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CHAPTER 4

Security in Ordinary Operating

Systems

In considering the requirements of a secure operating system, it is worth considering how far ordinary
operating systems are from achieving these requirements. In this chapter, we examine the UNIX and
Windows operating systems and show why they are fundamentally not secure operating systems. We
first examine the history these systems, briefly describe their protection systems, then we show, using
the requirements of a secure operating system defined in Chapter 2, why ordinary operating systems
are inherently insecure. Finally, we examine common vulnerabilities in these systems to show the
need for secure operating systems and the types of threats that they will have to overcome.

4.1 SYSTEM HISTORIES

4.1.1 UNIXHISTORY
UNIX is a multiuser operating system developed by Dennis Ritchie and Ken Thompson at AT&T
Bell Labs [266]. UNIX started as a small project to build an operating system to play a game on an
available PDP-7 computer. However, UNIX grew over the next 10 to 15 years into a system with
considerable mindshare, such that a variety of commercial UNIX efforts were launched. The lack of
coherence in these efforts may have limited the market penetration of UNIX, but many vendors, even
Microsoft, had their own versions. UNIX remains a significant operating system today, embodied
in many systems, such as Linux, Sun Solaris, IBM AIX, the various BSD systems, etc.

Recall from Chapter 3 that Bell Labs was a member of the Multics consortium. However,
Bell Labs dropped out of the Multics project in 1969, primarily due to delays in the project. Ken
Thompson adapted some of the ideas of Multics when he initiated the construction of a system
that was named as a pun on the Multics system, UNICS (UNIplexed Information and Computing
Service). Eventually and mysteriously, the system was renamed UNIX, but the project had begun.

UNIX gained mindshare for a number of reasons. Ritchie rewrote UNIX in his new program-
ming language C which enabled UNIX to be the first portable operating system. This enabled the
development of a UNIX community, since lots of people could run UNIX on a variety of different
hardware. Next, an application program interface was designed for UNIX which enabled program-
mers to write application easily, without resorting to assembly language, and these applications ran
across the variety of UNIX-supported platforms. Finally, UNIX was truly simplified when compared
to Multics. While UNIX adopted many Multics principles, such as hierarchical file systems, virtual
memory, and encrypted passwords, UNIX was far simpler. UNIX aimed for a small base program
called the kernel/ with a standard interface to simplify the development of applications. As a result,
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the code size of UNIX (at the time) was smaller than Multics, UNIX performed better, and UNIX

was easier to program and administer.

Asastreamlined descendant of Multics, UNIX adopted several of the Multics security features,
such as password storage, protection ring usage, access control lists, etc., but most were streamlined
as well. Since UNIX was not a government-funded project like Multics, it was built with different
security goals in mind. For UNIX, the goal was to develop a common platform (e.g., devices and
file system) that could be shared by several users. As a result, the security problem became one of
protection 1 where the goal is to protect the users’ data from inadvertent errors in their programs.
However, protection does not ensure that secrecy and integrity goals (i.e., security) can be achieved
(see Chapter 5). Security enforcement requires that a system’s security mechanisms can enforce
system security goals even when all the software outside the trusted computing base is malicious.
Thus, when UNIX systems were connected to untrusted users via the Internet, a variety of design
decisions made for protection no longer applied. As we will discuss, the ordinary UNIX security
mechanisms are not capable of enforcing the requirements of a secure operating system. A variety of
efforts have aimed to extend or replace the insecure mechanisms for ordinary UNIX systems with
mechanisms that may achieve the requirements of a secure operating system (see Chapter 2), as we

describe in Chapters 7 and 9.

4.1.2 WINDOWS HISTORY

The history of the Microsoft Windows operating system goes back to the introduction of MS-DOS,
which was the original operating system for IBM personal computers introduced in 1981 [24].
MS-DOS was constructed from the Quick and Dirty Operating System (QDOS) built by Tim
Paterson that Microsoft purchased from his employer Seattle Computer Products. QDOS was itself
based on an early microcomputer operating system called the Control Program for Microcomputers
(CP/M) [68, 75]. Compared to other operating systems of the time, such as Multics and UNIX,
MS-DOS was a very limited system. It was not a true multitasking system, and did not use many of
the features of the x86 processor. Over the next 20 years, Microsoft made improvements to MS-DOS
to support more efficient and flexible use of the x86 hardware.

Windows was originally a GUI for MS-DOS, but its visibility soon led to using its name for
the subsequent operating systems that Microsoft released. Early Windows systems were based on
various versions of MS-DOS, but MIS-DOS became less fundamental to the later “Windows 9x”
systems. A second, independent line of systems based on the NT kernel emerged starting with the
Windows NT 4.0. In 2000, the Windows systems derived from the original MS-DOS codebase
were discontinued. At this point, the Windows brand of operating systems dominated the desktop
computing market and spanned most computing devices, but the lack of focus on security in Windows
operating systems was becoming a significant limitation in these systems.

