Finding vulnerabilities

by fuzzing, dynamic and static analysis

Brandon Azad
Stanford CS155 guest lecture
April 15, 2021

Acknowledgments: Lecture slides are from the Computer Security course
taught by Dan Boneh and Zakir Durumeric at Stanford University. When slides
are obtained from other sources, a a reference will be noted on the bottom of
that slide. A full list of references is provided on the last slide.

Conceptualizing vulnerabilities and exploits

Computer programs: finite state machines

Computer programs: finite state machines
o e ®
@

This Is a conceptual state machine describing
the intended operation of the program.

Computer programs: finite state machines
o e ®
@

This Is a conceptual state machine describing
the intended operation of the program.

A physical CPU cannot directly execute this abstract state machine.

Running code: state machines emulating state machines

! =
0&’:

Running code: state machines emulating state machines

This iIs the intended state
machine translated into code

that can be run on a physical
CPU (C++, Python, etc.).”

2§ N
0&’:

* Not quite true: that code still needs to be translated to machine code, which introduces another level of state machines emulating state machines.

Running code: state machines emulating state machines

Bugs occur when there are
reachable states in the
runnable state machine
(the code) that have no
corresponding state in the
Intended state machine

(the design).” _
O~ @
- o

O—C ‘&!‘ @ ‘C

* Not the full picture: the initial design itself could have issues (design issues) which still count as software bugs.

Running code: state machines emulating state machines

Bugs occur when there are
reachable states in the
runnable state machine
(the code) that have no
corresponding state in the
Intended state machine

(the design).’
® o

5 /b
0&! |

Classifying states

Classifying states

‘&0 :ﬁ: -
"é,\"‘?;k’ﬁ“c
< o 0“‘, \

Intended ™“()
states

Classifying states

() @@
o 55

' @
< O xC
O ‘”
Intended ™“()
states _
Transition states

Classifying states

() @@
FS o
Y O
@ @

Unintended states

Classifying states

states

Transition states

Unreachable states Unintended states

Classifying states

Vulnerabilities
live here

.t‘
Intended
states

Transition states

Unreachable states Unintended states

Classifying states

Vulnerabilities
live here

Exploitation is
making the
program do
“Interesting”

transitions in the
unintended state
space.

Intended
states

Transition states

Unreachable states Unintended states

Classifying states Weird machines

Vulnerabilities
live here

Exploitation is
making the
program do
“Interesting”

transitions in the
unintended state
space.

Intended

states 9 ®

Transition states

Unreachable states

http://www.dullien.net/thomas/weird-machines-exploitability.pdf

Common categories of software bugs

Design issue: The conceptual state machine does not meet the intended goals
The firewall's remote interface is designed with a hardcoded admin password

Functionality bug: The code has bad transitions but only between validly
represented states

The save button code is broken, no transition to “saving the file” state

Implementation bug: Code introduces new states not represented in the
conceptual state machine

Lack of length checks introduces new “stack corruption” state

Other ways to reach unintended states
Hardware fault: The hardware suffers a glitch that causes a transition to an
unintended state even if the code is perfect

A cosmic ray causes a bit flip in a voting machine’'s memory, causing a state
where one candidate has an impossible number of votes

Transmission error:. The code is correct but is corrupted in-flight

A program downloaded from the internet suffers packet corruption, so the
program that is run has a different state machine from the one that was sent

This list is not intended to be exhaustive; merely to illustrate the myriad ways that unintended states may enter a system; deciding which ones to defend against is one step of proper threat modeling.

For any interesting program, it is
essentially impossible to manually
explore the full state space to find the
unintended states

Fuzzing

Fuzzing

Find bugs in a program by feeding it random, corrupted, or unexpected data
ldea: Random inputs will explore a large part of the state space
Some unintended states are observable as crashes (SIGSEGV, abort ())
Any crash is a bug, but only some bugs are exploitable

Works best on programs that parse files or process complex input data

Fuzzing example

Fuzzing can be as simple as:

cat /dev/random | head -c 512 > rand.jpeg; open rand.jpeg
How could we do better?

Randomly corrupt real JPEG files

Reference the JPEG spec so that we generate only "JPEG-looking” data

Measure the JPEG parser to see how deep we're getting in the code

Common fuzzing strategies

Mutation-based fuzzing

Randomly mutate test cases from some corpus of input files
Generation-based (smart) fuzzing

Generate test cases based on a specification for the input format
Coverage guided fuzzing

Measure code coverage of test cases to guide fuzzing towards new
(unexplored) program states

This is not a rigid taxonomy: fuzzers often employ multiple strategies.

Mutation-based fuzzing

Randomly mutate test cases from some corpus of input files
1. Collect a corpus of inputs that explores as many states as possible
2. Perturb inputs randomly, possibly guided by heuristics
Modify: bit flips, integer increments
Substitute: small integers, large integers, negative integers
3. Run the program on the inputs and check for crashes

4. Go back to step 2

Can mutation-based "dumb” fuzzing be successful?

