
Finding vulnerabilities
by fuzzing, dynamic and static analysis

Brandon Azad
Stanford CS155 guest lecture

April 15, 2021

Acknowledgments: Lecture slides are from the Computer Security course
taught by Dan Boneh and Zakir Durumeric at Stanford University. When slides
are obtained from other sources, a a reference will be noted on the bottom of
that slide. A full list of references is provided on the last slide.

Conceptualizing vulnerabilities and exploits

Computer programs: finite state machines

Computer programs: finite state machines

This is a conceptual state machine describing
the intended operation of the program.

Computer programs: finite state machines

This is a conceptual state machine describing
the intended operation of the program.

A physical CPU cannot directly execute this abstract state machine.

Running code: state machines emulating state machines

Running code: state machines emulating state machines

This is the intended state
machine translated into code
that can be run on a physical
CPU (C++, Python, etc.).*

* Not quite true: that code still needs to be translated to machine code, which introduces another level of state machines emulating state machines.

Running code: state machines emulating state machines

Bugs occur when there are
reachable states in the
runnable state machine
(the code) that have no
corresponding state in the
intended state machine
(the design).*

* Not the full picture: the initial design itself could have issues (design issues) which still count as software bugs.

Running code: state machines emulating state machines

Bugs occur when there are
reachable states in the
runnable state machine
(the code) that have no
corresponding state in the
intended state machine
(the design).*

Classifying states

Classifying states

Intended
states

Classifying states

Intended
states

Transition states

Classifying states

Intended
states

Transition states

Unintended states

Classifying states

Intended
states

Transition states

Unintended statesUnreachable states

Classifying states

Intended
states

Transition states

Unintended statesUnreachable states

Vulnerabilities
live here

Classifying states

Intended
states

Transition states

Unintended statesUnreachable states

Vulnerabilities
live here

Exploitation is
making the
program do
“interesting”

transitions in the
unintended state

space.

Classifying states

Intended
states

Transition states

Unintended statesUnreachable states

Vulnerabilities
live here

Exploitation is
making the
program do
“interesting”

transitions in the
unintended state

space.

Weird machines

http://www.dullien.net/thomas/weird-machines-exploitability.pdf

Common categories of software bugs

Design issue: The conceptual state machine does not meet the intended goals

The firewall’s remote interface is designed with a hardcoded admin password

Functionality bug: The code has bad transitions but only between validly
represented states

The save button code is broken, no transition to “saving the file” state

Implementation bug: Code introduces new states not represented in the
conceptual state machine

Lack of length checks introduces new “stack corruption” state

Other ways to reach unintended states

Hardware fault: The hardware suffers a glitch that causes a transition to an
unintended state even if the code is perfect

A cosmic ray causes a bit flip in a voting machine’s memory, causing a state
where one candidate has an impossible number of votes

Transmission error: The code is correct but is corrupted in-flight

A program downloaded from the internet suffers packet corruption, so the
program that is run has a different state machine from the one that was sent

This list is not intended to be exhaustive; merely to illustrate the myriad ways that unintended states may enter a system; deciding which ones to defend against is one step of proper threat modeling.

For any interesting program, it is
essentially impossible to manually
explore the full state space to find the
unintended states

Fuzzing

Fuzzing

Find bugs in a program by feeding it random, corrupted, or unexpected data

Idea: Random inputs will explore a large part of the state space

Some unintended states are observable as crashes (SIGSEGV, abort())

Any crash is a bug, but only some bugs are exploitable

Works best on programs that parse files or process complex input data

Fuzzing example

Fuzzing can be as simple as:

cat /dev/random | head -c 512 > rand.jpeg; open rand.jpeg

How could we do better?

Randomly corrupt real JPEG files

Reference the JPEG spec so that we generate only “JPEG-looking” data

Measure the JPEG parser to see how deep we’re getting in the code

Common fuzzing strategies

Mutation-based fuzzing

Randomly mutate test cases from some corpus of input files

Generation-based (smart) fuzzing

Generate test cases based on a specification for the input format

Coverage guided fuzzing

Measure code coverage of test cases to guide fuzzing towards new
(unexplored) program states

This is not a rigid taxonomy: fuzzers often employ multiple strategies.

Mutation-based fuzzing

Randomly mutate test cases from some corpus of input files

1. Collect a corpus of inputs that explores as many states as possible

2. Perturb inputs randomly, possibly guided by heuristics

Modify: bit flips, integer increments

Substitute: small integers, large integers, negative integers

3. Run the program on the inputs and check for crashes

4. Go back to step 2

Can mutation-based “dumb” fuzzing be successful?

