Internet Protocol Security CS155 Computer and Network Security

Acknowledgments: Lecture slides are from the Computer Security course taught by Dan Boneh and Zakir Durumeric at Stanford University. When slides are obtained from other sources, a reference will be noted on the bottom of that slide. A full list of references is provided on the last slide.

Stanford University

The Internet

Global network that provides **<u>best-effort</u>** delivery of **<u>packets</u>** between connected hosts

Packet: a structured sequence of bytesHeader: metadata used by networkPayload: user data to be transported

Every host has a unique identifier — IP address

Series of routers receive packets, look at destination address on the header and send it one hop towards the destination IP address

Network Protocols

- We define how hosts communicate in published network protocols
- **Syntax:** How communication is structured (e.g., format and order of messages)
- **Semantics:** What communication means. Actions taken on transmit or receipt of message, or when a timer expires. What assumptions can be made.

Example: What bytes contain each field in a packet header

Protocol Layering

- Networks use a stack of protocol layers
 - Each layer has different responsibilities.
 - Layers define abstraction boundaries
- Lower layers provide services to layers above
 - Don't care what higher layers do
- Higher layers use services of layers below
 - Don't worry about how it works

Application Transport Network Data Link Physical

Physical

How to get packet to the next hop. Transmission of data frames between two nodes connected by a physical link.

Responsible for packet forwarding. How to get a packet to the final destination when there are many hops along the way.

How to get packet to the next hop. Transmission of data frames between two nodes connected by a physical link.

Network

Data Link

Physical

Allows a client to establish a connection to specific services (e.g., web server on port 80). Provides reliable communication.

Responsible for packet forwarding. How to get a packet to the final destination when there are many hops along the way.

How to get packet to the next hop. Transmission of data frames between two nodes connected by a physical link.

Application

Transport

Network

Data Link

Physical

Defines how individual applications communicate. For example, **HTTP** defines how browsers send requests to web servers.

Allows a client to establish a connection to specific services (e.g., web server on port 80). Provides reliable communication.

Responsible for packet forwarding. How to get a packet to the final destination when there are many hops along the way.

How to get packet to the next hop. Transmission of data frames between two nodes connected by a physical link.

IP — The Narrow Waist

Packet Encapsulation

Protocol N1 can use the services of lower layer protocol N2 A packet P1 of N1 is encapsulated into a packet P2 of N2 The payload of p2 is p1 The control information of p2 is derived from that of p1

HTTP Request Payload

Most common Link Layer Protocol. Let's you send packets to other local hosts.

At layer 2 (link layer) packets are called *frames*

MAC addresses: 6 bytes, universally unique

Ethernet

EtherType gives layer 3 protocol in payload 0x0800: IPv4 0x0806: ARP 0x86DD: IPv6

Originally broadcast. Every local computer got every packet.

Ethernet

Switched Ethernet

address lives based on MAC source addresses

If switch knows MAC address M is at port P, it will only send a packet for M out port P

to all ports

- With switched Ethernet, the switch *learns* at which physical port each MAC
- If switch does not know which port MAC address M lives at, will broadcast

[zakir@scratch-01:~\$ ifconfig ens160: flags=4163<UP, BROADCAST, RUNNING, MULTICAST> mtu 1500 ether 00:50:56:86:b2:03 txqueuelen 1000 (Ethernet) RX packets 1404151714 bytes 1784388363701 (1.7 TB) RX errors 0 dropped 73 overruns 0 frame 0 TX packets 1155689210 bytes 6010503085464 (6.0 TB)

Ethernet

inet 10.216.2.64 netmask 255.255.192.0 broadcast 10.216.63.255 inet6 fe80::250:56ff:fe86:b203 prefixlen 64 scopeid 0x20<link> TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

Two Problems

Local: How does a host know what MAC address their destination has?

Internet: How does each router know where to send each packet next?

ARP: Address Resolution Protocol

ARP is a Network protocol that lets hosts map IP addresses to MAC addresses

Host who needs MAC address M corresponding to IP address N broadcasts an ARP packet to LAN asking, "who has IP address N?"

Host that has IP address N will reply, "IP N is at MAC address M."

address address 0	Type ARP R	ARP Request or ARP Reply Padding CF	
6 6	2	28	10 4
Hardware type (2 bytes)		Protocol type (2 bytes)	
Hardware address length (1 byte)	Protocol address length (1 byte)	Operation code (2 bytes)	
	Source hardwa	are address*	
	Source protoc	ol address*	
	Target hardwa	re address*	
	Target protoc	ol address*	

* Note: The length of the address fields is determined by the corresponding address length fields

ARP Packet

ARP Security

to be another host on the local network! This is called ARP spoofing

to flow through X (*MitM!*)

