CS 155 Spring 2016

Browser code isolation

John Mitchell

-

Acknowledgments: Lecture slides are from the Computer Security course

taught by Dan Boneh and John Mitchell at Stanford University. When

slides

are obtained from other sources, a a reference will be noted on the bottom

of that slide. A full list of references is provided on the last slide.

O

Modern web sites are complex

N

e0no

&

| X v F
/ E Poew ke Fagien e \

€ -

S RN PLIT TN P

= Q The Naw]jockTines

A adex. Malredud c« HMM nidaviecrt

N.Y. / Region

alelcrioneNon Veddpgtysc=Heme sageliogor«"oplirSactea<zichst a

m“mﬂiesel Fve-t

Bttt = (K RAWWICNTE YCLEWAOLN

sate o AU Golt T fer

5289

for 36 rmestnt O Down u-m

In New York, Hard Choices on Health
Exchame bpell Success

SOLLIT 9% Wedic N

IXRDMSA ST

g Peszy), 9t Wy DL DM ETS S
s

IUGER A EAG 2% By
Coc ar's ampiryome L e copas waa 5
1300¢ ThAD O COC TSGENTS s394 0p tor haalth plers, and
premiozes have cropred hough the stote Sxined scesanen'

Urices

ghwmmmmm{a
W I s | rouazw
sermpestvii Tetier I ot o [surnaiiots »

VIDRD « Mo N Yors o o

SLC sTNET

An Artis: Takes His Pay In
Coffes and Commumity

By DVVID O
1wl B s wiesd o woseolan
foicts sens of Tousnck ol olam.
s covlap ecn Lo b ocpdads selaxed
Ly peimbng « bpe v el s «
badey 'n Jor: Greone, Bocohn

- W0 £ida Ev00r Sodavw o

flraQ
B CTTY BDOK LUK
et LY
Trwuin Brookd i Intersect on: Elmhurs: Style Ease
::':"“ v BB o'l In 1o Quaens sdg1yerhond of Elxbura, lceds Ehc 1o

cexbrnies snd seep Ton striocasml
wex Ly

creathve tipes

Q-

Modern web "“site”

N

L/
(
Page code [Ad code } L Extensions
\
(-
Third-party B <~~~ | ————
libraries = 3 A s N.Y. / Region e -
\ Lovew w208+ Gl TR -
anDicselFrast 5980 _ @
' L [S e TRV e m——— e ‘ —
Third-party APls —
. J

Code from many sources
Combined in many ways

Sites handle sensitive information

N

L

@Financial data

= Online banking, tax filing, shopping, budgeting, ...
@Health data

= Genomics, prescriptions, ...
@Personal data

- Email, messaging, affiliations, ...

Goal: prevent malicious web content from stealing
information.

Basic questions

N

@How do we isolate code from different sources
= Protecting sensitive information in browser
= Ensuring some form of integrity
= Allowing modern functionality, flexible interaction

Third-party APIs Third-party mashups
R samscsassssscsnassans Focowwe gl Shiang cts prt startod S o
1 "" -
Mashups PR
e et Extensions

o jQuery | -

v bbbk ol P o -

e i f = - ; == NS
—— - =S :
e =

Third-party libraries

N

More specifically

L

@How do we protect page from ads/services?
@How to share data with cross-origin page?
@How to protect one user from another’s content?
@How do we protect the page from a library?
@How do we protect page from CDN?

N4

N

Recall Same-Origin Policy (SOP)

@Idea: Isolate content from different origins
 Restricts interaction between compartments
- Restricts network request and response

Recall Same-Origin Policy (sop)

N

N

Recall Same-Origin Policy (Sop)

a.com b.com

s Gssdye

Recall Same-Origin Policy (Sop)

N

b L o] «F

a.cam

XmIHttpRequest follows same-origin policy

Recall Same-Origin Policy (Sop)

N

Cc.cOom

"‘
L.
2
‘.(\ .

- -
O’— .-..-
!

