or unusual control of the network.
In addition, web attacks can be carried out by a standard
man-in-the-middle network attacker, provided the user
visits a single HTTP site, because a man-in-the-middle
can intercept HTTP requests and inject malicious content
into the reply, simulating a reply from attacker.com.

There are several techniques an attacker can use to
drive traffic to attacker.com. For example, an at-
tacker can place web advertisements, display popular
content indexed by search engines, or send bulk e-mail to
attract users. Typically, simply viewing an attacker’s ad-
vertisement lets the attacker mount a web-based attack.
In a previous study [20], we purchased over 50,000 im-
pressions for $30. During each of these impressions, a
user’s browser rendered our content, giving us the access
required to mount a web attack.

We believe that a normal, but careful, web user who
reads news and conducts banking, investment, and re-
tail transactions, cannot effectively monitor or restrict the
provenience of all content rendered in his or her browser,
especially in light of third-party advertisements. In other
words, we believe that the web attacker threat model is an
accurate representation of normal web behavior, appro-
priate for security analysis of browser security, and not
an assumption that users promiscuously visit all possible
bad sites in order to tempt fate.

Gadget Attacker. A gadget attacker is a web attacker
with one additional ability: the integrator embeds a gad-
get of the attacker’s choice. This assumption lets us ac-
curately evaluate mashup isolation and communication
protocols because the purpose of these protocols is to let
an integrator embed untrusted gadgets safely. In practice,
a gadget attacker can either wait for the user to visit the
integrator or can redirect the user to the integrator’s web
site from attacker.com.

Out-of-Scope Threats. Although phishing [11, 7] can
be described informally as a “web attack,” the web
attacker defined above does not attempt to fool the
user by choosing a confusing domain name (such as
bankofthevvest.com) or using other social engi-
neering. In particular, we do not assume that a user
treats attacker.com as if it were a site other than
attacker.com. The attacks presented in this paper
are “pixel-perfect” in the sense that the browser provides
the user no indication whatsoever that an attack is under-
way. The attacks do not display deceptive images over
the browser security indicators nor do they spoof the lo-
cation bar and or the lock icon. In this paper, we do not
consider cross-site scripting attacks, in which an attacker
exploits a bug in an honest principal’s web site to inject
malicious content into another security origin. None of
the attacks described in this paper rely on the attacker
injecting content into another principal’s security origin.
Instead, we focus on privileges the browser itself affords
the attacker to interact with honest sites.

3 Frame Isolation

Netscape Navigator 2.0 introduced the HTML <frame>
element, which allows web authors to delegate a portion
of their document’s screen real estate to another doc-
ument. These frames can be navigated independently
of the rest of the main content frame and can, them-
selves, contain frames, further delegating screen real es-
tate and creating a frame hierarchy. Most modern frames
are embedded using the more-flexible <iframe> ele-
ment, introduced in Internet Explorer 3.0. In this paper,
we use the term frame to refer to both <frame> and
<iframe> elements. The main, or top-level, frame of
a browser window displays its location in the browser’s
location bar. Subframes are often indistinguishable from
other parts of a page, and the browser does not display
their location in its user interface. Browsers decorate a
window with a lock icon only if every frame contained
in the window was retrieved over HTTPS but do not re-
quire the frames to be served from the same host. For ex-
ample, if https://bank.com/ embeds a frame from
https://attacker.com/, the browser will deco-
rate the window with a lock icon.

Organization. Section 3.1 reviews browser security
policies. Section 3.2 describes cross-window frame
navigation attacks and defenses. Section 3.3 details
same-window attacks that are not impeded by the cross-
window defenses. Section 3.4 analyzes stricter naviga-
tion policies and advocates the “descendant policy.” Sec-
tion 3.5 documents our implementation and deployment
of the descendant policy in major browsers.

3.1 Background

Scripting Policy. Most web security is focused on the
browser’s scripting policy, which answers the question
“when is script in one frame permitted to manipulate the
contents of another frame?” The scripting policy is the
most important browser security policy because the abil-
ity to script another frame is the ability to control its
appearance and behavior completely. For example, if
otherWindow is another window’s frame,

var stolenPassword =
otherWindow.document.forms[0].
password.value;

attempts to steal the user’s password in the other win-
dow. Modern web browsers permit one frame to read
and write all the DOM properties of another frame only
when their content was retrieved from the same ori-
gin, i.e. when the scheme, host, and port number of
their locations match. If the content of otherWindow
was retrieved from a different origin, the browser’s se-
curity policy will prevent this script from accessing
otherWindow.document.

Navigation Policy. Every browser must answer the
question “when is one frame permitted to navigate an-
other frame?” Prior to 1999, all web browsers imple-
mented a permissive policy:

Permissive Policy
A frame can navigate any other frame.

For example, if otherWindow includes a frame,

otherWindow.frames[0].location =
"https://attacker.com/";

navigates the frame to https://attacker.com/.
This has the effect of replacing the frame’s docu-
ment with content retrieved from that URL. Under
the permissive policy, this navigation succeeds even if
otherWindow contains content from a different secu-
rity origin. There are a number of other idioms for navi-
gating frames, including

window.open("https://attacker.com/",
"frameName");

which requests that the browser search for a frame named
frameName and navigate the frame to the specified
URL. Frame names exist in a global name space and are
not restricted to a single security origin.