In 2010, Charlie Miller fuzzed PDF viewers using the following mutation program:

numwrites = random.randrange (math.ceil ((float(len(buf)) / FuzzFactor))) + 1
for jJ i1n range (numwrites):

rbyte = random.randrange (256)

rn = random.randrange (len (buf))

buf[rn] = "%c"% (rbyte)

Found 64 exploitable-looking crashes

Dumb fuzzing is often way more successful than it has any right to be

Mutation-based fuzzing

Advantages

Simple to set up and run

Can use off-the-shelf software (possibly with a harness) for many programs
Limitations

Results depend strongly on the quality of the initial corpus

Coverage may be shallow for formats with checksums or validation

Generation-based (smart) fuzzing

Generate test cases based on a specification for the input format

1. Convert a specification of the input format (RFC, etc.) into a generative
procedure

2. Generate test cases according to the procedure and introduce random
perturbations

3. Run the program on the inputs and check for crashes

4. Go back to step 2

Syzkaller
A kernel system call fuzzer that uses
test case generation and coverage

Test cases are sequences of syscalls
generated from syscall descriptions

Runs the test case program in a VM

Kernel crashes in the VM indicate
potential Local Privilege Escalation
(LPE) vulnerabilities

Ch

Raw Blame l;J V4

304 lines (235 sloc) 15.7 KB

Syscall descriptions

syzkaller uses declarative description of syscall interfaces to manipulate programs
(sequences of syscalls). Below you can see (hopefully self-explanatory) excerpt from the
descriptions:

open(file filename, flags flags[open_flags]l, mode flags[open_mode]) fd
read(fd fd, buf buffer[out]l, count len[buf])

close(fd fd)

open_mode = S_IRUSR, S_IWUSR, S_IXUSR, S_IRGRP, S_IWGRP, S_IXGRP, S_IROTH, S

The descriptions are contained in sys/$0S/x.txt files. For example see the
sys/linux/dev_snd_midi.txt file for descriptions of the Linux MIDI interfaces.

A more formal description of the description syntax can be found here.

Programs

The translated descriptions are then used to generate, mutate, execute, minimize,
serialize and deserialize programs. A program is a sequences of syscalls with concrete
values for arguments. Here is an example (of a textual representation) of a program:

ro = open(&(0x7f0000000000)="./filed", 0x3, 0x9)
read(r@, &(0x7f0000000000), 42)
close(ro)

https://github.com/google/syzkaller/blob/master/docs/syscall_descriptions.md

Generation-based (smart) fuzzing

Advantages
Can get deeper coverage faster by leveraging knowledge of the input format
Input format/protocol complexity is not a limit on coverage depth
Limitations
Requires a lot of effort to set up
Successful fuzzers are often domain-specific

Coverage limited by accuracy of the spec; implementation may diverge

Coverage guided fuzzing

 d

Key insight: code coverage is a useful metric,
why not use it as feedback to guide fuzzing?

XPORT QmagebecCommen UersionCheck
ebecComnon_VersionCheck

i unwing ¢

X0, loc_2201FM

Prefer test cases that reach new states L

Basic block coverage: Has this basic block
in the CFG been run? e —a

o N
v, loc 2202 goc_!!.!lh

Edge coverage: Has this branch been taken?

Path coverage: Has this particular path
through the program been taken?

https://googleprojectzero.blogspot.com/2020/07/mms-exploit-part-2-effective-fuzzing-qmage.html

american fuzzy lop (AFL)

1. Compile the program with
iInstrumentation to measure
coverage

2. Trim the test cases Iin the queue

american fuzzy lop 0.47b (readpng)

process timing overall results
0 days, O hrs, 4 min, 43 sec ;
- 0 days, 0 hrs, 0 min, 26 sec - 195
. none seen yet ' 0
0 days, 0 hrs, 1 min, 51 sec 1
cycle progress map coverage
‘ - 38 (19.49%) | 1217 (7.43%)
0 (0.00%) - 2.55 bits/tuple
stage progress findings in depth
| - interest 32/8 - 128 (65.64%)
- 0/9990 (0.00%) | - 85 (43.59%)
- 654k - - 0 (0 unique)
- 2306/sec - 1 (1 unique)
fuzzing strategy yields path geometry
' | - 88/14.4k, 6/14.4k, 6/14.4k > -3
- 0/1804, 0/1786, 1/1750 178
- 31/126k, 3/45.6k, 1/17.8k | 114
1/15.8k, 4/65.8k, 6/78.2k |
- 34/254k, 0/0
2876 B/931 (61.45% gain)

to the smallest size that doesn't change the program behavior

3. Create new test cases by mutating the files in the queue using traditional

fuzzing strategies

4. If new coverage is found in a mutated file, add it into the queue

5. Go back to step 2

https://Icamtuf.coredump.cx/af/README.txt

Coverage guided fuzzing

Advantages
Very good at finding new program states, even if the initial corpus is limited
Combines well with other fuzzing strategies
Wildly successful track record
Limitations
Not a panacea to bypass strong checksums or input validation

Still doesn’t find all types of bugs (e.g. race conditions)

Real world example: Fuzzing the Samsung Qmage codec

MMS Exploit Part 2: Effective Fuzzing of the Qmage Codec

Posted by Mateusz Jurczyk, Project Zero

This post is the second of a multi-part series capturing my journey from discovering a
vulnerable little-known Samsung image codec, to completing a remote zero-click MMS
attack that worked on the latest Samsung flagship devices. New posts will be
published as they are completed and will be linked here when complete.

e MMS Exploit Part 1: Introduction to the Samsung Qmage Codec and
Remote Attack Surface

[this post]

MMS Exploit Part 3: Constructing the Memory Corruption Primitives
MMS Exploit Part 4: MMS Primer, Completing the ASLR Oracle
MMS Exploit Part 5: Defeating Android ASLR, Getting RCE

Introduction

In Part 1, | discussed how | discovered the "Qmage" image format natively supported
on all modern Samsung phones, and how | traced its roots to Android boot animations
and even some pre-Android phones. At this stage of the story, we also know that the
codec seems very fragile and is likely affected by bugs, and that it constitutes a zero-
click remote attack surface via MMS and the default Samsung Messages app. | was at
this point of the project in early December 2019. The next logical step was to
thoroughly fuzz it — the code was definitely too extensive and complex to approach with
a manual audit, especially without access to the original source or expertise of the
inner workings of the format. As a big fan of fuzzing, | hoped to be able to run it in
accordance with the current state of the art: efficiently (without unnecessary overhead),
at scale, with code coverage information, reliable reproducibility and effective
deduplication. But how to achieve all this with a codec that is part of Android,
accessible only through Skia image API, and precompiled for the ARM/ARM64
architectures only? Read on to find out!

