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Cryptography
Is: 
– A tremendous tool 
– The basis for many security mechanisms 

Is not: 
– The solution to all security problems 
– Reliable unless implemented and used properly 
– Something you should try to invent yourself
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Goal 1:  Secure communication

no eavesdropping 
no tampering

(protecting data in motion)



Transport Layer Security / TLS
Standard for Internet security 

– Goal: “... provide privacy and reliability between two 
communicating applications” 

Two main parts 
1. Handshake Protocol:   Establish shared secret key  

using public-key cryptography     

2. Record Layer:    Transmit data using negotiated key 

 Our starting point:  Using a key for encryption and integrity
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Goal 2:   protected files

File system

File 1

File 2

Alice Alice

No eavesdropping 
No tampering

(protecting data at rest)



Building block:   symmetric cipher

E, D:  cipher       k:  secret key (e.g. 128 bits) 
m, c:  plaintext,  ciphertext            n:  nonce (non-repeating) 

Encryption algorithm is publicly known 

 ⇒   never use a proprietary cipher   

Alice

E
m, n E(k,m,n)=c

Bob

D
c, n D(k,c,n)=m

k k

nonce



Use Cases
Single use key:    (one time key) 

• Key is only used to encrypt one message 
• encrypted email: new key generated for every email 

• No need for nonce    (set to 0) 

Multi use key:   (many time key) 
• Key used to encrypt multiple messages 

•   TLS:    same key used to encrypt many packets 
• Use either a unique nonce or a random nonce



First example: One Time Pad   (single use key)

Vernam (1917)

0 1 0 1 1 1 0 0 01Key:

1 1 0 0 0 1 1 0 00Plaintext:

⊕

1 0 0 1 1 0 1 0 01Ciphertext:

Encryption:      c = E(k, m) = m ⨁ k

Decryption:            D(k, c) = c ⨁ k = (m ⨁ k) ⨁k = m



One Time Pad (OTP) Security
Shannon (1949):     

– OTP is “secure” against one-time eavesdropping 

– without key,  ciphertext reveals no “information”  
about plaintext 

Problem:   OTP key is as long as the message



Stream ciphers     (single use key)

Problem:   OTP key is as long as the message 
Solution:    Pseudo random key  --  stream ciphers 

Example:   ChaCha20     (one-time if no nonce)        key:  128 or 256 bits.

key

PRG 

message
⊕

ciphertext

c ← PRG(k) ⊕ m



Dangers in using stream ciphers
One time key !!         “Two time pad” is insecure: 
   

Eavesdropper does: 

   c1  ⊕  c2       →        m1 ⊕  m2  

Enough redundant information in English that: 

    m1 ⊕  m2   →        m1 ,  m2

What if want to use  
same key to encrypt  
two files? 

c1  ←  m1  ⊕  PRG(k) 

c2  ←  m2  ⊕  PRG(k) 



Block ciphers:  crypto work horse

E, D CT Block
n bits

PT Block
n bits

Key k Bits

Canonical examples: 
1. 3DES:   n= 64 bits,    k = 168 bits 

2. AES:     n=128 bits,   k = 128, 192, 256 bits



Block Ciphers Built by Iteration

R(k,m):    round function 

  for  3DES (n=48),      for AES-128  (n=10)

key  k

key expansion

k1 k2 k3 kn

R(
k 1

, 
⋅)

R(
k 2

, 
⋅)

R(
k 3

, 
⋅)

R(
k n

, 
⋅)

m c



Example:  AES128
input:  128-bit block m,   128-bit key k.     output:  128-bit block 
c. 

Difficult to design:     must resist subtle attacks 
 •  differential attacks,  linear attacks,  brute-force,  …

key  k

key expansion

k0 k1 k2 k10

m c⊕ π ⊕ π ⊕ π ⊕’



Incorrect use of block ciphers

Electronic Code Book (ECB): 

 Problem:    
– if    m1=m2     then   c1=c2

PT:

CT:

m1 m2

c1 c2



Dan Boneh

In pictures



CTR mode encryption (eavesdropping security)

Counter mode with a random IV:    (parallel encryption)

m[0] m[1] …

E(k,IV) E(k,IV+1) …

m[L]

E(k,IV+L)
⊕

c[0] c[1] … c[L]

IV

IV

ciphertext

Why is this secure for multiple messages?      See the crypto course 40-675



Performance
OpenSSL on Intel Haswell,   2.3 GHz     ( Linux) 

 Cipher Block/key size Speed  (MB/sec) 

 ChaCha     408 

      
 3DES 64/168   30 

 AES128 128/128 176 
 AES256 128/256 135

block
stream

(w/o AES-NI)



A Warning

eavesdropping security is insufficient  for most applications  

Need also to defend against active (tampering) attacks. 
 CTR mode is insecure against active attacks! 

