
Browser code isolation

John Mitchell

CS 155 Spring 2016

Acknowledgments: Lecture slides are from the Computer Security course
taught by Dan Boneh and John Mitchell at Stanford University. When slides
are obtained from other sources, a a reference will be noted on the bottom
of that slide. A full list of references is provided on the last slide.

Modern web sites are complex

Modern web “site”

Code from many sources
Combined in many ways

Sites handle sensitive information

Financial data
■ Online banking, tax filing, shopping, budgeting, …
Health data
■ Genomics, prescriptions, …
Personal data
■ Email, messaging, affiliations, …

Goal: prevent malicious web content from stealing
information.

Basic questions

How do we isolate code from different sources
■ Protecting sensitive information in browser
■ Ensuring some form of integrity
■ Allowing modern functionality, flexible interaction

More specifically

How do we protect page from ads/services?
How to share data with cross-origin page?
How to protect one user from another’s content?
How do we protect the page from a library?
How do we protect page from CDN?
How do we protect extension from page?

Recall Same-Origin Policy (SOP)

Idea: Isolate content from different origins
■ Restricts interaction between compartments
■ Restricts network request and response

Recall Same-Origin Policy (SOP)

Recall Same-Origin Policy (SOP)

Recall Same-Origin Policy (SOP)

XmlHttpRequest follows same-origin policy

Recall Same-Origin Policy (SOP)

Same-origin policy summary

Isolate content from different origins
■ E.g., can’t access document of cross-origin page
■ E.g., can’t inspect responses from cross-origin

Example:Library

Library included using tag
■ <script src="jquery.js"></script>
No isolation
■ Runs in same frame, same origin as rest of page
May contain arbitrary code
■ Library developer errors or malicious trojan horse
■ Can redefine core features of JavaScript
■ May violate developer assumptions

jQuery used by 78% of the Quantcast top 10,000 sites, over 59% of the top million

Second example: advertisement

14

<script src=“https://adpublisher.com/ad1.js”></script>
<script src=“https://adpublisher.com/ad2.js”></script>

Read password using the DOM API
var c = document.getElementsByName(“password”)[0]

Send it to evil location (not subject to SOP)

Directly embedded third-party
JavaScript poses a threat to critical

hosting page resources

http://adnetwork.com/ad1.js
http://adnetwork.com/ad1.js

Second example: Ad vs Ad
<script src=“http://adpublisher.com/ad1.js”></script>
<script src=“http://adpublisher.com/ad2.js”></script>

$1 Buy Now

Attack the other ad: Change the price !
var a = document.getElementById(“sonyAd”)
a.innerHTML = “$1 Buy Now”;

Directly embedded third-party
JavaScript poses a threat to other

third-party components

http://adnetwork.com/ad1.js
http://adnetwork.com/ad1.js

Same-Origin Policy

Limitations:
■ Some DOM objects leak data

⬥Image size can leak whether user logged in
■ Data exfiltration is trivial

⬥Can send data in image request
⬥Any XHR request can contain data from page

■ Cross-origin scripts run with privilege of page
⬥Injected scripts can corrupt and leak user data!

In some ways, too strict
⬥What if we want to fetch data from provider.com?

Goal: Password-strength checker

Strength checker can run in a separate frame
■ Communicate by postMessage
■ But we give password to untrusted code!
Is there any way to make sure untrusted code does not
export our password?

Useful concept: browsing context

A browsing context may be
■ A frame with its DOM
■ A web worker (thread), which does not have a DOM

Every browsing context
■ Has an origin, determined by 〈protocol, host, port〉
■ Is isolated from others by same-origin policy
■ May communicate to others using postMessage
■ Can make network requests using XHR or tags (<image>, …)

Modern Structuring Mechanisms

HTML5 iframe Sandbox
■ Load with unique origin, limited privileges
Content Security Policy (CSP)
■ Whitelist instructing browser to only execute or

render resources from specific sources
HTML5 Web Workers
■ Separate thread; isolated but same origin
■ Not originally intended for security, but helps
SubResource integrity (SRI)
Cross-Origin Resource Sharing (CORS)
■ Relax same-origin restrictions

HTML5 Sandbox

Idea: restrict frame actions
■ Directive sandbox

ensures iframe has unique
origin and cannot execute
JavaScript

■ Directive sandbox allow-scripts
ensures iframe has unique
origin

HTML5 Sandbox

Idea: restrict frame actions
■ Directive sandbox

ensures iframe has unique
origin and cannot execute
JavaScript

■ Directive sandbox allow-scripts
ensures iframe has unique
origin

HTML5 Sandbox

Idea: restrict frame actions
■ Directive sandbox

ensures iframe has unique
origin and cannot execute
JavaScript

■ Directive sandbox allow-scripts
ensures iframe has unique
origin

Sandbox example

Twitter button in iframe

Sandbox: remove all permissions and then allow
JavaScript, popups, form submission, and twitter.com
cookies

