
Dan Boneh

Web security

HTTPS and the 
Lock Icon

Acknowledgments: Lecture slides are from the Computer Security course 
taught by Dan Boneh at Stanford University. When slides are obtained 
from other sources, a  a reference will be noted on the bottom of that 
slide. A full list of references is provided on the last slide.



Dan Boneh

Goals for this lecture

Brief overview of HTTPS: 
• How the SSL/TLS protocol works  (very briefly) 
• How to use HTTPS 

Integrating HTTPS into the browser 
• Lots of user interface problems to watch for



Dan Boneh

Threat Model:   Network Attacker

Network Attacker: 

• Controls network infrastructure:     Routers,   DNS 

• Eavesdrops, injects, blocks, and modifies packets 

Examples: 

• Wireless network at Internet Café 

• Internet access at hotels   (untrusted ISP)



Dan Boneh

TLS overview:  (1) DH key exchange
Anonymous key exchange secure against eavesdropping: 

 The Diffie-Hellman protocol in a group G = {1, g, g2, g3, …, gq-1}

Browser Alice Server Bob

a ⟵ {1,…,q} b ⟵ {1,…,q}

B = gb ∈ G

PreMasterSecret  = gab     =   (gb)a = Ba     =     (ga)b = Ab

A = ga ∈ G

PMS = Ba PMS = Ab



Dan Boneh

(2) Certificates
How does Alice (browser)  obtain   PKBob  ?

CA
PK     and 
proof “I am Bob”

Browser 
Alice

SKCA

check 
proofissue Cert with SKCA :

Bob’s  
key is PKBob’s  

key is PK

choose 
   (SK,PK) 

Server Bob

PKCA

Verify 
cert

Bob uses Cert for an extended period  (e.g. one year)  

PKCA



Dan Boneh

Sample certificate:

(by CA)



Dan Boneh

Certificates on the web
Subject’s CommonName can be: 

• An explicit name, e.g.     cs.stanford.edu    ,   or 

• A wildcard cert, e.g.    *.stanford.edu     or    cs*.stanford.edu 

matching rules: 
  “*” must occur in leftmost component,  does not match “.” 
   example:   *.a.com   matches   x.a.com  but not  y.x.a.com 

     (as in RFC 2818:   “HTTPS over TLS”)



Dan Boneh

Certificate Authorities

Browsers accept 
certificates from a  
large number of CAs 

Top level CAs ≈ 60 

Intermediate CAs ≈ 1200 ⋮

⋮



Dan Boneh

TLS 1.3 session setup  (simplified)

ClientHello:  nonceC ,  KeyShare

ServerHello: nonceS , KeyShare, Enc[certS,…]  
CertVerify:   Enc[SigS(data)] ,      Finished

Client Server

secret 
key

Finished

session-keys ←  HKDF( DHkey, nonceC , nonceS )

certS

Encrypted ApplicationData

Encrypted ApplicationData

Diffie-Hellman key exchange

Most common:    server authentication only



Dan Boneh

TLS 1.3 session setup: optimization (and caution)

ClientHello: nonceC , KeyShare

ServerHello: nonceS , KeyShare, Enc[certS,…]  
CertVerify:   Enc[SigS(data)] ,      Finished

Client Server

secret 
key

Finished

session-keys ←  HKDF( DHkey, nonceC , nonceS )

certS

Encrypted ApplicationData

Encrypted ApplicationData

Most common:    server authentication only

Data encrypted using a pre-shared key 

Caution:  0-RTT data is vulnerable to replay 

 ⇒  data should have no side effects 

       (i.e. GET but not POST)

, Enc[0-RTT data]



Dan Boneh

Integrating TLS with HTTP:    HTTPS
Two complications 

Web proxies 
 solution:  browser sends 
    CONNECT domain-name 
 before client-hello 

Virtual hosting:  many sites hosted at same IP address 

 solution in TLS 1.1:  SNI   (June 2003) 
  client_hello_extension:  server_name=cnn.com 

 SNI defeats privacy benefit of encrypted cert in TLS 1.3. 
  Solution:  encrypted SNI, encrypted with pk in server DNS

web  
proxy web  

server

corporate network

web  
server

certCNN 

certABC

client-hello

server-cert ???