Next:    methods to ensure message integrity



Message Integrity:    MACs

• Goal:   provide message integrity.     No confidentiality. 

– ex:   Protecting public binaries on disk.   

Alice Bob

k kmessage  m tag

Generate tag: 
     tag ← S(k, m)

Verify tag: 
    V(k, m, tag)  =  `yes’

?



Construction:   HMAC  (Hash-MAC)
Most widely used MAC on the Internet. 

 H:   hash function.       
        example:   SHA-256    ;    output is 256 bits 

Building a MAC out of a hash function: 

– Standardized method:   HMAC 

 S( k, msg ) =  H(  k⊕opad  ‖  H( k⊕ipad ‖ msg )  )



Why is this MAC construction secure? 

  … see the crypto course (40-675)



Combining MAC and ENC   (Auth. Enc.)

  Encryption key  kE.      MAC key = kI 

Option 1:   (SSL) 

Option 2:   (IPsec) 

Option 3:   (SSH)

msg  m msg  m MAC
enc kEMAC(kI, m)

msg  m
Enc kE

MAC
MAC(kI, c)

msg  m
enc kE

MAC
MAC(kI, m)

always 
correct



AEAD:  Auth. Enc. with Assoc. Data

AES-GCM:     CTR mode encryption  then   MAC 
   (MAC accelerated via Intel’s PCLMULQDQ instruction)

AEAD: 

encrypted dataassociated data

authenticated

encrypted



Example AES-GCM encryption function

int encrypt( 
 unsigned char *key,     // key 
 unsigned char *iv,   int iv_len,    // nonce 
 unsigned char *plaintext,    int plaintext_len,  // plaintext 
 unsigned char *aad,   int aad_len,   // assoc. data 

 unsigned char *ciphertext   // output ct 
)



Generating Randomness    (e.g. keys, nonces)

Pseudo random generators in practice:     (e.g.  /dev/random) 

• Continuously add entropy to internal state 
• Entropy sources: 

• Hardware RNG:   Intel RdRand inst. (Ivy Bridge).    3Gb/sec.   

• Timing:  hardware interrupts  (keyboard, mouse)



Summary
Shared secret key: 
•   Used for secure communication and document encryption 

Encryption:   (eavesdropping security) [should not be used standalone] 

•   One-time key:    stream ciphers,  CTR with fixed IV 
•   Many-time key:   CTR  with random IV 

Integrity:   HMAC    or    CW-MAC 

Authenticated encryption:    encrypt-then-MAC using GCM
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Crypto Concepts

Public key 
cryptography





Public-key encryption
Tool for managing or generating symmetric keys 

• E – Encryption alg. PK – Public encryption key 

• D – Decryption alg. SK – Private decryption key  

Algorithms  E, D  are publicly known.

Alice1
Em1 E(PK, m1)=c1

Bob

D
c D(SK,c)=m

Alice2
Em2 E(PK, m2)=c2



1. Algorithm KeyGen:    outputs  pk and sk 

2. Algorithm   F(pk, ⋅)  :    a one-way function 
– Computing   y = F(pk, x)   is easy 
– One-way:   given random  y  finding   x   s.t.  y = F(pk,x)  is 

difficult 

3. Algorithm   F-1(sk, ⋅)  :        Invert   F(pk, ⋅)   using trapdoor SK 

   F-1(sk,   y )  =  x

Building block:   trapdoor permutations



1.  KeyGen: generate two equal length primes    p, q 
    set    N ←  p⋅q           (3072 bits  ≈  925 digits) 

     set    e ← 216+1 = 65537     ;      d ← e-1 (mod ϕ(N)) 

 pk = (N, e)        ;       sk = (N, d) 

