
Dan Boneh

Crypto Concepts

Symmetric
encryption, Public key
encryption, and TLS

Acknowledgments: Lecture slides are from the Computer Security course
taught by Dan Boneh at Stanford University. When slides are obtained
from other sources, a a reference will be noted on the bottom of that
slide. A full list of references is provided on the last slide.

Cryptography
Is:
– A tremendous tool
– The basis for many security mechanisms

Is not:
– The solution to all security problems
– Reliable unless implemented and used properly
– Something you should try to invent yourself

Dan Boneh

Goal 1: Secure communication

no eavesdropping
no tampering

(protecting data in motion)

Transport Layer Security / TLS
Standard for Internet security

– Goal: “... provide privacy and reliability between two
communicating applications”

Two main parts
1. Handshake Protocol: Establish shared secret key  

using public-key cryptography

2. Record Layer: Transmit data using negotiated key

 Our starting point: Using a key for encryption and integrity

Dan Boneh

Goal 2: protected files

File system

File 1

File 2

Alice Alice

No eavesdropping
No tampering

(protecting data at rest)

Building block: symmetric cipher

E, D: cipher k: secret key (e.g. 128 bits)
m, c: plaintext, ciphertext n: nonce (non-repeating)

Encryption algorithm is publicly known

 ⇒ never use a proprietary cipher

Alice

E
m, n E(k,m,n)=c

Bob

D
c, n D(k,c,n)=m

k k

nonce

Use Cases
Single use key: (one time key)

• Key is only used to encrypt one message
• encrypted email: new key generated for every email

• No need for nonce (set to 0)

Multi use key: (many time key)
• Key used to encrypt multiple messages

• TLS: same key used to encrypt many packets
• Use either a unique nonce or a random nonce

First example: One Time Pad (single use key)

Vernam (1917)

0 1 0 1 1 1 0 0 01Key:

1 1 0 0 0 1 1 0 00Plaintext:

⊕

1 0 0 1 1 0 1 0 01Ciphertext:

Encryption: c = E(k, m) = m ⨁ k

Decryption: D(k, c) = c ⨁ k = (m ⨁ k) ⨁k = m

One Time Pad (OTP) Security
Shannon (1949):

– OTP is “secure” against one-time eavesdropping

– without key, ciphertext reveals no “information”  
about plaintext

Problem: OTP key is as long as the message

Stream ciphers (single use key)

Problem: OTP key is as long as the message
Solution: Pseudo random key -- stream ciphers

Example: ChaCha20 (one-time if no nonce) key: 128 or 256 bits.

key

PRG

message
⊕

ciphertext

c ← PRG(k) ⊕ m

Dangers in using stream ciphers
One time key !! “Two time pad” is insecure:

Eavesdropper does:

 c1 ⊕ c2 → m1 ⊕ m2

Enough redundant information in English that:

 m1 ⊕ m2 → m1 , m2

What if want to use  
same key to encrypt
two files?

c1 ← m1 ⊕ PRG(k)

c2 ← m2 ⊕ PRG(k)

Block ciphers: crypto work horse

E, D CT Block
n bits

PT Block
n bits

Key k Bits

Canonical examples:
1. 3DES: n= 64 bits, k = 168 bits

2. AES: n=128 bits, k = 128, 192, 256 bits

Block Ciphers Built by Iteration

R(k,m): round function

 for 3DES (n=48), for AES-128 (n=10)

key k

key expansion

k1 k2 k3 kn

R(
k 1

,
⋅)

R(
k 2

,
⋅)

R(
k 3

,
⋅)

R(
k n

,
⋅)

m c

Example: AES128
input: 128-bit block m, 128-bit key k. output: 128-bit block
c.