Top-level Frames. Top-level frames are often exempt
from the restrictions imposed by the browser’s frame
navigation policy. Top-level frames are less vulnerable
to frame navigation attacks because the browser displays
their location in the location bar. Internet Explorer and
Safari do not restrict the navigation of top-level frames
at all. Firefox restricts the navigation of top-level frames
based on their openers, but this restriction can be circum-
vented [2]. Opera implements a number of restrictions
on the navigation of top-level frames based on the cur-
rent location of the frame.

3.2 Cross-Window Attacks
In 1999, Georgi Guninski discovered that the permis-
sive frame navigation policy admits serious attacks [16].
Guninski discovered that, at the time, the password
field on the CitiBank login page was contained within
a frame. Because the permissive frame navigation policy
lets any frame navigate any other frame, a web attacker
can navigate the password frame on CitiBank’s page
to https://attacker.com/, replacing the frame
with identical-looking content that sends the user’s pass-
word to attacker.com. In the modern web, this
cross-window attack might proceed as follows:

1. The user reads a popular blog that displays a Flash
advertisement provided by attacker.com.

2. The user opens a new window to bank.com,
which displays its password field in a frame.

3. The malicious advertisement navigates the pass-
word frame to https://attacker.com/. The
location bar still reads bank.com and the lock icon
is not removed.

4. The user enters his or her password, which is then
submitted to attacker.com.

Of the browsers in heavy use today, Internet Explorer 6
and Safari 3 both implement the permissive policy. In-
ternet Explorer 7 and Firefox 2 implement stricter poli-
cies (described in subsequent sections). However, Flash
Player can be used to circumvent the stricter navigation
policy of Internet Explorer 7, effectively reducing the
policy to “permissive.” Many web sites are vulnerable to
this attack, including Google AdSense, which displays
its password field inside a frame; see Figure 1.

Window Policy. In response to Guninski’s report,
Mozilla implemented a stricter policy in 2001:

Window Policy
A frame can navigate only frames in its window.

Figure 1: Cross-Window Attack: The attacker controls the password field because it is contained within a frame.

This policy prevents the cross-window attack because the
web attacker does not control a frame in the same win-
dow as the CitiBank or the Google AdSense login page.
Without a foothold in the window, the attacker cannot
navigate the login frame to attacker.com.

3.3 Same-Window Attacks
The window frame navigation policy is neither univer-
sally deployed nor sufficiently strict to protect users on
the modern web because mashups violate its implicit se-
curity assumption that an honest principal will not embed
a frame to a dishonest principal.

Mashups. A mashup combines content from multiple
sources to create a single user experience. The party
combining the content is called the integrator and the
integrated content is called a gadget.

• Aggregators. Gadget aggregators, such as
iGoogle [15], My Yahoo [40], and Win-
dows Live [28], are one form of mashup. These
sites let users customize their experience by se-
lecting gadgets (such as stock tickers, weather
predictions, news feeds, etc) to include on their
home page. Third parties are encouraged to develop
gadgets for the aggregator. These mashups embed
the selected gadgets in a frame and rely on the
browser’s frame isolation to protect users from
malicious gadgets.

• Advertisements. Web advertising is a simple form
of mashup, combining first-party content, such as
news articles or sports statistics, with third-party ad-
vertisements. Typically, the publisher (the integra-
tor) delegates a portion of its screen real estate to an
advertisement network, such as Google, Yahoo, or

Microsoft, in exchange for money. Most advertise-
ments, including Google AdWords, are contained in
frames, both to prevent the advertisers (who provide
the gadgets) from interfering with the publisher’s
site and to prevent prevent the publisher from using
JavaScript to click on the advertisements.

We refer to aggregators and advertisements as simple
mashups because these mashups do not involve commu-
nication between the gadgets and the integrator. Simple
mashups rely on the browser to provide isolation but do
not require inter-frame communication.

Gadget Hijacking Attacks. Mashups invalidate an
implicit assumption of the window policy, that an hon-
est principal will not embed a frame to a dishonest prin-
cipal. A gadget attacker, however, does control a frame
embedded by the honest integrator, giving the attacker
the foothold required to mount a gadget hijacking at-
tack [22]. In such an attack, a malicious gadget navi-
gates a target gadget to attacker.com and imperson-
ates the gadget to the user.

• Aggregator Vulnerabilities. iGoogle is vulnerable
to gadget hijacking in browsers, such as Firefox 2,
that implement the permissive or window policies;
see Figure 2. Consider, for example, one popu-
lar iGoogle gadget that lets users access their Hot-
mail inbox. (This gadget is neither provided nor
endorsed by Microsoft.) If the user is not logged
into Hotmail, the gadget requests the user’s Hotmail
password. A malicious gadget can replace the Hot-
mail gadget with content that asks the user for his or
her Hotmail password. As in the cross-window at-
tack, the user is unable to distinguish the malicious
password field from the honest password field.

(a) Before (b) After

Figure 2: Gadget Hijacking Attack. Under the window policy, the attacker gadget can navigate the other gadgets.

• Advertisement Vulnerabilities. Although text ad-
vertisements often do not contain active content
(e.g., JavaScript), other forms of advertising, such
as Flash advertisements, do contain active content.
An attacker who provides such an advertisement
can steal advertising impressions allotted to other
advertisers via gadget hijacking. A malicious ad-
vertisement can traverse the page’s frame hierar-
chy and navigate frames containing other advertise-
ments to attacker.com, replacing the existing
content with the attacker’s advertisement.