As the initial focus of the Windows operating system was on microcomputer platforms en-
visioned for a single user and disconnected from any network, security was not a feature of such

INamed after the protection system in Lampson’s famous paper [176] which achieves the same security goal.
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systems. Users administered their systems, uploading new programs as they were purchased. How-
ever, the emergence of the world-wide web made connecting Windows computers to the network
fundamental to its use, and the networked services that users leveraged, such as email, web clients,
easy program download, etc., introduced vulnerabilities that the Windows systems were not designed
to counter. The usability model of Windows as a open, flexible, user-administered platform, plus its
ubiquity, made it an easy target for attackers. Further, Microsoft was slow to address such threats.
In 2000, features were nearly always enabled by default, leading to world-wide compromises due to
Windows vulnerabilities (e.g., Code Red and variants [88, 334]). Microsoft has focused with some
success on reducing its vulnerabilities through better code development practices [139], code analysis
tools [210], and more secure configuration settings. However, improvements in the security features
of the Windows operating systems have been less effective. The Windows 2000-based access con-
trol system is complex and largely unused [303], the Windows operating system trusted computing
base is extremely large (50 million lines of source code in the operating system alone), and recent
security enhancements for Windows Vista [152] are both insufficient to provide complete integrity
protection [221, 220] and so invasive as to be unpopular [243].

4.2 UNIXSECURITY

We provide a brief outline of a UNIX system prior to examining the security details. Those interested
in a comprehensive description of UNIX system concepts are encouraged to read one of the many
books on the subject [119, 201, 192].

A running UNIX system consists of an gperating system kernel and many processes each running
a program. A protection ring boundary isolates the UNIX kernel from the processes. Each process
has its own address space, that defines the memory addresses that it can access. Modern UNIX systems
define address spaces primarily in terms of the set of memory pages that they can access 2. UNIX uses
the concept of a fi/e for all persistent system objects, such as secondary storage, I/O devices, network,
and interprocess communication. A UNIX process is associated with an identity, based on the user
associated with the process, and access to files is limited by the process’s identity.

UNIX security aims to protect users from each other and the system’s trusted computing base
(TCB) from all users. Informally, the UNIX TCB consists of the kernel and several processes that
run with the identity of the privileged user, root or superuser. These root processes provide a variety
of services, including system boot, user authentication, administration, network services, etc. Both
the kernel and root processes have full system access. All other processes have limited access based
on their associated user’s identity.

4.2.1 UNIXPROTECTION SYSTEM
UNIX implements a classical protection system (see Definition 2.1 in Chapter 2), not the secure
protection system (see Definition 2.4). As stated in Definition 2.1, a UNIX protection system

2Segmentation is still supported in most modern processors, but it is not used as the primary access boundary in UNIX systems
anymore, as it was in Multics.
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consists of a protection state and a set of operations that enable processes to modify that state. Thus,
UNIX is a discretionary access control (DAC) system. However, UNIX does have some aspects of the
secure protection system in Definition 2.4. First, the UNIX protection system defines a zransition
state that describes how processes change between protection domains. Second, the labeling state is
largely ad hoc. Trusted services associate processes with user identities, but users can control the
assignment of permissions to system resources (i.e., files). In the final analysis, these mechanisms
and the discretionary protection system are insufficient to build a system that satisfies the secure
operating system requirements (see Definition 2.6 in Chapter 2).

Recall that a protection state describes the operations that the system’s subjects can perform
on that system’s objects. The UNIX protection state associates process identities (subjects) with their
access to files (objects). Each UNIX process identity consists of a user id (UID), a group id (GID),
and a set of supplementary groups. These are used in combination to determine access as described
below 3.

All UNIX resources are represented as files. The protection state specifies that subjects may
perform read, write, and execute operations on files, with the standard meaning of these operations.
While directories are not files, they are represented as files in the UNIX protection state, although
the operations have different semantics (e.g., execute means search for a directory).

Files are also associated with an owner UID and an owner GID which conveys special priv-
ileges to processes with these identities. A process with the owner UID can modify any aspect of
the protection state for this file. Processes with either the owner UID and group GID may obtain
additional rights to access the file as described below.

The limited set of objects and operations enabled UNIX designers to use a compressed access
control list format called UNLX mode bits, to specify the access rights of identities to files. Mode
bits define the rights of three types of subjects: (1) the file owner UID; (2) the file group GID;
and (3) all other subjects. Using mode bits authorization is performed as follows. First, the UNIX
authorization mechanism checks whether the process identity’s UID corresponds to the owner UID
of the file, and if so, uses the mode bits for the owner to authorize access. If the process identity’s
GID or supplementary groups correspond to the file’s group GID, then the mode bits for the group
permissions are used. Otherwise, the permissions assigned to all others are used.

Example 4.1. UNIX mode bits are of the form {owner bits, group bits, others bits} where each
element in the tuple consists of a read bit, a write bit, and an execute bit. The mode bits:

IrwXr——r—-—

mean that a process with the same UID as the owner can read, write, or execute the file, a
process with a GID or supplementary group that corresponds to the file’s group can read the file,
and others can also only read the file.

3 A process’s user identity is actually represented by a set of UIDs for effective, real, and file system access. These details are important
to preventing vulnerabilities, see Section 4.2.4, but for clarity we defer their definition until that section.
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Suppose a set of files have the following owners, groups, and others mode bits as described

below:

Name Owner Group Mode Bits
foo alice faculty IrWXr--r--
bar  bob students  rw-rw-r--
baz charlie faculty TWXTWXTWX

Then, processes running as alice with the group faculty can read, write, or execute foo and
baz, but only read bar. For bar, Alice does not match the UID (bob), nor have the associated group
(students). The process has the appropriate owner to gain all privileges for foo and the appropriate
group to gain privileges to baz.