Writing the test harness

The fuzzing harness is usually one of the most critical pieces of a successful fuzzing
session, and it was the first thing | started working on. | published the end result of my
work as SkCodecFuzzer on GitHub, and it can be used as a reference while reading
this post. My initial goal with the loader was to write a Linux command-line program
that could run on physical Android devices, and use the Skia SkCodec interface to load

Aarnd Aoradea arm innait irmamea filae in avarcths, the carmea wavw far At lasct A Alancealyy A

In 2019, Mateusz Jurczyk discovered the Qmage
image codec included on Samsung smartphones

Reachable via zero-click MMS
The code looks fragile but the library is closed source
Few examples of Qmage files

Mateusz developed a harness to enable large-scale
coverage-guided fuzzing of the Qmage codec

https://googleprojectzero.blogspot.com/2020/07/mms-exploit-part-2-effective-fuzzing-qmage.html

Fuzzing the Samsung Qmage image codec: harness

A fuzzing harness was written to call 25 [daca/local /inp § - /loader accessibility light sasy off.gng
the interesting functions in the library (1] Dimensions: jaa w3
. [+] Alpha type:. 3
and Supply the teSt Case IanIt frOm the EI% izzzz—SZZtiiZii;déixels() completed successfully
fuzzer d2s:/data/local/tmp $

An emulator (qemu-aarch64) was used to run the harness and Qmage library on a
Linux machine

Easier to get 1000 Linux cores than 1000 Samsung Galaxy phones

coverage

Qmage per-function code coverage

=Y
o
o/

s

90.00%
80.00
70.00%
60.00%
50.00%
40.00%
30.00%
20.00%
10.00%
0.00

100.00%

compensated for the small

number of

Fuzzing the Samsung Qmage image codec
Coverage feedback

Code coverage was collected by
modifying gemu-aarch64 to trace

executed PC addresses

J@ouead jsapodagadewtd

PSP TTADY ¥apuTJdapolaglapodfd
9IeTHUT awb

HWO J@owead jsapodagadewd

drz Japodagorapoipnd

@ @podap DapoIM WO

@ lacweadisapodagadewd)

"IQZE [AUUBYDT Japodagoapodid
"IQ9T T[2UUBLYDT Japodaglapodjid
"T E£SZ8naY apodagdrzidrgadewd
TpsyTTARY epodagdTzidrgadewd
"IQZE [RUUBYDT Japola(lapodpd
@ 1d0P20 1Iq844T0YIIMapodap
1ld0P20 3Tq844TQYITMapoDap
"IQGT TPULBYDT Japo2a(glapodjd
G lrqgJaposagadeuwnpuednp
"¥LqYZ }TqZE Japodagaseundue nd
11qRJapodagasSeunpwe Jnp)

"QaT a@TEISABJD Japo2aglapodnd
"“ITqQP7 1TqzZE Japodagadewnpuwe Jnp
@ apodagdTzZ44rgaseud
ap02agd1Z44T0a8euwd

"IGAT [PUUBYDT Japola(oapodfd
"I0OT [RUUBYDT Japoda(rapodid
"y MIN SITqpZ Jepoldagrapodpd
"qaT @TE2SARUD Jap02a(Dapodid
"qaT @TE2SARJD JapODa(OapodAid
"Q9T PTEISAPJD JUBPOD3(IDPOIA
"J8Q0 }TQZEITqPZH4TQYITMapodap
"IQZE TOUUBYDT Jap0da(2apodjd
"2y MIN SITQZE Japodaglrapodnd
"IQZE TAUUBYDT Japoda(iapodjd
"280 1T9ZEITAYZHITAYITMAPODAP
1LquZ 3TQZE Japodagadeunpuwe unp

/0

|al test cases

NI

Fuzzing the Samsung Qmage image codec: results

Category Count Percentage
write 174 3.33%
read-memcpy 124 2.38%
read-vector 18 0.34%
read-32 3 0.06%
read-16 52 1.00%
read-8 34 0.65%
read-4 703 13.47%
read-2 393 7.53%
read-1 3322 63.66%
sigabrt 3 0.06%
null-deref 392 7.51%