3.4 Stricter Policies
Although browser vendors do not document their naviga-
tion policies, we were able to reverse engineered the nav-
igation policies of existing browsers, and we confirmed
our understanding with the browsers’ developers. The
existing policies are shown in Table 2. In addition to
the permissive and window policies described above, we
discovered two other frame navigation policies:

Descendant Policy
A frame can navigate only its descendants.

Child Policy
A frame can navigate only its direct children.

The Internet Explorer 6 team wanted to enable the child
policy by default, but shipped the permissive policy be-
cause the child policy was incompatible with a large
number of web sites. The Internet Explorer 7 team de-
signed the descendant policy to balance the security re-
quirement to defeat the cross-window attack with the
compatibility requirement to support existing sites [33].

Pixel Delegation. The descendant policy provides the
most attractive trade-off between security and compat-
ibility because it is the least restrictive policy that re-
spects pixel delegation. When one frame embeds another
frame, the parent frame delegates a region of the screen
to the child frame. The browser prevents the child frame
from drawing outside of its bounding box but does al-
low the parent frame to draw over the child using the
position: absolute style. The descendant policy
permits a frame to navigate a target frame precisely when
the frame could overwrite the screen real estate of the tar-
get frame. Although the child policy is stricter than the
descendant policy, the additional strictness does not pre-
vent many additional attacks because a frame can sim-
ulate the visual effects of navigating a grandchild frame
by drawing over the region of the screen occupied by
the grandchild frame. The child policy’s added strictness
does, however, reduce the policy’s compatibility with ex-
isting sites, discouraging browser vendors from deploy-
ing the child policy.

Origin Propagation. A strict interpretation of the de-
scendant policy prevents a frame from navigating its sib-
lings, even if the frame is from the same security origin
as its parent. In this situation, the frame can navigate its
sibling indirectly by injecting script into its parent, which
can then navigate the sibling because the sibling is a de-
scendant of the parent frame. In general, browsers should
decide whether or not to permit a navigation based on the
active frame’s security origin. Browsers should let an ac-
tive frame navigate a target frame if there exists a frame
in the same security origin as the active frame that has
the target frame as a descendant. By recognizing this ori-
gin propagation, browsers can achieve a better trade-off

between security and compatibly. These additional navi-
gations do not sacrifice security because an attacker can
perform the navigations indirectly, but allowing them is
more convenient for honest web developers.

3.5 Deployment
We collaborated with the HTML 5 working group [18]
and browser vendors to deploy the descendant policy in
several browsers:

• Safari. We implemented the descendant policy as
a patch for Safari. Apple accepted our patch and
deployed the descendant policy to Mac OS X and
Windows Safari users as a security update [30]. Ap-
ple also deployed our patch to all iPhone and iPod
touch users.

• Firefox. We implemented the descendant policy as
a patch for Firefox. Before accepting our patch,
Mozilla requested tests for all their previous frame
navigation regressions. We provided them with ap-
proximately 1000 lines of regression tests for their
automatic test harness, covering the frame naviga-
tion security vulnerabilities from the past ten years.
Mozilla accepted our patch and deployed the de-
scendant policy in Firefox 3 [1].

• Flash. We reported to Adobe that Flash Player by-
passes the descendant policy in Internet Explorer 7.
Adobe agreed to ship a patch to all Internet Explorer
users in their next security update.

• Opera. We notified Opera Software about inconsis-
tencies in Opera’s child policy that can be used in
gadget hijacking attacks. They plan to fix these vul-
nerabilities in the upcoming release of Opera 9.5,
and are evaluating the compatibility benefits of
adopting the descendant policy [35].

4 Frame Communication

Over the past few years, web developers have built so-
phisticated mashups that, unlike simple aggregators and
advertisements, are comprised of gadgets that commu-
nicate with each other and with their integrator. Yelp,
which integrates the Google Maps gadget, motivates the
need for secure inter-frame communication by illustrat-
ing how communicating gadgets are used in real de-
ployments. Sections 4.1 and 4.2 analyze and improve
fragment-identifier messaging and postMessage.

Google Maps. One popular gadget is the Google Maps
API [14]. Google provides two mechanisms for integrat-
ing Google Maps:

• Frame. In the frame version of the gadget, the in-
tegrator embeds a frame to maps.google.com,
which Google fills with a map centered at the speci-
fied location. The user can interact with map, but
the integrator is oblivious to this interaction and
cannot interact with the map directly.

• Script. In the script version of the gadget, the
integrator embeds a <script> tag that executes
JavaScript from maps.google.com. This script
creates a rich JavaScript API the integrator can use
to interact with the map, but the script runs with all
of the integrator’s privileges.

Yelp. Yelp is a popular review web site that uses the
Google Maps gadget to display the locations of restau-
rants and other businesses it reviews. Yelp requires a
high degree of interactivity with the Maps gadget be-
cause it places markers on the map for each restaurant
and displays the restaurant’s review when the user clicks
on the marker. In order to deliver these advanced fea-
tures, Yelp must use the script version of the Maps gad-
get. This design requires Yelp to trust Google Maps com-
pletely because Google’s script runs with Yelp’s priv-
ileges in the user’s browser, granting Google the abil-
ity to manipulate Yelp’s reviews and steal Yelp’s cus-
tomer’s information. Although Google might be trust-
worthy, the script approach does not scale beyond highly
respected gadget providers. Secure inter-frame commu-
nication provides the best of both alternatives: Yelp (and
similar sites) can realize the interactivity of the script ver-
sion of Google Maps gadget while maintaining the secu-
rity of the frame version of the gadget.