Claim N_A is at attacker's MAC address M_x

Claim N_B is at attacker's MAC address M_X

Re-send traffic addressed to N_A to M_A , and vice versa

Any host on the LAN can send ARP requests and replies: any host can claim

- This allows any host X to force IP traffic between any two other hosts A and B

IP Addresses

IPv4: 32-bit host addresses Written as 4 bytes in form A.B.C.D where A,...,D are 8 bit integers in decimal (called dotted quad) e.g. 192.168.1.1

IPv6: 128 bit host addresses Written as 16 bytes in form AA:BB::XX:YY:ZZ where AA,...,ZZ are 16 bit integers in hexadecimal and :: implies zero bytes *e.g.* 2620:0:e00:b::53 = 2620:0:e00:b:0:0:53

Instruct routers and hosts what to do with a packet All values are filled in by the sending host

IPv4 Header

Destination Address

Sender sets destination address Routers try to forward packet to that address

Source Address

Source Address (sender) Sender fills in. Routers due not verify.

Checksum

16-bit Simple Header checksum (filled in by sender)

IP Security

Client is trusted to embed correct source IP

- Easy to override using lower level network sockets
- Libnet: a library for formatting raw packets with arbitrary IP headers

- Denial of Service Attacks
- Anonymous infection (if one packet)

Anyone who owns their machine can send packets with arbitrary source IP

Internet Protocol (IP)

Yes:

Routing. If host knows IP of destination host, route packet to it.

No:

- Fragmentation and reassembly: Split data into packets and reassemble
- Error Reporting: (maybe, if you're lucky) tell source it dropped your packet

Everything else. No ordering. No retransmission. No (real) error checking. No acknowledgement of receipt. No "connections". No security. Just packets.

Routing (BGP)

BGP (Border Gateway Protocol): protocol that allows routers to exchange information about their routing tables

Each router announces what it can route to all of its neighbors.

Every router maintains a global table of routes

Pakistan hijacks YouTube

network

advertisement for 208.65.153.0/24

Youtube offline.

On 24 February 2008, Pakistan Telecom (AS 17557) began advertising a small part of YouTube's (AS 36561) assigned

PCCW (3491) did not validate Pakistan Telecom's (17557)

Example path hijack (source: Renesys 2013) Guadalajara \longrightarrow Washington DC via Belarus Feb 2013:

Protocol Layering

How do I get to the right service? How do I have a reliable "stream" of data?

Ports

Each application on a host is identified by a port number

TCP connection established between port A on host X to port B on host Y Ports are 1–65535 (16 bits)

Some destination port numbers used for specific applications by convention

Common Ports

Port		Applic
	80	HTTP
	443	HTTPS
	25	SMTP
	67	DHCP
	22	SSH (s
	23	Telnet

cation

- (Web)
- S (Web)
- (mail)
- (host config)
- secure shell)

UDP (User Datagram Protocol)

wrapper around IP

Adds ports to demultiplex traffic by application

header (parts of IP header)

- **User Datagram Protocol (UDP)** is a transport layer protocol that is essentially a

From Packets to Streams

Most applications want a stream of bytes delivered reliably and in-order between applications on different hosts

- **Transmission Control Protocol (TCP)** provides... - Connection-oriented protocol with explicit setup/teardown
- Reliable in-order byte stream
 - Congestion control

Despite IP packets being dropped, re-ordered, and duplicated

TCP Sequence Numbers

Two data streams in a TCP session, one in each direction Bytes in data stream numbered with a 32-bit sequence number

- Every packet has sequence number that indicates where data belongs
- Receiver sends acknowledgement number that indicates data received

TCP Packet

- Sender sends 3 byte segment
- Sequence number indicates where data belongs in byte sequence (at byte 401)
 - Note: Wireshark shows relative sequence numbers

TCP Acknowledgement Numbers

- Receiver acknowledges received data
 - Sets ACK flag in TCP header
 - Sets acknowledgement number to indicate next expected byte in sequence

ACKing Multiple Segments

receiving acknowledgement

Sender may send several segments before

ACKing Multiple Segments

- Sender may send several segments before receiving acknowledgement
- Receiver always acknowledges with seq. no. of next expected byte

What if the first packet is dropped in network? Receiver always acknowledges with seq. no. of next expected byte

- next expected byte
- Sender retransmits lost segment

 What if the first packet is dropped in network? Receiver always acknowledges with seq. no. of

- What if the first packet is dropped in network?
- Sender retransmits lost segment
- Receiver always acknowledges with seq. no. of next expected byte

TCP Three Way Handshake

Client

State changes to SYN-SENT

State changes to ESTABLISHED

SYN-ACK seq: 200 ack:101

Ending a Connection

- Sends packet with FIN flag set Must have ACK flag with valid seqnum
- Peer receiving FIN packet acknowledges receipt of FIN packet with ACK
- FIN "consumes" one byte of seq. number
- Eventually other side sends packet with FIN flag set — terminates session

TCP Connection Reset

previous connections)

If a connection exists, it is torn down Packet with RST flag sent in response

TCP designed to handle possibility of spurious TCP packets (e.g. from

- Packets that are invalid given current state of session generate a reset
- If a host receives a TCP packet with RST flag, it tears down the connection

TCP Connection Spoofing

Can we impersonate another host when *initiating* a connection?