Dan Boneh

HTTPS for all web traffic?
Old excuses: 

• Crypto slows down web servers   (not true anymore) 

• Some ad-networks still do not support HTTPS 

– reduced revenue for publishers 

  

Since July 2018:   Chrome marks HTTP sites as insecure



Dan Boneh

HTTPS in the Browser



Dan Boneh

The lock icon:    TLS indicator

Intended goal: 

• Provide user with identity of page origin 
• Indicate to user that page contents were not  

viewed or modified by a network attacker



Dan Boneh

When is the (basic) lock icon displayed

All elements on the page fetched using HTTPS 

For all elements: 

• HTTPS cert issued by a CA trusted by browser 
• HTTPS cert is valid   (e.g. not expired) 
• Domain in URL matches:  

     CommonName  or  SubjectAlternativeName  in cert



Dan Boneh

The lock UI:   Extended Validation Certs

Harder to obtain than regular certs 
•  requires human at CA to approve cert request 
•  no wildcard certs    (e.g.   *.stanford.edu ) 

Helps block “semantic attacks”:    www.bankofthevvest.com 

This UI is ineffective:  removed from Chrome in 2019. 



Dan Boneh

A general UI attack:  picture-in-picture

Trained users are more likely to fall victim to this  [JSTB’07]



Dan Boneh

HTTPS and login pages:   incorrect usage

Suppose user lands on 
HTTP login page. 

• say, by typing HTTP URL  
into address bar

<form method="post"  
       action="https://onlineservices.wachovia.com/..." 

View source:

(old site)



Dan Boneh

HTTPS and login pages:   guidelines

General guideline: 
Response to http://login.site.com 

 should be     Location:  https://login.site.com  
(redirect)

Should be the response  
to every HTTP request …



Dan Boneh

Problems with HTTPS  
and the Lock Icon



Dan Boneh

Problems with HTTPS and the Lock Icon

1. Upgrade from HTTP to HTTPS 

2. Forged certs 

3. Mixed content:    HTTP and HTTPS on the same page 

4. Does HTTPS hide web traffic?   

– Problems:    traffic analysis,   compression attacks



Dan Boneh

1.  HTTP  ⇒  HTTPS  upgrade
Common use pattern: 

• browse site over HTTP;  move to HTTPS for checkout 
• connect to bank over HTTP;   move to HTTPS for login 

SSL_strip attack:   prevent the upgrade [Moxie’08] 

 <a href=https://…>                ⟶        <a href=http://…> 

 Location: https://...              ⟶          Location: http://...               (redirect) 

 <form action=https://… >       ⟶       <form action=http://…>

web  
server

attacker

SSLHTTP



Dan Boneh

Tricks and Details
Tricks:    drop-in a clever fav icon   (older browsers) 

⇒  fav icon no longer presented in address bar 

Number of users who detected HTTP downgrade:     0

⟶ 



Dan Boneh

Defense:   Strict Transport Security (HSTS)

Header tells browser to always connect over HTTPS 

Subsequent visits must be over HTTPS      (self signed certs result in an error) 

• Browser refuses to connect over HTTP or if site presents an invalid cert 

• Requires that entire site be served over valid HTTPS 

HSTS flag deleted when user “clears private data” :    security vs. privacy

web  
server

Strict-Transport-Security:  max-age=63072000;   includeSubDomains 

 (ignored if not over HTTPS)



Dan Boneh

Preloaded HSTS list
https://hstspreload.org/

Strict-Transport-Security: max-age=63072000;   includeSubDomains;   preload 

Preload list hard-coded in Chrome source code.   Examples:  
      Google, Paypal, Twitter, Simple, Linode, Stripe, Lastpass, …