In 2010, Charlie Miller fuzzed PDF viewers using the following mutation program:

numwrites = random.randrange(math.ceil((float(len(buf)) / FuzzFactor))) + 1
for j in range(numwrites):
 rbyte = random.randrange(256)
 rn = random.randrange(len(buf))
 buf[rn] = "%c"%(rbyte)

Found 64 exploitable-looking crashes

Dumb fuzzing is often way more successful than it has any right to be

Mutation-based fuzzing

Advantages

Simple to set up and run

Can use off-the-shelf software (possibly with a harness) for many programs

Limitations

Results depend strongly on the quality of the initial corpus

Coverage may be shallow for formats with checksums or validation

Generation-based (smart) fuzzing

Generate test cases based on a specification for the input format

1. Convert a specification of the input format (RFC, etc.) into a generative
procedure

2. Generate test cases according to the procedure and introduce random
perturbations

3. Run the program on the inputs and check for crashes

4. Go back to step 2

Syzkaller

A kernel system call fuzzer that uses
test case generation and coverage

Test cases are sequences of syscalls
generated from syscall descriptions

Runs the test case program in a VM

Kernel crashes in the VM indicate
potential Local Privilege Escalation
(LPE) vulnerabilities

https://github.com/google/syzkaller/blob/master/docs/syscall_descriptions.md

Generation-based (smart) fuzzing

Advantages

Can get deeper coverage faster by leveraging knowledge of the input format

Input format/protocol complexity is not a limit on coverage depth

Limitations

Requires a lot of effort to set up

Successful fuzzers are often domain-specific

Coverage limited by accuracy of the spec; implementation may diverge

Coverage guided fuzzing

Key insight: code coverage is a useful metric,
why not use it as feedback to guide fuzzing?

Prefer test cases that reach new states

Basic block coverage: Has this basic block
in the CFG been run?

Edge coverage: Has this branch been taken?

Path coverage: Has this particular path
through the program been taken?

https://googleprojectzero.blogspot.com/2020/07/mms-exploit-part-2-effective-fuzzing-qmage.html

american fuzzy lop (AFL)

1. Compile the program with
instrumentation to measure
coverage

2. Trim the test cases in the queue
to the smallest size that doesn’t change the program behavior

3. Create new test cases by mutating the files in the queue using traditional
fuzzing strategies

4. If new coverage is found in a mutated file, add it into the queue

5. Go back to step 2

https://lcamtuf.coredump.cx/afl/README.txt

Coverage guided fuzzing

Advantages

Very good at finding new program states, even if the initial corpus is limited

Combines well with other fuzzing strategies

Wildly successful track record

Limitations

Not a panacea to bypass strong checksums or input validation

Still doesn’t find all types of bugs (e.g. race conditions)

Real world example: Fuzzing the Samsung Qmage codec

In 2019, Mateusz Jurczyk discovered the Qmage
image codec included on Samsung smartphones

Reachable via zero-click MMS

The code looks fragile but the library is closed source

Few examples of Qmage files

Mateusz developed a harness to enable large-scale
coverage-guided fuzzing of the Qmage codec

https://googleprojectzero.blogspot.com/2020/07/mms-exploit-part-2-effective-fuzzing-qmage.html

Fuzzing the Samsung Qmage image codec: harness

A fuzzing harness was written to call
the interesting functions in the library
and supply the test case input from the
fuzzer

An emulator (qemu-aarch64) was used to run the harness and Qmage library on a
Linux machine

Easier to get 1000 Linux cores than 1000 Samsung Galaxy phones

d2s:/data/local/tmp $./loader accessibility_light_easy_off.qmg
[+] Detected image characteristics:
[+] Dimensions: 344 x 344
[+] Color type: 4
[+] Alpha type: 3
[+] Bytes per pixel: 4
[+] codec->GetAndroidPixels() completed successfully
d2s:/data/local/tmp $

Fuzzing the Samsung Qmage image codec: coverage

Code coverage was collected by
modifying qemu-aarch64 to trace
executed PC addresses

Coverage feedback
compensated for the small
number of initial test cases

Fuzzing the Samsung Qmage image codec: results

4 weeks of fuzzing

87.3% coverage of the Qmage
codec

5218 unique crashes

https://www.youtube.com/watch?v=nke8Z3G4jnc

Another cool fuzzer: Fuzzilli

Very successful JavaScript fuzzer

Principle: Translate JavaScript to a
dense Intermediate Language (IL),
and fuzz the IL

https://github.com/googleprojectzero/fuzzilli

Fuzzing summary

Off-the-shelf fuzzers are excellent at
finding bugs

Custom fuzzers are also excellent at
finding bugs

Different fuzzers often find different
bugs

Relatively easy to get started

Fuzzing doesn’t find all types of bugs

Should I
write a
fuzzer?