4 weeks of fuzzing

87.3% coverage of the Qmage
codec

5218 unique crashes

2020-04-22 13:21:08,765 [INFO] Range [765a760000 765a760fff]| 1is readable: true
2020-04-22 13:22:25,896 [INFO] Range [765a760000 765a7e7fff] is readable: true
2020-04-22 13:24:03,055 [INFO] Range [765a760000 765a86ffff] is readable: false
2020-04-22 13:25:10,218 [INFO] Range [765a7e8000 765a82bfff] is readable: false
2020-04-22 13:25:58,355 [INFO] Range [765a7e8006€ 765a809fff] 1s readable: true
2020-04-22 13:27:16,491 [INFO] Range [765a80a000 765a8lafff] is readable: true
2020-04-22 13:28:53,653 [INFO] Range [765a81beee 765a823fff] is readable: false
2020-04-22 13:30:00,820 [INFO] Range [765a81b000© 765a81ffff] 1is readable: false
2020-04-22 13:31:07,988 [INFO | Range [765a81booe 765a81dfff] is readable: false
2020-04-22 13:32:15,149 [INFO] Range [765a81booe 765a81cfff] is readable: false
2020-04-22 13:33:02,294 [INFO] Range [765a81b0ee 65a81bfff] is readable: tru
2020-04-22 13:33:02,294 [INFO] linker64 address ©x765a701000 found after 89 queries (3 cached)
2020-04-22 13:33:02,295 [INFO | ASLR defeated, crafting a corrupted image for RCE
2020-04-22 13:33:02,341 [INFO | Generator stdout: done!

2020-04-22 13:33:02,342 [INFO] RCE exploit image successfully created, 533 bytes long
2020-04-22 13:33:02,342 [INFO] Crashing Messages before wding the final payload
2020-04-22 13:33:04,389 [INFO] Cooldown, sleeping for 65 seconds

2020-04-22 13:34:09,390 [INFO | Woke up, sending the exploit

2020-04-22 13:34:11,450 [INFO] Exploit sent, enjoy your reverse shell!

13:34:11 Vexailliun

j00ru@vps12284:-% # We will get the reverse shell here

j00Oru@vps12284:~% nc -1 -p 1337 -v

Listening on [0.0.0.0] (family 0, port 1337)

Connection from 54194 received!

/bin/sh: can't find tty fd: No such device or address

/bin/sh: warning: won't have full job control

v/ $ id

uid=10128(u® al28) gid=10128(u® al28) groups=10128(ud al28),3002(net bt),3003(inet),9997(everybody),20128(u@® al28 cache),50128(all al28) cont
ext=u:r:platform app:s0:¢c512,c768

:/ %}

https://www.youtube.com/watch?v=nke8Z3G4|nc

Another cool fuzzer: Fuzzilli

[googleprojectzero [fuzzilli

Ve ry S u CceSSfu I J ava: scrl pt fu Zze r <> Code (1) Issues 17 Il Pull requests 5 J) Discussions (») Actions "Il Projects) Security '~ Insights
¥ master ~ ¥ 1branch © 2 tags Go to file

Principle: Translate JavaScript to a

Q wbowling Added entry for CVE-2019-8844 to README.md (#190) .. v 0a83e@c 17 days ago ‘) 216 commits
.

dense I nte rm ed Iate Lang uage (I L), 0 Cloud Updated V8 and JSC targets 4 months ago
B Docs Add documentation for type determination (#142) 7 months ago
a n d fu ZZ th e I L W Sources Reset any blocked signals after forking in libreprl 25 days ago
W Targets Fixed QuickJS patch 2 months ago
Tests Implemented JavaScript Classes 5 months ago
[CONTRIBUTING.md Fuzzilli is now open source! 2 years ago
) LICENSE Fuzzilli is now open source! 2 years ago
') Package.swift Added tiny benchmarking suite (#140) 7 months ago
'Y README.md Added entry for CVE-2019-8844 to README.md (#190) 17 days ago

= README.md

Fuzzilli

A (coverage-)guided fuzzer for dynamic language interpreters based on a custom intermediate language
("FuzzIL") which can be mutated and translated to JavaScript.

Written and maintained by Samuel GroB, saelo@google.com.

Usage

The basic steps to use this fuzzer are:
https://github.com/googleprojectzero/fuzzilli

Fuzzing summary
Off-the-shelf fuzzers are excellent at
finding bugs

Custom fuzzers are also excellent at
finding bugs

Different fuzzers often find different
bugs

Relatively easy to get started

Fuzzing doesn't find all types of bugs

This code parses untrusted data

Should |

write a
fuzzer?

Dynamic analysis

Dynamic analysis
Analyze a program’s behavior by actually running
its code

May be combined with compile-time
modifications like instrumentation

Can modify the program’s behavior
dynamically

Useful for rapid experimentation

Often complements fuzzing very well

Running A Program Under Valgrind

Like the debugger, Valgrind runs on your executable, so be sure you have compiled an
up-to-date copy of your program. Run it like this, for example, if your program is named
memorylLeak :

$ valgrind ./memorylLeak

Valgrind will then start up and run the specified program inside of it to examine it. If you
need to pass command-line arguments, you can do that as well:

$ valgrind ./memorylLeak red blue

When it finishes, Valgrind will print a summary of its memory usage. If all goes well, it'll
look something like this:

==4649== ERROR SUMMARY: @ errors from @ contexts

==4649== malloc/free: in use at exit: @ bytes in @ blocks.
==4649== malloc/free: 10 allocs, 10 frees, 2640 bytes allocated.
==4649== For counts of detected errors, rerun with: -v

==4649== ALl heap blocks were freed —— no leaks are possible.

This is what you're shooting for: no errors and no leaks. Another useful metric is the
number of allocations and total bytes allocated. If these numbers are the same ballpark
as our sample (you can run solution under valgrind to get a baseline), you'll know that
your memory efficiency is right on target.