As described above, the UNIX protection system is a discretionary access control system.
Specifically, this means that a file’s mode bits, owner UID, or group GID may be changed by any
UNIX processes run by the file’s owner (i.e., that have the same UID as the file owner). If we trust
all user processes to act in the best interests of the user, then the user’s security goals can be enforced.
However, this is no longer a reasonable assumption. Nowadays, users run a variety of processes, some
of which may be supplied by attackers and others may be vulnerable to compromise from attackers,
so the user will have no guarantee that these processes will behave consistently with the user’s security
goals. As a result, a secure operating system cannot use discretionary access control to enforce user
security goals.

Since discretionary access control permits users to change their files owner UID and group
GID in addition to the mode bits, file labeling is also discretionary. A secure protection system
requires a mandatory /abeling state, so this is another reason that UNIX systems cannot satisfy the
requirements of a secure operating system.

UNIX processes are labeled by trusted services from a set of labels (i.e., user UIDs and group
GIDs) defined by trusted administrators, and child processes inherit their process identity from
their parent. This mandatory approach to labeling processes with identities would satisfy the secure
protection system requirements, although it is rather inflexible.

Finally, UNIX mode bits also include a specification for protection domain transitions, called
the setuid bit. When this bit is set on a file, any process that executes the file with automatically
perform a protection domain transition to the file’s owner UID and group GID. For example, if a
root process sets the setuid bit on a file that it owns, then any process that executes that file will
run under the root UID. Since the setuid bit is a mode bit, it can be set by the file’s owner, so it
is also managed in a discretionary manner. A secure protection state requires a mandatory fransition
state describe all protection domain transitions, so the use of discretionary setuid bits is insufficient.

4.2.2 UNIXAUTHORIZATION

The UNIX authorization mechanism controls each process’s access to files and implements protection
domain transitions that enable a process to change its identity. The authorization mechanism runs
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in the kernel, but it depends on system and user processes for determining its authorization queries
and its protection state. For these and other reasons described in the UNIX security analysis, the
UNIX authorization mechanism does not implement a reference monitor. We prove this in the
Section 4.2.3 below.

UNIX authorization occurs when files are opened, and the operations allowed on the file are
verified on each file access. The requesting process provides the name of the file and the operations
that will be requested upon the file in the open system call. If authorized, UNIX creates a file
descriptor that represents the process’s authorized access to perform future operations on the file.
File descriptors are stored in the kernel, and only an index is returned to the process. Thus, file
descriptors are a form of capability (see Chapter 2 for the definition and Chapter 10 for a discussion
on capability-based systems). User processes present their file descriptor index to the kernel when
they request operations on the files that they have opened.

UNIX authorization controls traditional file operations by mediating file open for read, write,
and execute permissions. However, the use of these permissions does not always have the expected
effect: (1) these permissions and their semantics do not always enable adequate control and (2) some
objects are not represented as files, so they are unmediated. If a user has read access to a file, this is
sufficient to perform a wide-variety of operations on the file besides reading. For example, simply
via possession of a file descriptor, a user process can perform any ad hoc command on the file using
the system calls ioctl or fcntl, as well as read and modify file metadata. Further, UNIX does not
mediate all security-sensitive objects, such as network communications. Host firewalls provide some
control of network communication, but they do not restrict network communication by process
identity.

The UNIX authorization mechanism depends on user-level authentication services, such as
login and sshd, to determine the process identity (i.e., UID, GID, and supplementary groups,
see Section 4.2.1). When a user logs in to a system, her processes are assigned her login identity.
All subsequent processes created in this login session inherit this identity unless there is a domain
transition (see below). Such user-level services also need root privileges in order to change the
identity of a process, so they run with this special UID. However, several UNIX services need to
run as root in order to have the privileges necessary to perform their tasks. These privileges include
the ability to change process identity, access system files and directories, change file permissions, etc.
Some of these services are critical to the correct operation of UNIX authorization, such as sshd and
passwd, but others are not, such as inetd and ftp. However, a UNIX system’s trusted computing
base must include all root processes, thus risking compromise of security critical services and the
kernel itself.

UNIX protection domain transitions are performed by the setuid mechanism. setuid is
used in two ways: (1) a root process can invoke the setuid system call to change the UID of a
process 4 and (2) a file can have its setuid mode bit set, such that whenever it is executed its identity
is set to the owner of the file, as described in Section 4.2.1. In the first case, a privileged process,

#There are similar commands, such as setgid and setgroups, to change the GID and supplementary groups, respectively.
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such as login or sshd, can change the identity of a process. For example, when a user logs in, the
login program must change the process identity of the user’s first process, her shell, to the user to
ensure correct access control. In the second case, the use of the setuid bit on a file is typically used
to permit a lower privileged entity to execute a higher privileged program, almost always as root.
For example, when a user wishes to change her password, she uses the passwd program. Since the
passwd program modifies the password file, it must be privileged, so a process running with the
user’s identity could not change the password file. The setuid bit on the root-owned, passwd
executable’s file is set, so when any user executes passwd, the resultant process identity transitions
to root. While the identity transition does not impact the user’s other processes, the writers of the
passwd program must be careful not to allow the program to be tricked into allowing the user to
control how passwd uses its additional privileges.