Same-origin policy summary

N

@Isolate content from different origins
- E.g., can’t access document of cross-origin page
- E.g., can’t inspect responses from cross-origin

DOM access]

posiMessage]

 sson r+& X b.com

-

Y

N

L

] . oy
Example:Library == jQuen
ke Ma F.::}g” . E
Ao Agatete ,__‘___,
@Library included using tag Third-party libraries
= <script src="jquery.js"></script>
@No isolation

= Runs in same frame, same origin as rest of page
@May contain arbitrary code

= Library developer errors or malicious trojan horse

= Can redefine core features of JavaScript

= May violate developer assumptions

jQuery used by 78% of the Quantcast top 10,000 sites, over 59% of the top million

Second example: advertisement

a <script src="https://adpublisher.com/ad1.js"></script>
<script src="https://adpublisher.com/ad2.js"></script>

«l I

Read password using the DOM API ——————
var ¢ = document.getElementsByName(“password”)[0] swe=rereze=nre

Fabulous

Directly embedded third-party
JavaScript poses a threat to critical
hosting page resources

Send it to evil location (not subject to SOP)

 SHOF MOWr &

WA SO ppersstop . con

14

http://adnetwork.com/ad1.js
http://adnetwork.com/ad1.js

Second example: Ad vs Ad
<script src="http://adpublisher.com/ad1.js"></script>

ﬁ” <script src="http://adpublisher.com/ad2.js"></script>

Bomtnras by Rooorly “opLiar =N | : -) I

li 6 $1 Bu NOW ITIANTAGE meocly ream ahmitsg

Registor sxockertst sores
RAaph=wr

Fabulous

Directly embedded third-party
JavaScript poses a threat to other
third-party components

Attack the other ad: Change the price !
var a = document.getElementById(“sonyAd”)
a.innerHTML = “$1 Buy Now”; SHOP NOW @

WA SO ppersstop . con

http://adnetwork.com/ad1.js
http://adnetwork.com/ad1.js

Same-0rigin Policy

N

@Limitations:
- Some DOM objects leak data
¢Image size can leak whether user logged in
= Data exfiltration is trivial
¢(Can send data in image request
¢Any XHR request can contain data from page
= Cross-origin scripts run with privilege of page
¢Injected scripts can corrupt and leak user data!
@In some ways, too strict
¢What if we want to fetch data from provider.com?

N

Goal: Password-strength checker

L

New password- see Pascword strength: Strong

a.com b.ru/chk.html

@Strength checker can run in a separate frame
- Communicate by postMessage
= But we give password to untrusted code!

@Is there any way to make sure untrusted code does not
export our password?

Useful concept: browsing context

N

L
@A browsing context may be
= A frame with its DOM
- A web worker (thread), which does not have a DOM
@Every browsing context
= Has an origin, determined by {(protocol, host, port)
- Is isolated from others by same-origin policy
- May communicate to others using postMessage
= Can make network requests using XHR or tags (<image>, ...)

4 N R r~ N R
Process 1 I Process 2 Tab 1 I Tab 2
il 1
il 1
skype : keypassx wenther:it - bank.ch
\. J B\ J \ VA N J
Filesystem Cockies/HTMLS local storage

Modern Structuring Mechanisms

m§>HTML5 iframe Sandbox
» Load with unigue origin, limited privileges
@Content Security Policy (CSP)

= Whitelist instructing browser to only execute or
render resources from specific sources

@HTML5 Web Workers

= Separate thread; isolated but same origin

= Not originally intended for security, but helps
@SubResource integrity (SRI)
@Cross—Origin Resource Sharing (CORS)

= Relax same-origin restrictions

HTML5 Sandbox

N

@Idea: restrict frame actions

» Directive sandbox
ensures iframe has unique
origin and cannot execute
JavaScript

4.com a.com

= Directive sandbox allow-scripts
ensures iframe has unique
origin

4d.com a.com

HTML5 Sandbox

N

@Idea: restrict frame actions

» Directive sandbox
ensures iframe has unique
origin and cannot execute ARPA g
JavaScript . e