Finding Memory Errors

Memory errors can be truly evil. The more overt ones cause spectacular crashes, but
even then it can be hard to pinpoint how and why the crash came about. More
insidiously, a program with a memory error can still seem to work correctly because you
manage to get "lucky" much of the time. After several "successful" outcomes, you might
wishfully write off what appears to be a spurious catastrophic outcome as a figment of
your imagination, but depending on luck to get the right answer is not a good strategy.
Running under valgrind can help you track down the cause of visible memory errors as
well as find lurking errors you don't even yet know about.

https://web.stanford.edu/class/cs107/resources/valgrind.html

AddressSanitizer (ASan)

Fast memory error detector for C/C++ using compiler instrumentation and a
runtime library that replaces malloc () to surround allocations with redzones

Out-of-bounds accesses

==9901==ERROR: AddressSanitizer:heap-use-after-free on address 0x60700000dfb5 at pc 0x45917b
Use'after-free bp 0x7£f£4490c700 sp Ox7f£f4490c6£f8

READ of size 1 at 0x60700000dfb5 thread TO

#0 0x45917a in main use-after-free.c:5
Use-after-retu rn #1 Ox7fce9f25e76c in 1libc start main /build/buildd/eglibc-2.15/csu/libc-start.c:226
#2 0x459074 in start (a.out+0x459074)
0x60700000dfb5 is located 5 bytes 1nside of 80-byte region [0x60700000dfb0,0x60700000e000)
Use-after-scope freed by thread TO here:
#0 Ox444lee in interceptor free projects/compiler-rt/lib/asan/asan malloc linux.cc:64

- - #1 0x45914a in main use-after-free.c:4
DOUbIe-free, Invalld free #2 Ox7fce9f25e76c in 1libc start main /build/buildd/eglibc-2.15/csu/libc-start.c:226
previously allocated by thread TO here:
#0 0x44436e in interceptor malloc projects/compiler-rt/lib/asan/asan malloc linux.cc:7
Memory Ieaks #1 0x45913f in main use-after—free.c:3 B B

#2 0x7fce9f25e76c in libc start main /build/buildd/eglibc-2.15/csu/libc-start.c:226
SUMMARY : AddressSanitizer: heap-use-after-free use-after-free.c:5 main

==

Typically 2x slowdown

https://github.com/google/sanitizers/wiki/AddressSanitizer

AddressSanitizer (ASan)

Fast memory error detector for C/C++ using compiler instrumentation and a
runtime library tl N redzones

Out-of-bourr Pro tip: Once coverage guided fuzzing
Use-after-fn plateaus, run the generated corpus under o e e e
Use-after-rd ASan to find bugs the fuzzer missed! e e

)x60700000dfb0, 0x60700000e000)
Use-after-si

| b/asan/asan malloc linux.cc:64

N TL UXZO T C . T
DOUbIe-free Invalla Iree #2 0x7fce9f25e76c in libc start main /build/buildd/eglibc-2.15/csu/libc-start.c:226
J — _ _

previously allocated by thread TO here:

I\/I I h(#0 Ox44436e in interceptor malloc projects/compiler-rt/lib/asan/asan malloc linux.cc:7
el I |Ory ea S #1 0x45913f in main use-after-free.c:3

#2 0x7fce9f25e76c in libc start main /build/buildd/eglibc-2.15/csu/libc-start.c:226
SUMMARY : AddressSanitizer: heap-use-after-free use-after-free.c:5 main

—

Typically 2x slowdown

https://github.com/google/sanitizers/wiki/AddressSanitizer

ThreadSanitizer (TSan)

Data race detector for C/C++

Similar in principle to AddressSanitizer but for race conditions

High overhead

5-10x memory

5-15x slowdown

WARNING: ThreadSanitizer: data race (pi1d=19219)
Write of size 4 at 0x7£fcf47b21bc0 by thread T1:
#0 Threadl tiny race.c:4 (exe+0x00000000a360)

Previous write of size 4 at 0x7fcf47b21bc0 by main thread:

#0 main tiny race.c:10 (exe+0x00000000a3b4)

Thread Tl (running) created at:

#0 pthread create tsan interceptors.cc:705 (exe+0x00000000c790)

#1 main tiny race.c:9 (exe+0x00000000a3a4)

https://clang.llvm.org/docs/ThreadSanitizer.html

Static analysis

Static analysis

Using a tool to analyze a program’s behavior without actually running it
Test whether a certain property holds or find places where it is violated

Static analysis can prove some properties about the program that fuzzing and
dynamic analysis can't

E.g., can prove that a program is free of NULL pointer dereferences

Despite lots of work in this area, there are countless interesting topics and huge
scope for improvements!

Undecidability of static analysis

Goal: Determine whether a given program satisfies a given property
This is theoretically undecidable: it reduces to the halting problem!

def solve halting problem(P, a):
def new P():
P(a)

bug ()
return static analyzer for bug(new P)

Soundness and completeness

The best static analyzer can only satisfy one of the following:”
Soundness: Everything that the static analyzer finds is a bug
But some bugs may be missed!
Completeness: The static analyzer finds every bug
But there may be false positives!

Most static analyzers are neither sound nor complete

Soundness vs Completeness

sound (over-approximate) analysis

possible program behaviors

complete
(under-approximate)

analysis

Is this program safe?