UNIX also has a couple of mechanisms that enable a user to run a process with a reduced
set of permissions. Unfortunately, these mechanisms are difficult to use correctly, are only available
to root processes, and can only implement modest restrictions. First, UNIX systems have a special
principal nobody that owns no files and belongs to no groups. Therefore, a process’s permissions
can be restricted by running as nobody since it never has owner or group privileges. Unfortunately,
nobody, like all subjects, has others privileges. Also, since only root can do a setuid only a
superuser process can change the process identity to nobody. Second, UNIX chroot can be used
to limit a process to a subtree of the file system [262]. Thus, the process is limited to only its rights
to files within that subtree. Unfortunately, a chroot environment must be setup carefully to prevent
the process from escaping the limited domain. For example, if an attacker can create /etc/passwd
and /etc/shadovw files in the subtree, she can add an entry for root, login as this root, and escape
the chroot environment (e.g., using root access to kernel memory). Also, a chroot environment
can only be setup by a root process, so it is not usable to regular system users. In practice, neither
of these approaches has proven to be an effective way to limit process permissions.

4.2.3 UNIXSECURITY ANALYSIS

If UNIX can be a secure operating system, it must satisfy the secure operating system requirements
of Chapter 2. However, UNIX fails to meet any of these requirements.

1. Complete Mediation: How does the reference monitor interface ensure that all security-
sensitive operations are mediated correctly?

The UNIX reference monitor interface consists of hooks to check access for file or inode
permission on some system calls. The UNIX reference monitor interface authorizes access to
the objects that the kernel will use in its operations.

A problem is that the limited set of UNIX operations (read, write, and execute) is not expressive
enough to control access to information. As we discussed in Section 4.2.2, UNIX permits
modifications to files without the need for write permission (e.g., fcntl).
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2. Complete Mediation: Does the reference monitor interface mediate security-sensitive oper-
ations on all system resources?

UNIX authorization does not provide complete mediation of all system resources. For some
objects, such as network communications, UNIX itself provides no authorization at all.

3. Complete Mediation: How do we verify that the reference monitor interface provides com-
plete mediation?

Since the UNIX reference monitor interface is placed where the security-sensitive operations
are performed, it difficult to know whether all operations have been identified and all paths
have been mediated. No specific approach has been used to verify complete mediation.

4. Tamperproof: How does the system protect the reference monitor, including its protection
system, from modification?

The reference monitor and protection system are stored in the kernel, but this does not guar-
antee tamper-protection. First, the protection system is discretionary, so it may be tampered
by any running process. Untrusted user processes can modify permissions to their user’s data
arbitrarily, so enforcing security goals on user data is not possible.

Second, the UNIX kernel is not as protected from untrusted user processes as the Multics kernel
is. Both use protection rings for isolation, but the Multics system also explicitly specifies gazes
for verifying the legality of the ring transition arguments. While UNIX kernels often provide
procedures to verify system call arguments, such procedures are may be misplaced.

Finally, user-level processes have a variety of interfaces to access and modify the kernel itself
above and beyond system calls, ranging from the ability to install kernel modules to special
file systems (e.g., /proc or sysfs) to interfaces through netlink sockets to direct access to
kernel memory (e.g., via the device file/dev/kmem). Ensuring that these interfaces can only
be accessed by trusted code has become impractical.

5. Tamperproof: Does the system’s protection system protect the trusted computing base pro-
grams?

In addition to the kernel, the UNIX TCB consists of a// root processes, including all pro-
cesses run by a user logged in as a root user. Since these processes could run any program,
guaranteeing the tamper-protection of the TCB is not possible. Even ignoring root users, the
amount of TCB code is far too large and faces far too many threats to claim a tamperproof
trusting computing base. For example, several root processes have open network ports that
may be used as avenues to compromise these processes. If any of these processes is compro-
mised, the UNIX system is effectively compromised as there is no effective protection among

root processes.
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Also, any root process can modify any aspect of the protection system. As we show below,
UNIX root processes may not be sufficiently trusted or protected, so unauthorized modifi-
cation of the protection system, in general, is possible. As a result, we cannot depend on a
tamperproof protection system in a UNIX system.

6. Verifiable: What is basis for the correctness of the system’s TCB?

Any basis for correctness in a UNIX system is informal. The effectively unbounded size of the
TCB prevents any effective formal verification. Further, the size and extensible nature of the
kernel (e.g., via new device drivers and other kernel modules) makes it impractical to verify its
correctness.

7. Verifiable: Does the protection system enforce the system’s security goals?

Verifiability enforcement of security goals is not possible because of the lack of complete
mediation and the lack of tamperproofing. Since we cannot express a policy rich enough to
prevent unauthorized data leakage or modification, we cannot enforce secrecy or integrity
security goals. Since we cannot prove that the TCB is protected from attackers, we cannot
prove that the system will be remain able to enforce our intended security goals, even if they
could be expressed properly.

4.2.4 UNIXVULNERABILITIES

A secure operating system must protect its trusted computing base from compromise in order to
implement the reference monitor guarantees as well. In this section, we list some of the vulnerabilities
that have been found in UNIX systems over the years that have resulted in the compromise of the
UNIX trusted computing base. This list is by no means comprehensive. Rather, we aim to provide
some examples of the types of problems encountered when the system design does not focus on
protecting the integrity of the trusted computing base.