Dan Boneh

CSP:  upgrade-insecure-requests
The problem:  many pages use   <img src=“http://site.com/img”> 
• Makes it difficult to migrate a section of a site to HTTPS 

Solution:    gradual transition using CSP

<img src=“https://site.com/img”> 
<img src=“https://othersite.com/img”> 
<a href=“https://site.com/img”> 
<a href=“http://othersite.com/img”>

Content-Security-Policy: upgrade-insecure-requests 
<img src=“http://site.com/img”> 
<img src=“http://othersite.com/img”> 
<a href=“http://site.com/img”> 
<a href=“http://othersite.com/img”>



Dan Boneh

2.  Certificates: wrong issuance
2011:   Comodo and DigiNotar CAs hacked, issue certs for  Gmail,  Yahoo! Mail, 
… 

2013:   TurkTrust issued cert. for gmail.com   (discovered by pinning) 

2014:   Indian NIC (intermediate CA trusted by the root CA IndiaCCA) issue certs  
 for Google and Yahoo! domains 

 Result:  (1) India CCA revoked NIC’s intermediate certificate 

 (2) Chrome restricts India CCA root to only seven Indian domains 

2016:   WoSign (Chinese CA) issues cert for GitHub domain (among other issues) 

 Result:  WoSign certs no longer trusted by Chrome and Firefox 

⇒  enables eavesdropping w/o a warning on user’s session



Dan Boneh

Man in the middle attack using rogue cert

Attacker proxies data between user and bank.    
Sees all traffic and can modify data at will.

bankattackerClientHello ClientHello

BankCertBadguyCert

ServerCert (Bank)ServerCert (rogue)

GET https://bank.com

SSL key exchange SSL key exchange
k1 k1 k2 k2

HTTP data enc with k1 HTTP data enc with k2

(cert for Bank by a valid CA)



Dan Boneh

What to do?      (many good ideas)

1. Public-key pinning  (static pins) 

– Hardcode list of allowed CAs for certain sites (Gmail, facebook, …) 

– Browser rejects certs issued by a CA not on list 

– Now deprecated  (because often incorrectly used in practice) 

2. Certificate Transparency (CT):   [LL’12] 
– idea:  CA’s must advertise a log of all certs. they issued 
– Browser will only use a cert if it is published on (two) log servers 

• Server attaches a signed statement from log (SCT) to certificate 
• Companies can scan logs to look for invalid issuance



Dan Boneh

CT requirements 
April 30, 2018:    CT required by chrome  
• Required for all certificates with a path to a trusted root CA 
 (not required for an installed root CA) 
• Otherwise:   HTTPS errors

Cert for crypto.stanford.edu  
published on five logs: 

cloudflare_nimbus2018 
google_argon2018,   
google_aviator 
google_pilot,   google_rocketeer



Dan Boneh

3. Mixed Content:  HTTP and HTTPS
Page loads over HTTPS, but contains content over HTTP 
  (e.g.     <script   src=“http://.../script.js>  )  

⇒  Active network attacker can hijack session 

  by modifying script en-route to browser

IE7: Old Chrome:

never write this

Mostly ignored by users …



Dan Boneh

https://badssl.com     (Chrome 73,  2019)

Mixed script:    <script src="http://mixed-script.badssl.com/nonsecure.js"></script> 

Mixed form:      <form action="http://http.badssl.com/resources/submit.html">

(script is blocked, click to load)

Form loaded, but no HTTPS indicator



Dan Boneh

4.  Peeking through SSL:  traffic analysis

• Network traffic reveals length of HTTPS packets 
– TLS supports up to 256 bytes of padding 

• AJAX-rich pages have lots and lots of interactions with the server 

• These interactions expose specific internal state of the page

BAM! Chen, Wang, Wang, Zhang, 2010



Dan Boneh

Peeking through SSL: an example  [CWWZ’10]

 Vulnerabilities in an online tax application 

 No easy fix.    Can also be used to ID Tor traffic



Dan Boneh

THE  END