X< 0

yes

X< X+1 X €& X-1

yes

yes

crash

Yes, it is safe.
This program will not crash. X €0

yes

XEX+1 X & X-1

yes

yes

crash

Non-termination!
Therefore, need to approximate

Non-termination!
Therefore, need to approximate

Abstraction

Concrete Domain of Integers Abstract Domain of Signs
Xx=5 ® Positive ints
X=-5

© Negative Ints

® Zero

Abstraction

Concrete Domain of Integers Abstract Domain of Signs

X=5 —M8M878Mm ™ @ Positive Ints

X=-8 ——————— . Negative ints

x=0 »
O Zero

Abstraction

Concrete Domain of Integers Abstract Domain of Signs

X=5 —M8M878Mm ™ @ Positive Ints

X=-8 ——————— . Negative ints

x=0 »
O Zero

x=b?-1:1

Abstraction

Concrete Domain of Integers Abstract Domain of Signs

X=5 —M8M878Mm ™ @ Positive Ints

X=-8 ——————— . Negative ints

x=0 »
© Zero
XxX=b?-1:1 §§§§§§§§§§§§§$

T All Integers

Abstraction

Concrete Domain of Integers Abstract Domain of Signs

X=5 —M8M878Mm ™ @ Positive Ints

X=-8 ——————— . Negative ints

x=0 »
© Zero
XxX=b?-1:1 §§§§§§§§§§§§§$

x=y/0 T All Integers

Abstraction

Concrete Domain of Integers Abstract Domain of Signs

X=5 —M8M878Mm ™ @ Positive Ints

X=-8 ——————— . Negative ints

x=0 »
© Zero
XxX=b?-1:1 §§§§§§§§§§§§§$

T All Integers

1 No integers
(undefined)

Try analyzing with
‘“signs” approximation...

lost
precision

Try analyzing with
‘“signs” approximation...

lost
precision

Try analyzing with “path-sensitive

signs” approximation...
X€0
YLD TR

Y0

—— refinement

terminates...

... no false alarm - Y=0
crash
... soundly proved never crashes

Tainting Checkers

Unvetted data taints other
data transitively

Unchecked data accepted

from untrusted source

User input, network packets,
parsed files

Tainted data used

as an operator

printf() malloc() strcpy() Sent to RDBMS HTML Rendered

Command Format String Int/buffer Buffer SQL Cross Site
Injection Manipulation overflow overflow Injection Scripting Attacks

Checking for Unsanitized Integers

Warn when unchecked integers from
sources reach trusting sinks

Syscall Network ¢opyin(&v, p, len)

param packet /
any<=v <= any
Coctean 2 usety
array|[v]

memcpy(p, q, V)
while(i < v)

copyin(p,q,v)
copyout(p,q,v)

Linux; 125 errors, 24 false: BSD: 12 errors, 4 false

Example Untrusted Integer

Remote exploit, no length checks

/* 2.4.9/drivers/1sdn/act2000/capi.c:actcapi_dispatch */
1sdn_ctrl cmd;

while ((skb = skb_dequeue(&card->rcvqg))) {
msg = skb->data;

memcpy(cmd.parm.setup.phone,
msg->msg.connect_ind.addr.num,
msg->msg.connect_ind.addr.len - 1);

Clang static analyzer

Check for common security issues
with a static analysis framework in
the compiller

Built iIn checkers:

Buffer overflows (with taint)
Refcount errors

malloc () integer overflows
Insecure API use
Uninitialized value use

12 void foo(int x, int y) ({
13 id obj = [[NSString alloc] init]:

1 Method returns an Objective-C object with a +1 retain count (owning reference)

14 switch (x) {

15 case 0:

16 [ob] release];

17 break;

18 case 1:

19 /7 [ob] autorelease].
20 break;

21
22
23 }

24 |}

4 Object allocated on line 13 is no longer referenced after this point and has a retain count of +1 {object leaked) ’ v

https://clang-analyzer.llvm.org/images/analyzer_html.png

CodeQL (Semmle)

class PotentialOverflow extends Expr {

PotentialOverflow() {

(this instanceof BinaryArithmeticOperation // match X+y X=Yy XXy
and not this instanceof DivExpr // but not x/y
and not this instanceof RemExpr) I or X%y

or (this instanceof UnaryArithmeticOperation // match x++ X—— ++X ——X -X

and not this instanceof UnaryPlusExpr) // but not +x

// recursive definitions to capture potential overflow in
// operands of the operations excluded above
or this.(BinaryArithmeticOperation).getAnOperand() instanceof PotentialOverflow

or this. (UnaryPlusExpr).getOperand() instanceof PotentialOverflow

}

from PotentialOverflow po, Safelnt si
where po.getParent().(Call).getTarget().(Constructor).getDeclaringType() = si
select

PO,

po + " may overflow before being converted to " + si

Query language for finding patterns
In large codebases

“SQL for searching code”

Works best when you have a
specific bad code pattern in mind

https://msrc-blog.microsoft.com/2018/08/16/vulnerability-hunting-with-semmle-qgl-part-1/

Manual analysis

project-zero project-zero ~ m Open issues v Q Search project-zero issue ~ £ Signin
¥ Starred by 4 users Issue 2085: Google Duo: Race condition can cause
Owner: natashenka@google.com .
= callee to leak video packets from unanswered call < code o
CC: proje...@google.com Reported by natashenka@google.com on Wed, Sep 2, 2020, 5:02 PM PDT
Project Member

Status: Fixed (Closed) When Duo accepts an incoming call, it starts the WebRTC connection by calling setLocalDescription on the answer it generates

based on the remote offer, and then disables outgoing video traffic by disabling all encoders by calling RtpSender.setParameters
Components: in an executor from onSetSuccess. This creates a race condition, as the connection gets set up by one thread, but outgoing traffic

is disabled on another, so there is no guarantee that outgoing traffic will be disabled before the connection is set up and starts

Modified: Dec 2, 2020 : .
sending traffic.