4.1 The Fragment Identifier Channel
Although the browser’s scripting policy isolates frames
from different security origins, clever mashup designers
have discovered an unintended channel between frames:
the fragment identifier channel [3, 36]. This channel is
regulated by the browser’s less-restrictive frame naviga-
tion policy. This “found” technology lets mashup devel-
opers place each gadget in a separate frame and rely on
the browser’s security policy to prevent malicious gad-
gets from attacking the integrator and honest gadgets.

Mechanism. Normally, when a frame is navigated to
a new URL, the browser retrieves the URL from the
network and replaces the frame’s document with the
retrieved content. However, if the new URL differ-
ent from the old URL only in the fragment (the por-
tion after the #), then the browser does not reload
the frame. If frames[0] is currently located at
http://example.com/doc,

IE 6 (default) IE 6 (optional) IE 7 (default) IE 7 (optional) Firefox 2 Safari 3 Opera 9
Permissive Child Descendant Permissive Window Permissive Child

Table 2: Frame navigation policies deployed in existing browsers.

frames[0].location =
"http://example.com/doc#message";

changes the frame’s location without reloading the frame
or destroying its JavaScript context. The frame can ob-
serve the value of the fragment by periodically polling
window.location.hash to see if the fragment
identifier has changed. This technique can be used to
send short string messages entirely within the browser,
avoiding network latency. However, the communication
channel is somewhat unreliable because, if two naviga-
tions occur between polls, the first message will be lost.

Security Properties. Because it was “found” and not
designed, the fragment identifier channel has less-than-
ideal security properties. The browser’s scripting policy
prevents security origins other than the one preceding the
from eavesdropping on messages because they are un-
able to read the frame’s location (even though the nav-
igation policy permits them to write to the frame’s lo-
cation). Browsers also prevent arbitrary security origins
from tampering with portions of messages. Other secu-
rity origins can, however, overwrite the fragment iden-
tifier in its entirety, leaving the recipient to guess the
sender of each message.

To understand these security properties, we develop
an analogy with well-known properties of network chan-
nels. We view the browser as guaranteeing that the frag-
ment identifier channel has confidentiality: a message
can be read only by its intended recipient. The fragment
identifier channel fails to be a secure channel because it
lacks authentication, the ability of the recipient to un-
ambiguously determine the sender of a message. The
channel also fails to be reliable because messages might
not be delivered, and the attacker might be able to replay
previous messages using the browser’s history API.

The security properties of the fragment identifier chan-
nel are analogous to a channel on an untrusted network
secured by a public-key cryptosystem in which each
message is encrypted with the public key of its intended
recipient. In both cases, if Alice sends a message to Bob,
no one except Bob learns the contents of the message
(unless Bob forwards the message). In both settings, the
channel does not provide a reliable procedure for deter-
mining who sent a given message. There are two inter-
esting differences between the fragment identifier chan-
nel and the public-key channel:

1. The public-key channel is susceptible to traffic anal-
ysis, but an attacker cannot determine the length of
a message sent over the fragment identifier channel.
An attacker can extract timing information by fre-
quently polling the browser’s clock, but obtaining a
high-resolution timing signal significantly degrades
the browser’s performance.

2. The fragment identifier channel is constrained by
the browser’s frame navigation policy. In principle,
this could be used to construct protocols secure for
the fragment identifier channel that are insecure for
the public-key channel (by preventing the attacker
from navigating the recipient), but in practice this
restriction has not prevented us from constructing
attacks on existing protocol implementations.

Despite these differences, we find the network analogy
useful in analyzing inter-frame communication.

Windows Live Channels. Microsoft uses the frag-
ment identifier channel in its Windows Live plat-
form library to implement a higher-level channel API,
Microsoft.Live.Channels [36]. The Windows
Live Contacts gadget uses this API to communicate with
its integrator. The integrator can instruct the gadget to
add or remove contacts from the user’s contacts list, and
the gadget can send the integrator details about the user’s
contacts. Whenever the integrator asks the gadget to per-
form a sensitive action, the gadget asks the user to con-
firm the operation and displays the integrator’s host name
to aid the user in making trust decisions.
Microsoft.Live.Channels attempts to build a

secure channel over the fragment identifier channel. By
reverse engineering the implementation, we determined
that it uses two sessions of the following protocol (one in
each direction) to establish a secure channel:

A→ B : NA, URIA
B → A : NA, NB

A→ B : NB , Message1

In this notation, A and B are frames, NA and NB are
fresh nonces (numbers chosen at random during each
run of the protocol), and URIA is the location of A’s
frame. Under the network analogy described above,
this protocol is analogous to a variant of the classic
Needham-Schroeder key-establishment protocol [29].

Figure 3: Lowe Anomaly: This Windows Live Contacts
gadget received a message that appeared to come from
integrator.com, but in reality the request was made
by attacker.com.

The Needham-Schroeder protocol was designed to estab-
lish a shared secret between two parties over an insecure
channel. In the Needham-Schroeder protocol, each mes-
sage is encrypted with the public key of its intended re-
cipient. The Windows Live protocol does not employ en-
cryption because the fragment identifier channel already
provides the required confidentiality.