<iframe sandbox="allow-same-origin allow-scripts allow-popups
 allow-forms"
 src="https://platform.twitter.com/widgets/tweet_button.html"
 style="border: 0; width:130px; height:20px;"></iframe>

<iframe src=
 "https://platform.twitter.com/widgets/tweet_button.html"
 style="border: 0; width:130px; height:20px;"> </iframe>

Sandbox permissions

allow-forms allows form submission
allow-popups allows popups
allow-pointer-lock allows pointer lock (mouse moves)

allow-same-origin allows the document to maintain
its origin; pages loaded from https://example.com/ will
retain access to that origin’s data.
allow-scripts allows JavaScript execution, and also
allows features to trigger automatically (as they’d be
trivial to implement via JavaScript)
allow-top-navigation allows the document to break
out of the frame by navigating the top-level window

http://www.html5rocks.com/en/tutorials/security/sandboxed-iframes/

Modern Structuring Mechanisms

HTML5 iframe Sandbox
■ Load with unique origin, limited privileges
Content Security Policy (CSP)
■ Whitelist instructing browser to only execute or

render resources from specific sources
HTML5 Web Workers
■ Separate thread; isolated but same origin
■ Not originally intended for security, but helps
SubResource integrity (SRI)
Cross-Origin Resource Sharing (CORS)
■ Relax same-origin restrictions

Content Security Policy (CSP)

Goal: prevent and limit damage of XSS
■ XSS attacks bypass the same origin policy by

tricking a site into delivering malicious code along
with intended content

Approach: restrict resource loading to a white-list
■ Prohibits inline scripts embedded in script tags,

inline event handlers and javascript URLs
■ Disable JavaScript eval(), new Function(), …
■ Content-Security-Policy HTTP header allows site to

create whitelist, instructs the browser to only
execute or render resources from those sources

http://www.html5rocks.com/en/tutorials/security/content-security-policy/

Content Security Policy (CSP)

Goal: prevent and limit damage of XSS attacks
Approach: restrict resource loading to a white-list
■ E.g., default-src ‘self’ http://b.com; img-src *

Content Security Policy (CSP)

Goal: prevent and limit damage of XSS attacks
Approach: restrict resource loading to a white-list
■ E.g., default-src ‘self’ http://b.com; img-src *

Content Security Policy (CSP)

Goal: prevent and limit damage of XSS attacks
Approach: restrict resource loading to a white-list
■ E.g., default-src ‘self’ http://b.com; img-src *

Content Security Policy (CSP)

Goal: prevent and limit damage of XSS attacks
Approach: restrict resource loading to a white-list
■ E.g., default-src ‘self’ http://b.com; img-src *

Content Security Policy (CSP)

Goal: prevent and limit damage of XSS attacks
Approach: restrict resource loading to a white-list
■ E.g., default-src ‘self’ http://b.com; img-src *

Content Security Policy (CSP)

Goal: prevent and limit damage of XSS attacks
Approach: restrict resource loading to a white-list
■ E.g., default-src ‘self’ http://b.com; img-src *

Content Security Policy (CSP)

Goal: prevent and limit damage of XSS attacks
Approach: restrict resource loading to a white-list
■ E.g., default-src ‘self’ http://b.com; img-src *

Content Security Policy & Sandboxing

Limitations:
■ Data exfiltration is only partly contained

⬥Can leak to origins we can load resources from
and sibling frames or child Workers (via
postMessage)

■ Scripts still run with privilege of page
⬥Can we reason about security of jQuery-sized lib?

CSP resource directives

script-src limits the origins for loading scripts
connect-src limits the origins to which you can
connect (via XHR, WebSockets, and EventSource).
font-src specifies the origins that can serve web fonts.
frame-src lists origins can be embedded as frames
img-src lists origins from which images can be loaded.
media-src restricts the origins for video and audio.
object-src allows control over Flash, other plugins
style-src is script-src counterpart for stylesheets
default-src define the defaults for any directive not
otherwise specified

CSP source lists

Specify by scheme, e.g., https:
Host name, matching any origin on that host
Fully qualified URI, e.g., https://example.com:443
Wildcards accepted, only as scheme, port, or in the
leftmost position of the hostname:
'none‘ matches nothing
'self' matches the current origin, but not subdomains
'unsafe-inline' allows inline JavaScript and CSS
'unsafe-eval' allows text-to-JavaScript mechanisms
like eval

https://example.com/

Modern Structuring Mechanisms

HTML5 iframe Sandbox
■ Load with unique origin, limited privileges
Content Security Policy (CSP)
■ Whitelist instructing browser to only execute or

render resources from specific sources
HTML5 Web Workers
■ Separate thread; isolated but same origin
■ Not originally intended for security, but helps
SubResource integrity (SRI)
Cross-Origin Resource Sharing (CORS)
■ Relax same-origin restrictions