Finder-natashenka

Deadline-90 Usually setting up the connection takes a long time, and disabling traffic is very fast, but it is possible to slow down disabling traffic,
Vendor-Google because it is run on the same thread queue that processes incoming messages from data channels, so if a lot of data channel
CCProjectZeroMembers traffic occurs at the same time a new SDP offer is received, the method to disable video transmission needs to wait in the queue
Severity-High until the incoming data is processed.

Methodology-CodeReview

Product-Duo The attached script allows a caller on Duo to receive a small amount of video from the callee even if the call is not answered by
Reported-2020-Sep-2 the callee user. This could allow an attacker to enable the camera on a remote user's device and take pictures of their
Fixed-2020-Oct-26 surroundings.

To reproduce this issue:

1) run track.py on the attacker device

python3 track.py "Attacking Pixel"

2) run exploit_sender.py on the same attacker device in another window, with exploit_sender.js in the same directory
python3 exploit_sender.py "Attacking Pixel"

https://b .ch ium.org/p/project- /i /detail?id=2085
pS-//bUgS.Chromitim.Orgipproject-zerofissuesidetalisl 3) make a video call to the target device and hana up after one second (this populates some difficult-to-aenerate memoryv in the

Reverse engineering

Looking at a compiled program in order to figure out what it does and how it works
Usually assisted by tools
Disassembler
Decompiler
Strings
Often aided by dynamic analysis

Tracing

IDA Pro

Disassembly
Decompilation
Binary analysis

Scripting

% @y By BB Y g A @ E g i HyFm XD 0 Nodebugger 8 %@
| 4 > A
R el il im ... |
| Library function . Regular function ¥ Instruction Data = Unexplored External symbol - Lumina function
Functions window 0 0O () @ [O] Hex View-1 @ [A] Structures @[] Enums @ ¥= Imports @ 2] Exports
Function name IDA View-A o 6 Pseudocode-A O O
sub_100007E7C — P . 3¢ \Ehile (et
= e 37 £ (vi6 == 2 comma 1 == comma)
sub_100007F3C CBZ W24, loc_100008D1C e 3ol ik ("S5 b Mcaesd e Ha¥i
sub_100007FA4 I HIE mma_ 1
—= e 41 vi7 = comma 1 + 1;
sub_1000081DC LOBB W9, [X8) El 4:.2 if (comma 1[{1] I="',"')
sub_100008414 ce W9, #0x2A ; '+ -4 B cint g e
B.NE loc_100008D1C ~ (- - Ny e
sub_100008468 . 46 } y
sub_1000085B8 = ol g
sub_100008884 loc_100008D1C . 50 -l
oV W12, #0 -1 A At
sub_100008C24 ov W11, #0xA 52 {
oV X10, X8 s 53 v19 = v20;
7] sub_100008C58 e * 54 v22 = g
sub_100008E00 = . 56 V20 = v22'+ 10 % v20 - '0';
sub_100009CD4 1’1‘8;_100008928 . o2a o S8 \}2119 (v22 - (unsigned int)'0' < 10);
LDRSB W13, [X10],#1 = § e 3= 88
sut;_100009EOC LOR i e ¢ 60 ie (9t0 LABEL_28;
|MADD W12, W12, wWll, w13 &= .
sub_100009E64 SUB W12, W12, #0x30 ; 'O - i T SR)
sub_100009E80 [CMP Wld4, #0xA 64) s >
B.CC loc_100008D28 5. o s (o == 42)
sub_100009FBC T 66| {
sub_100009FE4 == -+ Vet =ay O
AND W1ll, W13, #OxFF ® 69 oto LABEL 25:
sub_10000A05C cup Wil, #0x2C ; ', 0 3 oy
B.NE loc_100008DAC Pkl Ba
sub_10000A06C 1 o 72 vis = 0;
== y - L] e 73 v23 = g'- 1;
Line 50 of 194 = Eﬂ = 78| do g
oV X11, X8 BZ w24, loc_100008D70 - (
Ak Graph overview 0o 0 O -3 v, Joxat 3!, A i e
NE loc_100008DAC e 78 v25 = v26 + 10 * v25 = '0';
j 79
= L Eﬁz e 80 \)Ihile (v26 - (unsigned int)'0' < 10);
— — 81 LABEL 25:
10, x8, #2 11, x10, #1 7 :
ov w9, #oxFrrrrFTFE|— Lz 9 e tf { 588)
loc_100008D58 o 84 if (1%v23)
[. = @ 85 goto LABEL 29;
100.00% (322,1355) (1044,90) 00008D2C 0000000100008D2 (Synchronized w 00008D2C sub_100008C58:54 (100008D2C (Synchronized with IDA View
'=] Output window o ® 0
AVUVUVLVALIUVU ua.:.ug gucaacu \—IUC _.:.AAQ-U'! HNULM_&VUULU‘-'IU'
100010250: using guessed type _ int64 gword 100010250;
100010258: using guessed type int dword 100010258;
10001025C: using guessed type int dword 10001025C;
100010268: using guessed type _ int64 gword 100010268;
100010270: using guessed type __ int64 gword 100010270;
Python
AU: idle Down Disk: 339GB