The Needham-Schroeder protocol has a well-known
anomaly, due to Lowe [23], which leads to an attack in
the browser setting. In the Lowe scenario, an honest prin-
cipal, Alice, initiates the protocol with a dishonest party,
Eve. Eve then convinces honest Bob that she is Alice. In
order to exploit the Lowe anomaly, an honest principal
must be willing to initiate the protocol with a dishonest
principal. This requirement is met in mashups because
the integrator initiates the protocol with the gadget at-
tacker’s gadget in order to establish a channel. The Lowe
anomaly can be exploited to impersonate the integrator to
the Windows Live Contacts gadget as follows:

Integrator→ Attacker : NI , URII
Attacker→ Gadget : NI , URII

Gadget→ Integrator : NI , NG

Integrator→ Attacker : NG, Message1

After these four messages, the attacker possesses NI and
NG and can impersonate the integrator to the gadget.
We have successfully implemented this attack against the
Windows Live Contacts gadget. The issue is easily ob-
servable for the Contacts gadget because the gadget dis-
plays the integrator’s host name to the user in its security
user interface; see Figure 3.

SMash and OpenAjax 1.1. A recent paper [22] from
IBM proposed another protocol for establishing a secure
channel over the fragment identifier channel. They de-
scribe their protocol as follows:

The SMash library in the mashup applica-
tion creates the secret, an unguessable random
value. When creating the component, it in-
cludes the secret in the fragment of the com-
ponent URL. When the component creates the
tunnel iframe it passes the secret in the same
manner.

The SMash developers have contributed their code to the
OpenAjax project, which plans to include their fragment
identifier protocol in version 1.1. The SMash protocol
can be understood as follows:

A→ B : N, URIA
B → A : N

A→ B : N, Message1

This protocol admits the following simple attack:

Attacker→ Gadget : N, URII
Gadget→ Integrator : N

Attacker→ Gadget : N, Message

We have confirmed this attack by implementing the at-
tack against the SMash implementation. Additionally,
the attacker is able to conduct this attack covertly by
blocking the message from the gadget to the integrator
because the message waits for the load event to fire.

Secure Fragment Messaging. The fragment identifier
channel can be secured using a variant of the Needham-
Schroeder-Lowe protocol [23]. The main idea in Lowe’s
improvement of the Needham-Schroeder protocol is that
the responder must include his identity in the second
message of the protocol, letting the honest initiator deter-
mine that an attack is in progress and abort the protocol.

A→ B : NA, URIA
B → A : NA, NB , URIB
A→ B : NB

. . .

A→ B : NA, NB , Messagei

B → A : NA, NB , Messagej

We contacted Microsoft, IBM, and the OpenA-
JAX Alliance about the vulnerabilities in their frag-
ment identifier messaging protocols and suggested
the above protocol improvement. Microsoft adopted
our suggestions and deployed a patched version of

Gadgettop.postMessage(msg)

source.postMessage(secret)

AƩacker

AƩacker

Integrator

Gadget

postMessage(secret)

AƩacker

Integrator

(a) Integrator sends secret messages to child

Gadgettop.postMessage(msg)

source.postMessage(secret)

AƩacker

AƩacker

Integrator

GadgetAƩacker

postMessage(secret)

AƩacker

Integrator

(b) Attacker hijacks integrator’s child

Figure 4: Recursive Mashup Attack

Microsoft.Live.Channels and of the Windows
Live Contacts gadget. IBM adopted our suggestions and
revised their SMash paper. The OpenAJAX Alliance
adopted our suggestions and updated their codebase. All
three now use the above protocol to establish a secure
channel using fragment identifiers.

4.2 The postMessage Channel
HTML 5 [19] specifies a new browser API for asyn-
chronous communication between frames. Unlike the
fragment identifier channel, the postMessage chan-
nel was designed for cross-site communication. The
postMessage API was originally implemented in
Opera 8 and is now supported by Internet Explorer 8,
Firefox 3 [37], and Safari [24].

Mechanism. To send a message to another frame, the
sender calls the postMessage method:

frames[0].postMessage("Hello world.");

The browser then generates a message event in the
recipient’s frame that contains the message, the ori-
gin (scheme, port, and domain) of the sender, and a
JavaScript pointer to the frame that sent the message.

Security Properties. The postMessage channel
guarantees authentication, messages accurately identify
their senders, but the channel lacks confidentiality. Thus,
postMessage has almost the “opposite” security prop-
erties as the fragment identifier channel. Where the frag-
ment identifier channel has confidentiality without au-
thentication, the postMessage channel has authenti-
cation without confidentiality. The security properties
of the postMessage channel are analogous to a chan-
nel on a untrusted network secured by an existentially
unforgeable signature scheme. In both cases, if Alice
sends a message to Bob, Bob can determine unambigu-
ously that Alice sent the message. With postMessage,

the origin property accurately identifies the sender;
with cryptographic signatures, verifying the signature
on a message accurately identifies the signer of the
message. One difference between the channels is that
cryptographic signatures can be easily replayed, but the
postMessage channel is resistant to replay attacks. In
some cases, however, an attacker might be able to mount
a replay attack by reloading honest frames.