Web Worker

Run in an isolated thread, loaded from separate file

Same origin as frame that creates it, but no DOM
Communicate using postMessage

var worker = new Worker('task.js');
worker.postMessage(); // Start the worker.

var worker = new Worker('doWork.js');
worker.addEventListener('message', function(e) {
 console.log('Worker said: ', e.data);
}, false);
worker.postMessage('Hello World'); // Send data to worker

self.addEventListener('message', function(e) {
 self.postMessage(e.data); // Return message it is sent
}, false);

main
thread

doWork.js

http://www.html5rocks.com/en/tutorials/workers/basics/

Modern Structuring Mechanisms

HTML5 iframe Sandbox
■ Load with unique origin, limited privileges
Content Security Policy (CSP)
■ Whitelist instructing browser to only execute or

render resources from specific sources
HTML5 Web Workers
■ Separate thread; isolated but same origin
■ Not originally intended for security, but helps
SubResource integrity (SRI)
Cross-Origin Resource Sharing (CORS)
■ Relax same-origin restrictions

Motivation for SRI

Many pages pull scripts and styles from a wide variety
of services and content delivery networks.
How can we protect against
■ downloading content from a hostile server

(via DNS poisoning, or other such means), or
■ modified file on the Content Delivery Network (CDN)

 Won’t using HTTPS address this problem?

Subresource integrity

Idea: page author specifies hash of (sub)resource they
are loading; browser checks integrity
■ E.g., integrity for link elements

⬥<link rel="stylesheet" href="https://
site53.cdn.net/style.css" integrity="sha256-
SDfwewFAE...wefjijfE">

■ E.g., integrity for scripts
⬥<script src="https://code.jquery.com/

jquery-1.10.2.min.js" integrity="sha256-
C6CB9UYIS9UJeqinPHWTHVqh/
E1uhG5Tw+Y5qFQmYg=">

What happens when check fails?

Case 1 (default):
■ Browser reports violation and does not render/

execute resource
Case 2: CSP directive with integrity-policy directive set
to report
■ Browser reports violation, but may render/execute

resource

Modern Structuring Mechanisms

HTML5 iframe Sandbox
■ Load with unique origin, limited privileges
Content Security Policy (CSP)
■ Whitelist instructing browser to only execute or

render resources from specific sources
HTML5 Web Workers
■ Separate thread; isolated but same origin
■ Not originally intended for security, but helps
SubResource integrity (SRI)
Cross-Origin Resource Sharing (CORS)
■ Relax same-origin restrictions

Cross-Origin Resource Sharing (CORS)

Amazon has multiple domains
■ E.g., amazon.com and aws.com
Problem: amazon.com can’t read cross-origin aws.com
■ With CORS aws.com can whitelist amazon.com

http://www.html5rocks.com/en/tutorials/cors/

http://amazon.com

How CORS works

Browser sends Origin header with XHR request
■ E.g., Origin: https://amazon.com
Server can inspect Origin header and respond with
Access-Control-Allow-Origin header
■ E.g., Access-Control-Allow-Origin: https://

amazon.com
■ E.g., Access-Control-Allow-Origin: *

Modern Structuring Mechanisms

HTML5 iframe Sandbox
■ Load with unique origin, limited privileges
Content Security Policy (CSP)
■ Whitelist instructing browser to only execute or

render resources from specific sources
HTML5 Web Workers
■ Separate thread; isolated but same origin
■ Not originally intended for security, but helps
SubResource integrity (SRI)
Cross-Origin Resource Sharing (CORS)
■ Relax same-origin restrictions

Recall: Password-strength checker

Strength checker can run in a separate frame
■ Communicate by postMessage
■ But we give password to untrusted code!
Is there any way to make sure untrusted code does not
export our password?

Confining the checker with COWL

Express sensitivity of data
■ Checker can only receive password if its context

label is as sensitive as the password
Use postMessage API to send password
■ Source specifies sensitivity of data at time of send

Modern web site

Code from many sources
Combined in many ways

Challenges

Basic questions

How do we isolate code from different sources
■ Protecting sensitive information in browser
■ Ensuring some form of integrity
■ Allowing modern functionality, flexible interaction

Acting parties on a site

Page developer
Library developers
Service providers
Data provides
Ad providers
Other users
CDNs
Extension developers

Specifically

How do we protect page from ads/services?
How to share data with cross-origin page?
How to protect one user from another’s content?
How do we protect the page from a library?
How do we protect page from CDN?
How do we protect extension from page?