Network-facing Daemons UNIX has several root (i.e., TCB) processes that maintain network
ports that are open to all remote parties (e.g., sshd, ftpd, sendmail, etc.), called nerwork-facing
daemons. In order to maintain the integrity of the system’s trusted computing base, and hence
achieve the reference monitor guarantees, such process must protect themselves from such input.
However, several vulnerabilities have been reported for such processes, particularly due to buffer
overflows [232, 318], enabling remote attackers to compromise the system TCB. Some of these
daemons have been redesigned to remove many of such vulnerabilities (e.g., Postfix [317, 73] as a
replacement for sendmail and privilege-separated SSH [251]), but a comprehensive justification of
integrity protection for the resulting daemons is not provided. Thus, integrity protection of network-
facing dameons in UNIX is incomplete and ad hoc.

Further, some network-facing daemons, such as remote login daecmons (e.g., telnet,rlogin,
etc.) £tpd, and NFS, puts an undo amount of trust in the network. The remote login daemons and
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ftpd are notorious for sending passwords in the clear. Fortunately, such daemons have been obsoleted
or replaced by more secure versions (e.g., vsftpd for £tpd). Also, NFS is notorious for accepting
any response to a remote file system request as being from a legitimate server [38]. Network-facing
daemons must additionally protect the integrity of their secrets and authenticate the sources of
remote data whose integrity is crucial to the process.

Rootkits Modern UNIX systems support extension via kernel modules that may be loaded dy-
namically into the kernel. However, a malicious or buggy module may enable an attacker to execute
code in the kernel, with full system privileges. A variety of malware packages, called rootkits, have
been created for taking advantage of kernel module loading or other interfaces to the kernel avail-
able to root processes. Such rootkits enable the implementation of attacker function and provide
measures to evade from detection. Despite efforts to detect malware in the kernel [244, 245], such
rootkits are difficult to detect, in general, [17].

Environment Variables UNIX systems support environment variables, system variables that are
available to processes to convey state across applications. One such variable is LIBPATH whose value
determines the search order for dynamic libraries. A common vulnerability is that an attacker can
change LIBPATH to load an attacker-provided file as a dynamic library. Since environment variables
are inherited when a child process is created, an untrusted process can invoke a TCB program
(e.g., a program file which setuid’s to root on invocation, see Section 4.2.2) under an untrusted
environment. If the TCB process depends on dynamic libraries and does not set the LIBPATH itself,
it may be vulnerable to running malicious code. As many TCB programs can be invoked via setuid,
this is a widespread issue.

Further, TCB programs may be vulnerable to any input value supplied by an untrusted process,
such as malicious input arguments. For example, a variety of program permit the caller to define
the configuration file of the process. A configuration file typically describes all the other places that
the program should look for inputs to describe how it should function, sometimes including the
location of libraries that it should use and the location of hosts that provide network information. If
the attack can control the choice of a program’s configuration file, she often has a variety of ways to
compromise the running process. Any TCB program must ensure their integrity regardless of how
they are invoked.

Shared Resources If TCB processes share resources with untrusted processes, then they may be
vulnerable to attack. A common problem is the sharing of the /tmp directory. Since any process can
create files in this directory, an untrusted process is able to create files in this directory and grant
other processes, in particular a TCB process, access to such files as well. If the untrusted process
can guess the name of TCB process’s /tmp file, it can create this file in advance, grant access to the
TCB process, and then have access itself to a TCB file. TCB processes can prevent this problem
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by checking for the existence of such files upon creation (e.g., using the 0_CREAT flag). However,
programmers have been prone to forget such safeguards. TCB process must take care when using
any objects shared by untrusted processes.

Time-of-Check-to-Time-of-Use (TOCTTOU) Finally, UNIX has been prone to a variety of
attacks where untrusted processes may change the state of the system between the time an operation
is authorized and the time that the operation is performed. If such a change enables an untrusted
process to access a file that would not have been authorized for, then this presents a vulnerability. The
attack was first identified by Dilger and Bishop [30] who gave it the moniker time-of-check-to-time-
of-use attacks or TOCTTOU attacks. In the classical example, a root process uses the system call
access to determine if the user for whom the process is running (e.g., the process was initiated by
a setuid) has access to a particular file /tmp/X. However, after the access system call authorizes
the file access and before the file open, the user may change the binding between the file name
and the actual file object (i.e., inode) accessed. This can be done by change the file /tmp/X to a
symbolic link to the target file /etc/shadow. As a result, UNIX added a flag, so the open request
could prevent traversal via symbolic links. However, the UNIX file system remains susceptible to
TOCTTOU attacks because the mapping between file names and actual file objects (inodes) can
be manipulated by the untrusted processes.

As a result of the discretionary protection system, the size of the system TCB, and these
types of vulnerabilities, converting a UNIX system to a secure operating system is a significant
challenge. Ensuring that TCB processes protect themselves, and thus protect a reference monitor
from tampering, is a complex undertaking as untrusted processes can control how TCB processes
are invoked and provide inputs in multiple ways: network, environment, and arguments. Further,
untrusted processes may use system interfaces to manipulate any shared resources and may even
change the binding between object name and the actual object. We will discuss the types of changes
necessary to convert an ordinary UNIX system to a system that aims to satisfy the secure operating
system definition in Chapters 7 and 9, so we will see that several fundamental changes are necessary to
overcome these problems. Even then, the complexity of UNIX systems and their trusted computing
base makes satisfying the tamperproof and verifiability requirements of the reference monitor concept
very difficult.