Attacks. Although postMessage is widely believed
to provide a secure channel between frames, we show
an attack on the confidentiality of the channel. A mes-
sage sent with postMessage is directed at a frame, but
if the attacker navigates that frame to attacker.com
before the message event is generated, the attacker will
receive the message instead of the intended recipient.

• Recursive Mashup Attack. Suppose, for exam-
ple, that an integrator embeds a frame to a gadget
and then calls postMessage on that frame. The
attacker can load the integrator inside a frame and
carry out an attack without violating the descendant
frame navigation policy. After the attacker loads the
integrator inside a frame, the attacker navigates the
gadget frame to attacker.com. Then, when the
integrator calls postMessage on the “gadget’s”
frame, the browser delivers the message to the at-
tacker whose content now occupies the “gadget’s”
frame; see Figure 4. The integrator can prevent this
attack by “frame busting,” i.e., by refusing to render
the mashup if top !== self, indicating that the
integrator is contained in a frame.

• Reply Attack. Another postMessage idiom is
also vulnerable to interception, even under the child
frame navigation policy:

window.onmessage = function(e) {
if (e.origin == "https://b.com")

e.source.postMessage(secret);
};

Gadgettop.postMessage(msg)

AƩacker

Integrator

(a) Gadget requests secret from integrator

Gadgettop.postMessage(msg)

e.source.postMessage(secret)

AƩacker

AƩacker

Integrator

(b) Integrator’s reply is delivered to attacker

Figure 5: Reply Attack

The source attribute of the MessageEvent is
a JavaScript reference to the frame that sent the
message. It is tempting to conclude that the re-
ply will be sent to https://b.com. How-
ever, an attacker might be able to intercept the
message. Suppose that the honest gadget calls
top.postMessage("Hello"). The gadget
attacker can intercept the message by embedding
the honest gadget in a frame, as depicted in Fig-
ure 5. After the gadget posts its message to the
integrator, the attacker navigates the honest gad-
get to https://attacker.com. (This naviga-
tion is permitted under both the child and descen-
dant frame navigation policies.) When the integra-
tor replies to the source of the message, the mes-
sage will be delivered to the attacker instead of to
the honest gadget.

Securing postMessage. It might be feasible for sites
to build a secure channel using postMessage as an
underlying communication primitive, but we would pre-
fer that postMessage provide a secure channel na-
tively. In MashupOS [39], we proposed a new browser
API, CommRequest, to send messages between ori-
gins. When sending a message using CommRequest,
the sender addresses the message to a principal:

var req = new CommRequest();
req.open("INVOKE",

"local:https://b.com//inc");
req.send("Hello");

Using this interface, CommRequest protects the confi-
dentiality of messages because the CommServer will
deliver messages only to the specified principal. Al-
though CommRequest provides adequate security, the
postMessage API is further along in the standard-
ization and deployment process. We therefore propose
extending the postMessage API to provide the addi-
tional security benefits of CommRequest by including

a second parameter: the origin of the intended recipi-
ent. If the sender specifies a target origin, the browser
will deliver the message to the targeted frame only if that
frame’s current security origin matches the argument.
The browser is free to deliver the message to any prin-
cipal if the sender specifies a target origin of *. Using
this improved API, a frame can reply to a message using
the following idiom:

window.onmessage = function(e) {
if (e.origin == "https://b.com")
e.source.postMessage(secret,

e.origin);
};

As shown in this example use, the API uses the same
origin syntax for both sending and receiving messages.
The scheme is included in the origin for those develop-
ers who wish to defend against active network attackers
by distinguishing between HTTP and HTTPS. We imple-
mented this API change as a patch for Safari and a patch
for Firefox. Our proposal was accepted by the HTML 5
working group [17]. The new API is now included in
Firefox 3 [38], Safari [32], and Internet Explorer 8 [25].

5 Related Work

Mitigations for Gadget Hijacking. SMash [22] mit-
igates gadget hijacking (which the authors refer to as
“frame phishing”) without modifying the browser by
carefully monitoring the frame hierarchy and browser
events for evidence of unexpected navigation. Neither
the integrator nor the gadget can prevent these naviga-
tions, but the mashup can alert the user and refuse to
function if it detects an illicit navigation. This approach
lets an attacker mount a denial-of-service attack against
the mashup, but a web attacker can already mount a
denial-of-service attack against the entire browser by is-
suing a blocking XMLHttpRequest or entering an in-
finite loop.

Unfortunately, this approach can lead to false posi-
tives. SMash waits 20 seconds for a gadget to load before
assuming that the gadget has been hijacked and warning
the user. An attacker might be able to fool the user into
entering sensitive information during this time interval.
Using a shorter time interval might cause users with slow
network connections to receive warnings even though no
attack is in progress. We expect that the deployment of
the descendant policy will obviate the need for server-
enforced gadget hijacking mitigations.

Safe Subsets of HTML and JavaScript. One way to
sidestep the security issues of frame-based mashups is to
avoid using frames entirely and render the gadgets to-
gether with the integrator in a single document. This
approach forgoes the protections of the browser’s se-
curity policy because all the gadgets and the integra-
tor share a single browser security context. To main-
tain security, this approach requires gadgets to be writ-
ten in a “safe subset” of HTML and JavaScript that pre-
vents a malicious gadget from attacking the integrator or
other gadgets. Analyzing the security and usability of
these subsets is an active area of research. Several open-
source [13, 4] and closed-source [31, 10] implementa-
tions are available. FBML [10] is currently the most suc-
cessful of these subsets and is used by millions of users
as the foundation of the Facebook Platform.