= Directive sandbox allow-scripts
ensures iframe has unique
origin

4d.com a.com

HTML5 Sandbox

N

@Idea: restrict frame actions

» Directive sandbox
ensures iframe has unique
origin and cannot execute
JavaScript

a.Ccom

= Directive sandbox allow-scripts
ensures iframe has unique
origin

a.com

Sandbox example

N

@Twitter button in iframe

<iframe src=
"https://platform.twitter.com/widgets/tweet_button.html"
style="border: 0; width:130px; height:20px;"> </iframe>

@Sandbox: remove all permissions and then allow
JavaScript, popups, form submission, and twitter.com
cookies

<iframe sandbox="allow-same-origin allow-scripts allow-popups

allow-forms"

src="https://platform.twitter.com/widgets/tweet_button.html"
style="border: 0; width:130px; height:20px;"></iframe>

N

Sandbox permissions

L

@allow-forms allows form submission
@allow-popups allows popups
@allow-pointer-lock allows pointer lock (mouse moves)

@allow-same-origin allows t
its origin; pages loaded from

he document to maintain
nttps://example.com/ will

retain access to that origin’s d

ata.

@allow-scripts allows JavaScript execution, and also
allows features to trigger automatically (as they’d be
trivial to implement via JavaScript)

@allow-top-navigation allows the document to break
out of the frame by navigating the top-level window

http://www.html5rocks.com/en/tutorials/security/sandboxed-iframes/

Modern Structuring Mechanisms

N

@HTMLS iframe Sandbox
» Load with unigue origin, limited privileges
WContent Security Policy (CSP)

= Whitelist instructing browser to only execute or
render resources from specific sources

@HTML5 Web Workers

= Separate thread; isolated but same origin

= Not originally intended for security, but helps
@SubResource integrity (SRI)
@Cross—Origin Resource Sharing (CORS)

= Relax same-origin restrictions

Content Security Policy (CSP)

N

@Goal: prevent and limit damage of XSS

= XSS attacks bypass the same origin policy by
tricking a site into delivering malicious code along

with intended content
@Approach: restrict resource loading to a white-list

= Prohibits inline scripts embedded in script tags,
inline event handlers and javascript URLs
= Disable JavaScript eval(), new Function(), ...

= Content-Security-Policy HTTP header allows site to
create whitelist, instructs the browser to only
execute or render resources from those sources

http://www.html5rocks.com/en/tutorials/security/content-security-policy/

N

Content Security Policy (CSP)

@Goal: prevent and limit damage of XSS attacks
@ Approach: restrict resource loading to a white-list
- E.g., default-src ‘self’ http://b.com; img-src *

a.com

N

Content Security Policy (CSP)

@Goal: prevent and limit damage of XSS attacks
@ Approach: restrict resource loading to a white-list
- E.g., default-src ‘self’ http://b.com; img-src *

a.com b.com

N

Content Security Policy (CSP)

@Goal: prevent and limit damage of XSS attacks
@ Approach: restrict resource loading to a white-list
- E.g., default-src ‘self’ http://b.com; img-src *

a.com

N

Content Security Policy (CSP)

@Goal: prevent and limit damage of XSS attacks
@ Approach: restrict resource loading to a white-list
- E.g., default-src ‘self’ http://b.com; img-src *

N

Content Security Policy (CSP)

@Goal: prevent and limit damage of XSS attacks
@ Approach: restrict resource loading to a white-list
- E.g., default-src ‘self’ http://b.com; img-src *

N

Content Security Policy (CSP)

@Goal: prevent and limit damage of XSS attacks
@ Approach: restrict resource loading to a white-list
- E.g., default-src ‘self’ http://b.com; img-src *

N

Content Security Policy (CSP)

@Goal: prevent and limit damage of XSS attacks
@ Approach: restrict resource loading to a white-list
- E.g., default-src ‘self’ http://b.com; img-src *

Content Security Policy & Sandboxing

N

@Limitations:
= Data exfiltration is only partly contained

¢Can leak to origins we can load resources from
and sibling frames or child Workers (via
postMessage)

= Scripts still run with privilege of page
¢Can we reason about security of jQuery-sized lib?