Difficult to design: must resist subtle attacks
 • differential attacks, linear attacks, brute-force, …

key k

key expansion

k0 k1 k2 k10

m c⊕ π ⊕ π ⊕ π ⊕’

Incorrect use of block ciphers

Electronic Code Book (ECB):

 Problem:
– if m1=m2 then c1=c2

PT:

CT:

m1 m2

c1 c2

Dan Boneh

In pictures

CTR mode encryption (eavesdropping security)

Counter mode with a random IV: (parallel encryption)

m[0] m[1] …

E(k,IV) E(k,IV+1) …

m[L]

E(k,IV+L)
⊕

c[0] c[1] … c[L]

IV

IV

ciphertext

Why is this secure for multiple messages? See the crypto course 40-675

Performance
OpenSSL on Intel Haswell, 2.3 GHz (Linux)

 Cipher Block/key size Speed (MB/sec)

 ChaCha 408

 3DES 64/168 30

 AES128 128/128 176
 AES256 128/256 135

block
stream

(w/o AES-NI)

A Warning

eavesdropping security is insufficient for most applications

Need also to defend against active (tampering) attacks.
 CTR mode is insecure against active attacks!

Next: methods to ensure message integrity

Message Integrity: MACs

• Goal: provide message integrity. No confidentiality.

– ex: Protecting public binaries on disk.

Alice Bob

k kmessage m tag

Generate tag:
 tag ← S(k, m)

Verify tag:
 V(k, m, tag) = `yes’

?

Construction: HMAC (Hash-MAC)
Most widely used MAC on the Internet.

 H: hash function.
 example: SHA-256 ; output is 256 bits

Building a MAC out of a hash function:

– Standardized method: HMAC

 S(k, msg) = H(k⊕opad ‖ H(k⊕ipad ‖ msg))

Why is this MAC construction secure?

 … see the crypto course (40-675)

Combining MAC and ENC (Auth. Enc.)

 Encryption key kE. MAC key = kI

Option 1: (SSL)

Option 2: (IPsec)

Option 3: (SSH)

msg m msg m MAC
enc kEMAC(kI, m)

msg m
Enc kE

MAC
MAC(kI, c)

msg m
enc kE

MAC
MAC(kI, m)

always 
correct

AEAD: Auth. Enc. with Assoc. Data

AES-GCM: CTR mode encryption then MAC
 (MAC accelerated via Intel’s PCLMULQDQ instruction)

AEAD:

encrypted dataassociated data

authenticated

encrypted

Example AES-GCM encryption function

int encrypt(
 unsigned char *key, // key
 unsigned char *iv, int iv_len, // nonce
 unsigned char *plaintext, int plaintext_len, // plaintext
 unsigned char *aad, int aad_len, // assoc. data

 unsigned char *ciphertext // output ct
)

Generating Randomness (e.g. keys, nonces)

Pseudo random generators in practice: (e.g. /dev/random)

• Continuously add entropy to internal state
• Entropy sources:

• Hardware RNG: Intel RdRand inst. (Ivy Bridge). 3Gb/sec.

• Timing: hardware interrupts (keyboard, mouse)

Summary
Shared secret key:
• Used for secure communication and document encryption

Encryption: (eavesdropping security) [should not be used standalone]

• One-time key: stream ciphers, CTR with fixed IV
• Many-time key: CTR with random IV

Integrity: HMAC or CW-MAC

Authenticated encryption: encrypt-then-MAC using GCM

Dan Boneh

Crypto Concepts

Public key
cryptography

Public-key encryption
Tool for managing or generating symmetric keys

• E – Encryption alg. PK – Public encryption key

• D – Decryption alg. SK – Private decryption key

Algorithms E, D are publicly known.

Alice1
Em1 E(PK, m1)=c1

Bob

D
c D(SK,c)=m

Alice2
Em2 E(PK, m2)=c2

1. Algorithm KeyGen: outputs pk and sk

2. Algorithm F(pk, ⋅) : a one-way function
– Computing y = F(pk, x) is easy
– One-way: given random y finding x s.t. y = F(pk,x) is

difficult

3. Algorithm F-1(sk, ⋅) : Invert F(pk, ⋅) using trapdoor SK

 F-1(sk, y) = x

Building block: trapdoor permutations

1. KeyGen: generate two equal length primes p, q
 set N ← p⋅q (3072 bits ≈ 925 digits)

 set e ← 216+1 = 65537 ; d ← e-1 (mod ϕ(N))

 pk = (N, e) ; sk = (N, d)