Writing programs in one of these safe subsets is often
awkward because the language is highly constrained to
avoid potentially dangerous features. To improve usabil-
ity, the safe subsets are often accompanied by a com-
piler that transforms untrusted HTML and JavaScript
into the subset, possibly at the cost of performance.
These safe subsets will become easier to use over time
as these compilers become more sophisticated and more
libraries become available, but with the deployment of
postMessage and the descendant policy, we expect
that frame-based mashup designs will continue to find
wide use as well.

Other Frame Isolation Proposals. There are several
other proposals for frame isolation and communication:

• Subspace. In Subspace [21], we used a multi-
level hierarchy of frames that coordinated their
document.domain property to communicate di-
rectly in JavaScript. Similar to most frame-based
mashups, the descendant frame navigation policy is
required to prevent gadget hijacking.

• Module Tag. The proposed <module> tag [5]
is similar to an <iframe> tag, but the module
runs in an unprivileged security context, without a
principal, and the browser prevents the integrator

from overlaying content on top of the module. Un-
like postMessage, the communication primitive
used with the module tag is intentionally unauthen-
ticated: it does not identify the sender of a message.
It is unknown whether navigation can be used to in-
tercept messages as there are no implementations of
the <module> tag.

• Security=Restricted and Jail. Internet Ex-
plorer supports a security attribute [26] of
frames that can be set to restricted. With
security="restricted", the frame’s con-
tent cannot run JavaScript. Similarly, the pro-
posed <jail> tag [8] encloses untrusted content
and prevents the sandboxed content from running
JavaScript. However, eliminating JavaScript pre-
vents gadgets from offering interactive experiences.

• MashupOS. Our MashupOS proposal [39] includes
new primitives for isolating web content while al-
lowing secure communication. Our improvements
to postMessage and frame navigation policies
allow web authors to obtain some of the benefits of
MashupOS using existing web APIs.

6 Conclusions

Web browsers provide a platform for web applica-
tions. These applications rely on the browser to isolate
frames from different security origins and to provide se-
cure inter-frame communication. To provide isolation,
browsers implement a number of security policies, in-
cluding a frame navigation policy. The original frame
navigation policy, the permissive policy, admits a number
of attacks. The modern frame navigation policy, the de-
scendant policy, prevents these attacks by permitting one
frame to navigate another only if the frame could draw
over the other frame’s region of the screen. The descen-
dant policy provides an attractive trade-off between secu-
rity and compatibility, is deployed in the major browsers,
and has been standardized in HTML 5.

In existing browsers, frame navigation can be used as
an inter-frame communication channel with a technique
known as fragment identifier messaging. If used directly,
the fragment identifier channel lacks authentication. To
provide authentication, Windows.Live.Channels,
SMash, and OpenAjax 1.1 use messaging protocols.
These protocols are vulnerable to attacks on authentica-
tion but can be repaired in a manner analogous to Lowe’s
variation of the Needham-Schroeder protocol [23].

The postMessage communication channel suffered
the converse security vulnerability: using frame navi-
gation, an attacker can breach the confidentiality of the
channel. We propose providing confidentiality by ex-
tending the postMessageAPI to let the sender specify

an intended recipient. Our proposal was adopted by the
HTML 5 working group, Internet Explorer 8, Firefox 3,
and Safari.

With these improvements to the browser’s isolation
and communication primitives, frames are a more attrac-
tive feature for integrating third-party web content. Two
challenges remain for mashups incorporating untrusted
content. First, a gadget is permitted to navigate the top-
level frame and can redirect the user from the mashup to
a site of the attacker’s choice. This navigation is made
evident by the browser’s location bar, but many users
ignore the location bar. Improving the usability of the
browser’s security user interface is an important area of
future work. Second, a gadget can subvert the browser’s
security mechanisms if the attacker employs a browser
exploit to execute arbitrary code. A browser design that
provides further isolation against this threat is another
important area of future work.

Acknowledgments

We thank Mike Beltzner, Sumeer Bhola, Dan Boneh,
Gabriel E. Corvera, Ian Hickson, Koji Kato, Eric
Lawrence, Erick Lee, David Ross, Maciej Stachowiak,
Hallvord Steen, Peleus Uhley, Jeff Walden, Sam Weinig,
and Boris Zbarsky for their helpful suggestions and feed-
back. This work is supported by grants from the National
Science Foundation and the US Department of Home-
land Security.

References

[1] Adam Barth et al. Adopt “descendant” frame
navigation policy to prevent frame hijacking.
https://bugzilla.mozilla.org/show_
bug.cgi?id=408052.

[2] Adam Barth and Collin Jackson. Protecting
browsers from frame hijacking attacks, Decem-
ber 2007. http://crypto.stanford.edu/
frames/.

[3] James Burke. Cross domain frame communication
with fragment identifiers.
http://tagneto.blogspot.com/2006/
06/cross-domain-frame-communication
-with.html.

[4] Douglas Crockford. ADsafe: Making JavaScript
safe for advertising. http://adsafe.org/.

[5] Douglas Crockford. The <module> tag.
http://www.json.org/module.html.

[6] Neil Daswani, Micheal Stoppelman, et al. The
anatomy of Clickbot.A. In Proc. HotBots, 2007.