2.  RSA(pk,  x) :        x   →    (xe mod N) 
 Inverting this function is believed to be as hard as factoring N   

3.  RSA-1(pk, y)  :       y   →    (yd mod N)

Example:   RSA



Public Key Encryption with a TDF

KeyGen:     generate    pk  and   sk 

Encrypt(pk, m):           
– choose random   x ∈ domain(F)    and set    k ← H(x)  
–      c0 ←  F(pk, x)    ,    c1 ←  E(k,  m)          (E: symmetric cipher) 

– send      c = (c0, c1) 

Decrypt(sk, c=(c0,c1) ):        x ←  F-1(sk, c0)     ,    k ← H(x)  ,     m ← D(k, c1) 

security analysis in crypto course

c0 c1



Digital signatures
Goal:  bind document to author 

• Problem:  attacker can copy Alice’s sig from one doc to another 

Main idea:  make signature depend on document 

Example:    signatures from trapdoor functions (e.g. RSA) 

sign( sk, m)    :=     F-1 (sk,  H(m) ) 

verify(pk, m, sig)    :=     accept if    F(pk, sig) = H(m)



F(pk,⋅) 

Digital Sigs. from Trapdoor Functions

msg

H

F-1(sk,⋅) 

sig

sign(sk, msg):

sig

verify(pk, msg, sig):

msg

H

≟  ⇒
accept 

or 
reject



Certificates:   bind Bob’s ID to his PK
How does Alice (browser)  obtain Bob’s public key  pkBob  ?

CA
pk     and 
proof “I am Bob”

Browser 
Alice

skCA

check 
proofissue Cert with skCA :

Bob’s  
key is pkBob’s  

key is pk

generate 
   (sk,pk) 

Server Bob

pkCA

verify 
cert

Bob uses Cert for an extended period  (e.g. one year)  

pkCA
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Sample certificate:
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TLS 1.3 session setup  (simplified)

ClientHello:  nonceC ,  KeyShare

ServerHello: nonceS , KeyShare, Enc[certS,…]  
CertVerify:   Enc[SigS(data)] ,      Finished

Client Server

secret 
key

Finished

session-keys ←  HKDF( DHkey, nonceC , nonceS )

certS

Encrypted ApplicationData

Encrypted ApplicationData

Diffie-Hellman key exchange



Properties

Nonces:  prevent replay of an old session 

Forward secrecy:  server compromise does not expose old sessions 

Some identity protection:  certificates are sent encrypted 

One sided authentication: 
– Browser identifies server using server-cert 
– TLS has support for mutual authentication 

•  Rarely used:  requires a client pk/sk and client-cert

Gmail
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A brief sample of 
advanced crypto



Protocols
• Elections 

Can we do the same without  
a trusted party?

trusted  
authority

v1 v2 v3 v4

MAJ(v1, v2, v3, v4)



Protocols
• Elections 
• Private auctions 

• Secure multi-party computation

Goal:   compute   f(v1, v2, v3, v4) 

“Thm:”   anything that can be done with a trusted authority 
 can also be done without

v1 v2 v3 v4

f(v1, v2, v3, v4)



Magical applications
• Privately outsourcing computation 

• Zero knowledge (proof of knowledge)

Alice

search 
query

What did she 
search for?

results

I know the factors of N !! 

proof  π

???

E[ query ]

E[ results ]

AliceN=p·q
Bob

N

Google



Privacy:   Group Signatures

Simple solution:   give all users same private key 

 … but also need to revoke signers when they misbehave

Key Issuer User 1

User 2

Is  sig  from 
user 1 or 2?

msg
sig



Advanced Computer Security Certificate 
Program 

Copyright 2007 Stanford University
 45

Example:   Vehicle Safety Comm.  (VSC)

Car 1 Car 2 Car 3 Car 4

brake
1.

2. Car Ambulance

out of my 
way !!

 Require authenticated (signed) messages from cars. 
−  Prevent impersonation and DoS on traffic system. 

Privacy problem:   cars broadcasting signed  (x,y, v).

Clean solution:  group sigs.   Group = set of all cars. 



Summary: crypto concepts

Symmetric cryptography:    
 Authenticated Encryption (AE) and message integrity   

Public-key cryptography: 
 Public-key encryption,  digital signatures,  key exchange 

Certificates:   bind a public key to an identity using a CA 
– Used in TLS to identify server (and possibly client) 

Modern crypto:  goes far beyond basic encryption and signatures