2. RSA(pk, x) : x → (xe mod N)
 Inverting this function is believed to be as hard as factoring N

3. RSA-1(pk, y) : y → (yd mod N)

Example: RSA

Public Key Encryption with a TDF

KeyGen: generate pk and sk

Encrypt(pk, m):
– choose random x ∈ domain(F) and set k ← H(x)
– c0 ← F(pk, x) , c1 ← E(k, m) (E: symmetric cipher)

– send c = (c0, c1)

Decrypt(sk, c=(c0,c1)): x ← F-1(sk, c0) , k ← H(x) , m ← D(k, c1)

security analysis in crypto course

c0 c1

Digital signatures
Goal: bind document to author

• Problem: attacker can copy Alice’s sig from one doc to another

Main idea: make signature depend on document

Example: signatures from trapdoor functions (e.g. RSA)

sign(sk, m) := F-1 (sk, H(m))

verify(pk, m, sig) := accept if F(pk, sig) = H(m)

F(pk,⋅)

Digital Sigs. from Trapdoor Functions

msg

H

F-1(sk,⋅)

sig

sign(sk, msg):

sig

verify(pk, msg, sig):

msg

H

≟ ⇒
accept

or
reject

Certificates: bind Bob’s ID to his PK
How does Alice (browser) obtain Bob’s public key pkBob ?

CA
pk and
proof “I am Bob”

Browser 
Alice

skCA

check
proofissue Cert with skCA :

Bob’s  
key is pkBob’s  

key is pk

generate
 (sk,pk)

Server Bob

pkCA

verify
cert

Bob uses Cert for an extended period (e.g. one year)

pkCA

Dan Boneh

Sample certificate:

Dan Boneh

TLS 1.3 session setup (simplified)

ClientHello: nonceC , KeyShare

ServerHello: nonceS , KeyShare, Enc[certS,…]  
CertVerify: Enc[SigS(data)] , Finished

Client Server

secret
key

Finished

session-keys ← HKDF(DHkey, nonceC , nonceS)

certS

Encrypted ApplicationData

Encrypted ApplicationData

Diffie-Hellman key exchange

Properties

Nonces: prevent replay of an old session

Forward secrecy: server compromise does not expose old sessions

Some identity protection: certificates are sent encrypted

One sided authentication:
– Browser identifies server using server-cert
– TLS has support for mutual authentication

• Rarely used: requires a client pk/sk and client-cert

Gmail

Dan Boneh

Crypto Concepts

A brief sample of
advanced crypto

Protocols
• Elections

Can we do the same without  
a trusted party?

trusted  
authority

v1 v2 v3 v4

MAJ(v1, v2, v3, v4)

Protocols
• Elections
• Private auctions

• Secure multi-party computation

Goal: compute f(v1, v2, v3, v4)

“Thm:” anything that can be done with a trusted authority 
 can also be done without

v1 v2 v3 v4

f(v1, v2, v3, v4)

Magical applications
• Privately outsourcing computation

• Zero knowledge (proof of knowledge)

Alice

search 
query

What did she
search for?

results

I know the factors of N !!

proof π

???

E[query]

E[results]

AliceN=p·q
Bob

N

Google

Privacy: Group Signatures

Simple solution: give all users same private key

 … but also need to revoke signers when they misbehave

Key Issuer User 1

User 2

Is sig from
user 1 or 2?

msg
sig

Advanced Computer Security Certificate
Program

Copyright 2007 Stanford University
 45

Example: Vehicle Safety Comm. (VSC)

Car 1 Car 2 Car 3 Car 4

brake
1.

2. Car Ambulance

out of my
way !!

 Require authenticated (signed) messages from cars.
− Prevent impersonation and DoS on traffic system.

Privacy problem: cars broadcasting signed (x,y, v).

Clean solution: group sigs. Group = set of all cars.

Summary: crypto concepts

Symmetric cryptography:
 Authenticated Encryption (AE) and message integrity

Public-key cryptography:
 Public-key encryption, digital signatures, key exchange

Certificates: bind a public key to an identity using a CA
– Used in TLS to identify server (and possibly client)

Modern crypto: goes far beyond basic encryption and signatures