4.3 WINDOWS SECURITY

In this section, we will show that Windows operating systems also fail to meet the requirements
of a secure operating system. This section will be much briefer than the previous examination of
UNIX as many of the concepts are similar. For example, Windows also supports processes with their
own address spaces that are managed by a ring-protected kernel. For a detailed description of the
Windows access control system examined in this section, circa Windows 2000, see Swift et al. [303].
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4.3.1 WINDOWS PROTECTION SYSTEM

The Windows 2000 protection system °, like the UNIX protection system, provides a discretionary
access control model for managing protection state, object labeling, and protection domain transi-
tions. The two protection systems manly differ in terms of flexibility (e.g., the Windows system is
extensible) and expressive power (e.g., the Windows system enables the description of a wider variety
of policies). Unfortunately, when we compare the Windows protection system to the definition of
a secure protection system, we find that improvements in flexibility and expressive power actually
make the system more difficult to secure.

Specifically, the Windows protection system differs from UNIX mainly in the variety of
its objects and operations and the additional flexibility it provides for assigning them to subjects.
When the Windows 2000 access control model was being developed, there were a variety of security
systems being developed that provided administrators with extensible policy languages that permitted
flexible policy specification, such as the Java 2 model [117]. While these models address some of the
shortcomings of the UNIX model by enabling the expression of any protection state, they do not
ensure a secure system.

Subjects in Windows are similar to subjects in UNIX. In Windows, each process is assigned
a foken that describes the process’s identity. A process identity consists of user security identifier
(principal SID, analogous to a UNIX UID), a set of group SIDs (rather than a single UNIX GID
and a set of supplementary groups), a set of alias SIDs (to enable actions on behalf of another
identity), and a set of privileges (ad hoc privileges just associated with this token). A Windows
identity is still associated with a single user identity, but a process token for that user may contain
any combination of rights.

Unlike UNIX, Windows objects can belong to a number of different data types besides files.
In fact, applications may define new data types, and add them to the active directory, the hierarchical
name space for all objects known to the system. From an access control perspective, object types are
defined by their set of operations. The Windows model also supports a more general view of the
operations that an object type may possess. Windows defines up to 30 operations per object type,
including some operations that are specific to the data type [74]. This contrasts markedly with the
read, write, and execute operations in the UNIX protection state. Even for file objects, the Windows
protection system defines many more operations, such as operations to access file attributes and
synchronize file operations. In addition, application may add new object types and define their own
operations.

The other major difference between a Windows and UNIX protection state is that Windows
supports arbitrary access control lists (ACLs) rather than the limited mode bits approach of UNIX.
A Windows ACL stores a set of access control entries (ACEs) that describe which operations an SID
(user, group, or alias) can perform on that object 6 The operations in an ACE are interpreted based
on the object type of the target object. In Windows, ACEs may either grant or deny an operation.

SWe simply refer to this as the Windows protection system for the rest of the chapter.
6Remember that access control lists are stored with the object, and state which subjects can access that object.
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Thus, Windows uses negative access rights, whereas UNIX does not, generating some differences
in their authorization mechanisms.

Example 4.2. Figure 4.1 shows an example ACL for an object foo. foo’s ACL contains three
ACEs. The field principal SID specifies the SID to which the ACE applies. These ACE apply to

Access Control List

Process P1 Access Control Entry 1
Principal SID Alice / Principal SID Alice
Group SIDs Group1, Group2 ACE Type Grant
Alias SIDs Cheryl Access Rights Read, Execute
Privileges None
Access Control Entry 2
Principal SID Bob
Process P2 ACE Type Grant
Principal SID Bob Access Rights Read
Group SIDs Group 2
Alias SIDs None
Privileges None Access Control Entry 3
Principal SID Group1
ACE Type Deny
Access Rights Read, Write

Figure 4.1: Windows Access Control Lists (ACLs) and process tokens for Examples 4.2 and 4.3

the SIDs Alice, Bob, and Groupl. The other two important fields in an ACE are its #ype (grant
or deny) and the access rights (a bitmask). The Alice and Bob ACEs grant rights, and the Group1
ACE denies access to certain rights. The access rights bitmask is interpreted based on the object zype
field in the ACE. We describe how the ACL is used in authorization in the next section.

4.3.2 WINDOWS AUTHORIZATION

Windows authorization queries are processed by a specific component called the Security Reference
Monitor (SRM). The SRM is a kernel component that takes a process token, an object SID, and a
set of operations, and it returns a boolean result of an authorization query. The SRM uses the object
SID to retrieve its ACL from which it determines the query result.
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Because of the negative permissions, the way that the SRIM processes authorization queries
is more complicated than in the UNIX case. The main difference is that the ACEs in an ACL are
ordered, and the ACEs are examined in that order. The SRM searches the ACEs until it finds a set
of ACEs that permits the operation or a single ACE that denies the operation. If an ACE grants
the necessary operations ’, then the request is authorized. However, if a deny ACE is encountered
that includes one of the requested operations, then the entire request is denied.

Example4.3. Returning to Example 4.2 above, the ACEs of the object’s ACL are ordered as shown
in Figure 4.1. Note that the ACE field for access rights is really a bitmap, but we list the operations to
simplify understanding. Further, we specify the process tokens for two processes, P1 and P2. Below,
we show the authorization results for a set of queries by these processes for the target object.