Ghidra

File Edit Analysis MNavigation Search Select Tools Window Help

H e -=»- BREPR JIDULFREYBEB: @9 oo | vRYSDG.L0BO 135 | @

Similar to IDA

e Ttees BRI = Lotno packedup O Bk @l x| 0c - (packedup) % W Ll@-~ X
" & pacoap : 3
B .bss Lo = 2 |void FUN_0040060c (void)
data // segment_2.1 - i [
.got.plt // Loadable segment [Gx400000 - 0x40097b] (disabled execute ... - 5| uint uvarl:
.got // ram: 0B400000-00480237 g dnt ivaro;
E) dynamic o 7| ulong uvar3;
jer) assume DF = Ox0 (Default) 8 int iVard; e SO r e
finlzaicray B 00400000 7 45 4c E1f64_Ehdr o| bool bvars; I l l ‘ (:
Jinit_array AR Des0L 10 | uint local_18;
) .eh_frame A L0 s . ' 11 | int local_14;
' hf hd 00400000 7f db 7Fh e_ident_magi... 12
.eh_frame_hdr oA . ; '
Shen il gejgaggi 32 dc 46 g; 2ELF e_}gen:_m?gl... 12| write(l,"Welcome to packedup for r2crackmes :)\nFlag =< ",0x30);
fini 03402005 o db i e 14 | read(0, SDAT 00601080, Bx2c);
: e_ident_data 15 | iVar2 = 0x400614; .
text 00400006 01 db 1h e_ident_vers... 16| ivard = Oxe2;
plt ! 00400007 gg gg gg gg 00 db[o] e_ident_pad 17 overs i g
18| do {
= 00400010 02 0O dw 2h e_type 19 uvarl = (uint) {byte) {{char)uvar3 + *{char *){long)ivar2);
- poacee12 Ze oo dv 3Eh e_mach}ne 20 local 18 = ({uint)uvar3 & Oxffffffoo | uvarl) >» 4 | uvarl << OxI
K e | s e
3 _TWiT_I q entry e_entry 22 iVar2 = ivar2 + 1;
A ’
» § entry 00 o0 oo 23 ivard = ivard + -1;
» ¥ exit 00400020 40 GO 00 60 00 dg E1f64_Phdr_ARRAY_00480... e_phoff 54 | ¥dhile (ivara 1 Bl J
» ¥ exit 0o 00 00 25 | local_14 = Gx2c;
» § FUN 00400500 Bh:00 o0 27 bvars = (int)local_18 < 8;
ﬂ 00400030 00 00 G0 Q0 ddw Gh e_flags 28 uvarl = local 18 <: 1;
> § FUN_00400700 00400034 40 Q0 dw 40:: e_e:sue_ o5 local 18 = uvarl | {uint)bvars;
i 00400036 38 GO dw 38 e_phentsize 20 if ((uvarl & Oxff | (uint)bvars) !=
f FUN_00400770 00400038 09 GO d oh h :
»% read S e i e—ph""ﬁ . 3l {uint) (byte) { {SUNK_004067a0) [(long) (local_14 + -1)] ~ {(&DAT (
a e e_shentsize 2) I
> read . :
,3 it 0046003c 1c 00 dw 1Ch e_shnum 33 write(l,"Try again!\n",0xd);
o write 0040003e 1b 00 dw 1Bh e_shstrndx 34 goto LAB 004006f6;
> write - d
4'|5 }
» Cp Labels E1f64_Phdr_ ARRAY 00400040 XREF[2] : 00400020(*), 00400050(*) % R T T
» [Classes 00400040 06 00 00 ELf64_Ph... PT_PHDR - Program header table 37| 1 while (local 14 1= 0);
» [} Namespaces v gg gg gg 38 | write(l,"Yep! you got the flag :) \n",0Oxlc);
— ‘ 20 |LAB_00400676:
Filter: | 2 ;j o 40 /% WARNING: Subroutine does not return */
: .interp 4l | exit{0);
|v b'e // SHT_PROGBITS [0Ox400238 - 0x400253] a2 |3
L A4 ram: 0D400238-00400253 43
£
v
4. Data Types s_/1ib64/1d-linux-x56-64.50.2 00400238 XREF[2]: 00400088(*),
> ? BuiltinTypes _elfSectionHeaders: : 0O00GOS0 (*)
> ﬁOpackedup 00400238 2f 6c 69 ds "/11ib64/1d-1inux-x86-64.50,2" Initial ELf program interpreter
» i generic_clib_64 gf gs 23
» 8 windows vs12 32 o
/f{ l"‘rlr?'tleh’.\fEI g Ti? AT A S AnnmTeal ﬁj'—
<\ | -] >
Ccomsole-serpting 2 dx
Filter: &
@ | 00400012 I_

https://en.wikipedia.org/wiki/Ghidra#/media/File:Ghidra-disassembly,March_2019.png

Tips for writing (more) secure software

Software tests

One of the most effective ways to reduce bugs
Unit tests: Check that each piece of code behaves as expected in isolation
Goal: Unit tests should cover all code, including error handling
S0 many exploitable bugs would be eliminated with basic unit tests
Regression tests: Check that old bugs haven't been reintroduced
If you don’t run regression tests, attackers will run them for you!

Integration tests: Check that modules work together as expected

General tips

Use a modern, memory safe language where possible: Go, Rust, etc.
Understand and document your threat model early in the design process
Treat all input from outside your process adversarially, even if you trust the sender

Use a clean, consistent style throughout the codebase

Thank you!

bazad@cs.stanford.edu