Off-path attacker can send initial SYN to server but cannot complete three-way handshake without seeing the server's sequence number

1 in 2³² chance to guess right if initial sequence number chosen uniformly at random

TCP Reset Attack

Can we reset an *existing* TCP connection?

Need to know port numbers (16 bits) Initiator's port number usually chosen random by OS Responder's port number may be well-known port of service

There is leeway in sequence numbers B will accept Must be within window size (32-64K on most modern OSes)

1 in 2^{16+32/W} (where W is window size) chance to guess right

DNS — **Domain Name Service**

host by host name (e.g., google.com)

DNS is a delegatable, hierarchical name space

- Application-layer protocols (and people) usually refer to Internet

DNS Record

A DNS server has a set of records it authoritatively knows about

\$ dig bob.ucsd.edu

;; Got answer:

- ;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 30439
- ;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 6

;; QUESTION SECTION: ;bob.ucsd.edu. IN A

;; ANSWER SECTION: bob.ucsd.edu. 3600 IN A 132.239.80.176

;; AUTHORITY SECTION:ucsd.edu.3600 IN NSns0.ucsd.edu.ucsd.edu.3600 IN NSns1.ucsd.edu.ucsd.edu.3600 IN NSns2.ucsd.edu.

, id: 30439 TY: 3, ADDITIONAL: 6

DNS Root Name Servers

In total, there are 13 main **DNS root servers**, each of which is named with the letters 'A' to 'M'.

HOSTNAME	IP ADDRESSES	MANAGER
a.root-servers.net	198.41.0.4, 2001:503:ba3e::2:30	VeriSign, Inc.
b.root-servers.net	199.9.14.201, 2001:500:200::b	University of Southern California (ISI)
c.root-servers.net	192.33.4.12, 2001:500:2::c	Cogent Communications
d.root-servers.net	199.7.91.13, 2001:500:2d::d	University of Maryland
e.root-servers.net	192.203.230.10, 2001:500:a8::e	NASA (Ames Research Center)
f.root-servers.net	192.5.5.241, 2001:500:2f::f	Internet Systems Consortium, Inc.
g.root-servers.net	192.112.36.4, 2001:500:12::d0d	US Department of Defense (NIC)
h.root-servers.net	198.97.190.53, 2001:500:1::53	US Army (Research Lab)
i.root-servers.net	192.36.148.17, 2001:7fe::53	Netnod
j.root-servers.net	192.58.128.30, 2001:503:c27::2:30	VeriSign, Inc.
k.root-servers.net	193.0.14.129, 2001:7fd::1	RIPE NCC
l.root-servers.net	199.7.83.42, 2001:500:9f::42	ICANN
m.root-servers.net	202.12.27.33, 2001:dc3::35	WIDE Project

Caching

- DNS responses are cached Quick response for repeated translations NS records for domains also cached
- DNS negative queries are cached Save time for nonexistent sites, e.g. misspelling
- Cached data periodically times out Lifetime (TTL) of data controlled by owner of data TTL passed with every record

DNS requests sent over UDP

Four sections: questions, answers, authority, additional records

Query ID: 16 bit random value Links response to query

DNS Packet

Response

ıı							
	ver	hlen	TOS		P		
IΡ	identification			flg	fra		
	TTL		protocol		hea		
	src IP = 192.26.92						
	dst IP = 68.94.15						
UDP	<pre>src port = 53</pre>				dst po		
IJ		UDP length		UE			
		QID =	43561	1 Op=	0		
	Question count = 1			Ar	nswe:		
	Authority count = 2 Addl. I						
	Qu	u What is A record for www.unix					
	Au	u unixwiz.net NS = linux.unixwi					
	Au	Au unixwiz.net NS = cs.unixwiz.n					
	Ad linux.unixwiz.net A = 64.170.						
	Ad	Ad cs.unixwiz.net A = 8.7.25.					
Glue Records							

Authoritative Response

	←	32 bits						
	ve	T	hlen	TOS		pk		
		identification			flg	flg frag		
IΡ		TTL protocol		heade				
	src IP = 64.170.162							
	dst IP = 68.94.156							
JDP	<pre>src port = 53</pre>			ds	t poi			
U		UDP length				UDP		
		Q	ID =) = 43562		1 Op=0 1		
	Question count = 1					Answer		
\langle	1 A	utł	nority	Ado	Addl. Rec			
	Qu	What is A record for www.unixw						
	An	www.unixwiz.net A = 8.7.25.94						
	Au	unixwiz.net NS = linux.unixwiz						
	Au	unixwiz.net NS = cs.unixwiz.ne						
	Ad	linux.unixwiz.net A = 64.170.1						
	Ad	cs	s.unix	wiz.net A = 8.7.25.9				