P1, read: ok
P1, read, write: no
P2: read: ok
P2: read, write: no

Both P1 and P2 can read the target object, but neither can write the object. P1 cannot write
the object because the P1 token include Groupl which matches the deny ACE for writing. P2
cannot write the object because the ACE for Bob does not permit writing.

Mediation in Windows is determined by a set of object managers. Rather than a monolithic set
of system calls to access homogeneous objects (i.e., files) in UNIX, each object type in Windows has
an object manager that implements the functions of that type. While the Windows object managers
all run in the kernel, the object managers are independent entities. This can be advantageous from
a modularity perspective, but the fact that object managers may extend the system presents some
challenges for mediation. We need to know that each new object manager mediates all operations
and determines the rights for those operations correctly. There is no process for ensuring this in
Windows.

In Windows, the trusted computing base consists of all system services and processing running
as a trusted user identity, such as Administrator . Windows provides a setuid-like mechanism
for invoking Windows Services that run at a predefined privilege, at least sufficient to support all
clients. Thus, vulnerabilities in such services would lead to system compromise. Further, the ease
of software installation and complexity of the discretionary Windows access control model often
result in users running as Administrator. In this case, any user program would be able to take
control of the system. This is often a problem on Windows systems. With the release of Windows
Vista, the Windows model is extended to prevent programs downloaded from the Internet from
It may take multiple ACEs to grant all the requested operations, so this refers to the ACE that grants whatever remaining

operations were requested.

81n addition, these services and processes may further depend on non-Administrator processes, which would make the system
TCB even less secure.
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automatically being able to write Windows applications and the Windows system, regardless of the
user’s process identity [152]. While this does provide some integrity protection, it does not fully
protect the system’s integrity. It prevents low integrity processes from writing to high integrity files,
but does not prevent invocation, malicious requests, or spoofing the high integrity code into using
a low integrity file. See Chapter 5 for the integrity requirements of a secure operating system.

Windows also provides a means for restricting the permissions available to a process flexibly,
called restricted contexts. By defining a restricted context for a process, the permissions necessary to
perform an operation must be available to both the process using its token and to the restricted
context. That is, the permissions of a process running in a restricted context are the inzersection of the
restricted context and the process’s normal permissions. Since a restricted context may be assigned an
arbitrary set of permissions, this mechanism is much more flexible than the UNIX option of running
as nobody. Also, since restricted contexts are built into the access control system, it less error-prone
than and chroot. Nonetheless, restricted contexts are difficult for administrators to define correctly,
so they are not used commonly, and not at all by the user community.

4.3.3 WINDOWS SECURITY ANALYSIS

Despite the additional expressive power offered by the Windows access control model, it also does
not satisfy any of the reference monitor guarantees either. Although Windows can express any
combination of permissions, it becomes more difficult to administer. In my informal polls, no users
use the Windows permission model at all, whereas most at least were aware of how to use the UNIX
model (although not always correctly). Windows is effectively no more or less secure than ordinary

UNIX—they are both insecure.

1. Complete Mediation: How does the reference monitor interface ensure that all security-
sensitive operations are mediated correctly?

In Windows, mediation is provided by object managers. Without the source code, it is difficult
to know where mediation is performed, but we would presume that object managers would
authorize the actual objects used in the security-sensitive operations, similarly to UNIX.

2. Complete Mediation: Does the reference monitor interface mediate security-sensitive oper-
ations on all system resources?

Object managers provide an opportunity for complete mediation, but provide no guarantee of
mediation. Further, the set of managers may be extended, resulting in the addition of potentially
insecure object managers. Without a formal approach that defines what each manager does
and how it is to be secured, it will not be possible to provide a guarantee of complete mediation.

3. Complete Mediation: How do we verify that the reference monitor interface provides com-
plete mediation?

As for UNIX, no specific approach has been used to verify complete mediation.
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4. Tamperproof: How does the system protect the reference monitor, including its protection
system, for modification?

Windows suffers from the same problems as UNIX when it comes to tampering. First, the
protection system is discretionary, so it may be tampered by any running process. Untrusted
user processes can modify permissions to their user’s data arbitrarily, so enforcing security goals
on user data is not possible. Since users have often run as Administrator to enable ease of
system administration, any aspect of the protection system may be modified.

Second, there are limited protections for the kernel itself. Like UNIX, a Windows kernel can
be modified through kernel modules. In Microsoft Vista, a code signing process can be used
to determine the certifier of a kernel module (i.e., the signer, not necessarily the writer of
the module). Of course, the administrator (typically an end user) must be able to determine
the trustworthiness of the signer. Security procedures that depend on the decision-making of
users are often prone to failure, as users are often ignorant of the security implications of such
decisions. Also, like UNIX, the Windows kernel also does not define protections for system
calls (e.g., Multics gates).

5. Tamperproof: Does the system’s protection system protect the trusted computing base pro-
grams?

The TCB of Windows system is no better than that of UNIX. Nearly any program may be
part of the Windows TCB, and any process running these programs can modify other TCB
programs invalidating the TCB.

Like UNIX, any compromised TCB process can modify the protection system invalidating
the enforcement of system security goals, and modify the Windows kernel itself through the
variety of interfaces provided to TCB processes to access kernel state.