N

CSP resource directives

@script-src limits the origins for loading scripts

@connect-src limits the origins to which you can
connect (via XHR, WebSockets, and EventSource).

@font-src specifies the origins that can serve web fonts.

@frame-src lists origins can be embedded as frames
@img-src lists origins from which images can be loaded.
@media-src restricts the origins for video and audio.
@object-src allows control over Flash, other plugins
@style-src IS script-src counterpart for stylesheets

@default-src define the defaults for any directive not
otherwise specified

N

CSP source lists

@Specify by scheme, e.qg., https:

@ Host name, matching any origin on that host
@Fully qualified URI, e.qg., https://example.com:443
@Wildcards accepted, only as scheme, port, or in the

leftmost position of the hostname:
@'none‘ matches nothing
@'self' matches the current origin, but not subdomains
@'unsafe-inline' allows inline JavaScript and CSS

@'unsafe-eval' allows text-to-JavaScript mechanisms
like eval

https://example.com/

Modern Structuring Mechanisms

N

@HTMLS iframe Sandbox
» Load with unigue origin, limited privileges
@Content Security Policy (CSP)

= Whitelist instructing browser to only execute or
render resources from specific sources

miHTMLS Web Workers
= Separate thread; isolated but same origin
= Not originally intended for security, but helps
@SubResource integrity (SRI)
@Cross—Origin Resource Sharing (CORS)
= Relax same-origin restrictions

http://www.html5rocks.com/en/tutorials/workers/basics/

Web Worker

N

@Run in an isolated thread, loaded from separate file

var worker = new Worker('task.js');
worker.postMessage(); // Start the worker.

@Same origin as frame that creates it, but no DOM
@Communicate using postMessage

var worker = new Worker(‘doWork.js');

_ worker.addEventListener('message’, function(e) {
main console.log('Worker said: ', e.data);

thread (1 false):

worker.postMessage('Hello World"); // Send data to worker

self.addEventListener('message’, function(e) {
doWork.js | self.postMessage(e.data); // Return message it is sent
}, false);

Modern Structuring Mechanisms

N

@HTMLS iframe Sandbox
» Load with unigue origin, limited privileges
@Content Security Policy (CSP)

= Whitelist instructing browser to only execute or
render resources from specific sources

@HTML5 Web Workers
= Separate thread; isolated but same origin
= Not originally intended for security, but helps
m$>SubResource integrity (SRI)
@Cross—Origin Resource Sharing (CORS)
= Relax same-origin restrictions

Motivation for SRI

N

@Many pages pull scripts and styles from a wide variety
of services and content delivery networks.

@How can we protect against

- downloading content from a hostile server
(via DNS poisoning, or other such means), or

- modified file on the Content Delivery Network (CDN)

jQuery.com compromised to serve malware via
drive-by download

@ Won't using HTTPS address this problem?

Subresource integrity

N

@Idea: page author specifies hash of (sub)resource they
are loading; browser checks integrity

- E.qg., integrity for link elements

¢ <link rel="stylesheet" href="https://
site53.cdn.net/style.css" integrity="sha256-
SDfwewFAE...wefjijfE" >

- E.q., integrity for scripts
@ <script src="https://code.jquery.com/
jquery-1.10.2.min.js" integrity="sha256-
C6CBOUYIS9UleqinPHWTHVgh/
E1luhG5Tw+Y5gFQmYg=">

What happens when check fails?