[7] Rachna Dhamija, J. D. Tygar, and Marti Hearst.
Why phishing works. In CHI ’06: Proceedings of
the SIGCHI conference on human factors in com-
puting systems, 2006.

[8] Brendan Eich. JavaScript: Mobility and ubiq-
uity. http://kathrin.dagstuhl.de/
files/Materials/07/07091/07091.
EichBrendan.Slides.pdf.

[9] Facebook. Badges. http://www.facebook.
com/help.php?page=4.

[10] Facebook. Facebook Markup Language (FBML).
http://wiki.developers.facebook.
com/index.php/FBML.

[11] Edward W. Felten, Dirk Balfanz, Drew Dean, and
Dan S. Wallach. Web spoofing: An Internet con
game. In Proceedings of the 20th National Infor-
mation Systems Security Conference, 1996.

[12] Flickr API.
http://flickr.com/services/api/.

[13] Google. Caja: A source-to-source translator for
securing JavaScript-based web content. http:
//code.google.com/p/google-caja/.

[14] Google. Google Maps API.
http://code.google.com/apis/maps/.

[15] iGoogle. http://www.google.com/ig.

[16] Georgi Guninski. Frame spoofing using loading
two frames.
https://bugzilla.mozilla.org/show_
bug.cgi?id=13871.

[17] Ian Hickson. Re: A potential slight security
enhancement to postMessage, Februrary 2008.
http://lists.whatwg.org/pipermail/
whatwg-whatwg.org/2008-February/
013949.html.

[18] Ian Hickson. Re: HTML5 frame navigation
policy, April 2008. http://lists.whatwg.
org/pipermail/whatwg-whatwg.org/
2008-April/014597.html.

[19] Ian Hickson et al. HTML 5 Working Draft.
http://www.whatwg.org/specs/
web-apps/current-work/.

[20] Collin Jackson, Adam Barth, Andrew Bortz, Wei-
dong Shao, and Dan Boneh. Protecting browsers
from DNS rebinding attacks. In Proceedings of of
the 14th ACM Conference on Computer and Com-
munications Security (CCS), 2007.

[21] Collin Jackson and Helen J. Wang. Sub-
space: Secure cross-domain communication for
web mashups. In Proceedings of the 16th Interna-
tional World Wide Web Conference. (WWW), 2007.

[22] Frederik De Keukelaere, Sumeer Bhola, Michael
Steiner, Suresh Chari, and Sachiko Yoshihama.
SMash: Secure cross-domain mashups on unmodi-
fied browsers. In Proceedings of the 17th Interna-
tional World Wide Web Conference (WWW), 2008.

[23] Gavin Lowe. Breaking and fixing the Needham-
Schroeder public-key protocol using FDR. In Pro-
ceedings of TACAS, volume 1055. Springer Verlag,
1996.

[24] Henry Mason. No support for MessageEvent in-
terface, 2007. https://bugs.webkit.org/
show_bug.cgi?id=14994.

[25] Microsoft. postMessage method.
http://msdn.microsoft.com/en-us/
library/cc197015(VS.85).aspx.

[26] Microsoft. SECURITY attribute.
http://msdn2.microsoft.com/en-us/
library/ms534622(VS.85).aspx.

[27] Microsoft. Try the Windows Live Contacts
control. http://dev.live.com/mashups/
trypresencecontrol/.

[28] Microsoft. Windows Live.
http://home.live.com/.

[29] Roger M. Needham and Michael D. Schroeder.
Using encryption for authentication in large net-
works of computers. Communications of the ACM,
21(12):993–999, 1978.

[30] National Institute of Standards and Technology.
CVE-2007-5858, December 2007.

[31] Charlie Reis, John Dunagan, Helen J. Wang, Opher

Dubrovsky, and Saher Esmeir. BrowserShield:
Vulnerability-driven filtering of dynamic HTML.
In 7th Symposium on Operating Systems Design
and Implementation (OSDI), 2006.

[32] Adam Roben et al. Change postMes-
sage/MessageEvent to match HTML5 wrt. ex-
posing origin vs. domain/uri. https://bugs.
webkit.org/show_bug.cgi?id=17331.

[33] David Ross, 2008. Personal communication.

[34] J. Ruderman. JavaScript Security: Same Origin.
http://www.mozilla.org/projects/
security/components/same-origin.
html.

[35] Hallvord Steen, 2008. Personal communication.

[36] Danny Thorpe. Secure cross-domain communi-
cation in the browser. The Architecture Journal,
12:14–18, July 2007.
http://msdn2.microsoft.com/en-us/
library/bb735305.aspx.

[37] Jeff Walden. Implement HTML5’s cross-
document messaging API (postMessage), 2007–
2008. https://bugzilla.mozilla.org/
show_bug.cgi?id=387706.

[38] Jeff Walden et al. Update postMessage and
MessageEvent to reflect domain/uri being re-
placed by origin, optional origin argument.
https://bugzilla.mozilla.org/show_
bug.cgi?id=417075.

[39] Helen J. Wang, Xiaofeng Fan, Jon Howell, and
Collin Jackson. Protection and communication ab-
stractions for web browsers in MashupOS. In Pro-
ceedings of the 21st ACM Symposium on Operating
Systems Principles (SOSP), 2007.

[40] Yahoo! My Yahoo! http://my.yahoo.com/.