Unlike UNIX, Windows provides APIs to tamper with other processes in ways that UNIX
does not. For example, Windows provides the CreateRemoteThread function, which enables
a process to initiate a thread in another process [207]. Windows also provides functions for
writing a processes memory via OpenProcess and WriteProcessMemory, so one process can
also write the desired code into that process prior to initiating a thread in that process. While
all of these operations require the necessary access rights to the other process, usually requiring
a change in privileges necessary for debugging a process (via the AdjustTokenPrivileges).
While such privileges are typically only available to processes under the same SID, we must
verify that these privileges cannot be misused in order to ensure tamper-protection of our

TCB.

6. Verifiable: What is basis for the correctness of the system’s trusted computing base?

As for UNIX, any basis for correctness is informal. Windows also has an unbounded TCB
and extensible kernel system that prevent any effective formal verification.



4.3. WINDOWS SECURITY 55

7. Verifiable: Does the protection system enforce the system’s security goals?

The general Windows model enables any permission combination to be specified, but no
particular security goals are defined in the system. Thus, it is not possible to tell whether a
system is secure. Since the model is more complex than the UNIX model and can be extended
arbitrarily, this makes verifying security even more difficult.

4.3.4 WINDOWS VULNERABILITIES

Not surprisingly given its common limitations, Windows suffers from the same kinds of vulnerabil-
ities as the UNIX system (see Section 4.2.4). For example, there are books devoted to constructing
Windows rootkits [ 137]. Here we highlight a few vulnerabilities that are specific to Windows systems
or are more profound in Windows systems.

The Windows Registry The Windows Registry is a global, hierarchical database to store data for
all programs [206]. When a new application is loaded it may update the registry with application-
specific, such as security-sensitive information such as the paths to libraries and executables to
be loaded for the application. While each registry entry can be associated with a security context
that limits access, such limitations are generally not effectively used. For example, the standard
configuration of AOL adds a registry entry that specifies the name of a Windows library file (i.e.,
DLL) to be loaded with AOL software [120]. However, the permissions were set such that any user
could write the entry.

This use of the registry is not uncommon, as vendors have to ensure that their software will
execute when it is downloaded. Naturally, a user will be upset if she downloads some newly-purchased
software, and it does not execute correctly because it could not access its necessary libraries. Since the
application vendors cannot know the ad hoc ways that a Windows system is administered, they must
turn on permissions to ensure that whatever the user does the software runs. If the registry entry
is later used by an attacker to compromise the Windows system, that is not really the application
vendor’s problem—selling applications is.

Administrator Users We mentioned in the Windows security evaluation that traditionally users
ran under the identity Administrator or at least with administrative privileges enabled. The reason
for this is similar to the reason that broad access is granted to registry entries: the user also wants to be
sure that they can use what function is necessary to enable the system to run. If the user downloads
some computer game, the user would need special privileges to install the game, and likely need
special privileges to run the device-intensive game program. The last thing the user wants is to have
to figure out why the game will not run, so enabling all privileges works around this issue.

UNIX systems are generally used by more experienced computer users who understand the
difference between installing software (e.g., run sudo) and the normal operation of the computer. As
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a result, the distinction between root users and sudo operations has been utilized more effectively

in UNIX.

Enabled By Default Like users and software vendors, Windows deployments also came with full
permissions and functionality enabled. This resulted in the famous Code Red worms [88] which
attacked the SQL server component of the Microsoft IIS web server. Many people who ran IIS did
not have an SQL server running or even knew that the SQL server was enabled by default in their
IIS system. But in these halcyon times, IIS web servers ran with all software enabled, so attackers
could send malicious requests to SQL servers on any system, triggering a buffer overflow that was
the basis for this worm’s launch. Subsequent versions of IIS are now “locked down” ? such that
software has to be manually enabled to be accessible.

4.4 SUMMARY

This investigation of the UNIX and Windows protection systems shows that it is not enough just to
design an operating system to enforce security policies. Security enforcement must be comprehensive
(i-e., mediate completely), mandatory (i.e., tamperproof), and verifiable. Both UNIX and Windows
originated in an environment in which security requirements were very limited. For UNIX, the only
security requirement was protection from other users, and for Windows, users were assumed to be
mutually-trusted on early home computers. The connection of these systems to untrusted users and
malware on the Internet changed the security requirements for such systems, but the systems did
not evolve.

Security enforcement requires that a system’s security mechanisms can enforce system secu-
rity goals even when any of the software outside the trusted computing base may be malicious. This
assumption is required in today’s world where any network request may be malicious or any user
process may be compromised. A system that enforces security goals must implement a mandatory
protection system, whereas these system’s implement discretionary protection that can be modi-
fied and invalidated by untrusted processes. A system that enforces security goals must identify
and mediate all security-sensitive operations, whereas these systems have incomplete and informal
mediation of access. Finally, a system that enforces security goals must be tamperproof, and these
systems have unbounded TCBs that provide many unchecked opportunities for untrusted processes
to tamper with the kernel and other TCB software. When we consider secure commercial systems
in Chapters 7 and 9, we will see that significant changes are necessary, but it is still difficult to undo
fully the legacy of insecurity in these systems.

9Features that are not required are disabled by default. Bastille Linux performs a similar role to lock down all services in Linux
systems [20].