N

@Case 1 (default):

» Browser reports violation and does not render/
execute resource

@Case 2. CSP directive with integrity-policy directive set
to report

- Browser reports violation, but may render/execute
resource

Modern Structuring Mechanisms

N

@HTMLS iframe Sandbox
» Load with unigue origin, limited privileges
@Content Security Policy (CSP)

= Whitelist instructing browser to only execute or
render resources from specific sources

@HTML5 Web Workers
= Separate thread; isolated but same origin
= Not originally intended for security, but helps
@SubResource integrity (SRI)
ﬂCross—Origin Resource Sharing (CORS)
= Relax same-origin restrictions

Cross-Origin Resource Sharing (CORS)

rd

Amazon has multiple domains

- E.g., amazon.com and aws.com
®Problem: amazon.com can’t read cross-origin aws.com
= With CORS aws.com can whitelist amazon.com

1 aws.com

?[‘ ")‘Q |

amazon.com evil.biz

http://www.html5rocks.com/en/tutorials/cors/

http://amazon.com

How CORS works

N

@Browser sends Origin header with XHR request
- E.g., Origin: https://amazon.com

@Server can inspect Origin header and respond with
Access-Control-Allow-Origin header

= E.qg., Access-Control-Allow-Origin: https://
amazon.com

= E.g., Access-Control-Allow-Origin: *

Modern Structuring Mechanisms

N

L

@HTMLS iframe Sandbox
» Load with unigue origin, limited privileges
@Content Security Policy (CSP)

= Whitelist instructing browser to only execute or
render resources from specific sources

@HTML5 Web Workers

= Separate thread; isolated but same origin

= Not originally intended for security, but helps
@SubResource integrity (SRI)
@Cross—Origin Resource Sharing (CORS)

= Relax same-origin restrictions

N

Recall: Password-strength checker

L

New password- see Pascword strength: Strong

a.com b.ru/chk.html

@Strength checker can run in a separate frame
- Communicate by postMessage
= But we give password to untrusted code!

@Is there any way to make sure untrusted code does not
export our password?

Confining the checker with COWL

N

@Express sensitivity of data

= Checker can only receive password if its context
label is as sensitive as the password

@Use postMessage API to send password
= Source specifies sensitivity of data at time of send

pcstMessage((oass: ...}, “b.ru” , Label(®a.com™))
14 o
|

I N

[Nan rasswond: (X1} (pass: ...1

b.ru/chk.html

a.com

Modern web site

(
Third-party I e o —————— .
hibraries = A TheFen ferkEm N.Y. / Region =
. = _
4 T i 8 A a \llll -\n o

N

Third-party APIs

_

o . P i 8. i erwcive: Eledis. Sy e Boe
o xaepe -

s o s e e g i L vt S ErheClowea g ttoesond sMEnk sx ok The
oggrm) e p Merrtzennd o

Code from many sources
Combined in many ways

Challenges

N

L

Third-party APls Third-party mashups

Hw pazawons L T T T T A cls ot startoxl) —_)./:
l] - ..-",..~ . =
Paswvees
2, L AL 8
Mashups =

T —— [l S s Extensions
Lea\sjQuery oo
o= | B) O A -
- : A= —ins
s vemm wraaw = ermac samms e ‘ s 9:::_: - :
Y — = ;
Third-party libraries

Basic questions

N

@How do we isolate code from different sources
= Protecting sensitive information in browser
= Ensuring some form of integrity
= Allowing modern functionality, flexible interaction

Third-party APIs Third-party mashups
N2y pazzwons srmsasussrensssuranen : Sl cls ot startoxl < M-__ '—};
Mashups Pra—
I — L Extensions
G r—r——
ecjQuery ST
R I | T 2 ' — ;:__ -
= | = f = S
et L L - | s_ ; : Qi_:-_—_—' o -
Third-party libraries o

N

Acting parties on a site

L

@Page developer
@Library developers
@Service providers
@Data provides
@Ad providers
@Other users

@CDNs

@Extension developers

Specifically

N

L

@How do we protect page from ads/services?
@How to share data with cross-origin page?
@How to protect one user from another’s content?
@How do we protect the page from a library?
@How do we protect page from CDN?

N4