Yes

This code parses untrusted data

Dynamic analysis

Dynamic analysis

Analyze a program’s behavior by actually running
its code

May be combined with compile-time
modifications like instrumentation

Can modify the program’s behavior
dynamically

Useful for rapid experimentation

Often complements fuzzing very well

https://web.stanford.edu/class/cs107/resources/valgrind.html

AddressSanitizer (ASan)

Fast memory error detector for C/C++ using compiler instrumentation and a
runtime library that replaces malloc() to surround allocations with redzones

Out-of-bounds accesses
Use-after-free
Use-after-return
Use-after-scope
Double-free, invalid free
Memory leaks

Typically 2x slowdown

==9901==ERROR: AddressSanitizer: heap-use-after-free on address 0x60700000dfb5 at pc 0x45917b
bp 0x7fff4490c700 sp 0x7fff4490c6f8
READ of size 1 at 0x60700000dfb5 thread T0
 #0 0x45917a in main use-after-free.c:5
 #1 0x7fce9f25e76c in __libc_start_main /build/buildd/eglibc-2.15/csu/libc-start.c:226
 #2 0x459074 in _start (a.out+0x459074)
0x60700000dfb5 is located 5 bytes inside of 80-byte region [0x60700000dfb0,0x60700000e000)
freed by thread T0 here:
 #0 0x4441ee in __interceptor_free projects/compiler-rt/lib/asan/asan_malloc_linux.cc:64
 #1 0x45914a in main use-after-free.c:4
 #2 0x7fce9f25e76c in __libc_start_main /build/buildd/eglibc-2.15/csu/libc-start.c:226
previously allocated by thread T0 here:
 #0 0x44436e in __interceptor_malloc projects/compiler-rt/lib/asan/asan_malloc_linux.cc:74
 #1 0x45913f in main use-after-free.c:3
 #2 0x7fce9f25e76c in __libc_start_main /build/buildd/eglibc-2.15/csu/libc-start.c:226
SUMMARY: AddressSanitizer: heap-use-after-free use-after-free.c:5 main

https://github.com/google/sanitizers/wiki/AddressSanitizer

AddressSanitizer (ASan)

Fast memory error detector for C/C++ using compiler instrumentation and a
runtime library that replaces malloc() to surround allocations with redzones

Out-of-bounds accesses
Use-after-free
Use-after-return
Use-after-scope
Double-free, invalid free
Memory leaks

Typically 2x slowdown

==9901==ERROR: AddressSanitizer: heap-use-after-free on address 0x60700000dfb5 at pc 0x45917b
bp 0x7fff4490c700 sp 0x7fff4490c6f8
READ of size 1 at 0x60700000dfb5 thread T0
 #0 0x45917a in main use-after-free.c:5
 #1 0x7fce9f25e76c in __libc_start_main /build/buildd/eglibc-2.15/csu/libc-start.c:226
 #2 0x459074 in _start (a.out+0x459074)
0x60700000dfb5 is located 5 bytes inside of 80-byte region [0x60700000dfb0,0x60700000e000)
freed by thread T0 here:
 #0 0x4441ee in __interceptor_free projects/compiler-rt/lib/asan/asan_malloc_linux.cc:64
 #1 0x45914a in main use-after-free.c:4
 #2 0x7fce9f25e76c in __libc_start_main /build/buildd/eglibc-2.15/csu/libc-start.c:226
previously allocated by thread T0 here:
 #0 0x44436e in __interceptor_malloc projects/compiler-rt/lib/asan/asan_malloc_linux.cc:74
 #1 0x45913f in main use-after-free.c:3
 #2 0x7fce9f25e76c in __libc_start_main /build/buildd/eglibc-2.15/csu/libc-start.c:226
SUMMARY: AddressSanitizer: heap-use-after-free use-after-free.c:5 main

https://github.com/google/sanitizers/wiki/AddressSanitizer

Pro tip: Once coverage guided fuzzing
plateaus, run the generated corpus under
ASan to find bugs the fuzzer missed!

ThreadSanitizer (TSan)

Data race detector for C/C++

Similar in principle to AddressSanitizer but for race conditions

High overhead

5-10x memory

5-15x slowdown

WARNING: ThreadSanitizer: data race (pid=19219)
 Write of size 4 at 0x7fcf47b21bc0 by thread T1:
 #0 Thread1 tiny_race.c:4 (exe+0x00000000a360)

 Previous write of size 4 at 0x7fcf47b21bc0 by main thread:
 #0 main tiny_race.c:10 (exe+0x00000000a3b4)

 Thread T1 (running) created at:
 #0 pthread_create tsan_interceptors.cc:705 (exe+0x00000000c790)
 #1 main tiny_race.c:9 (exe+0x00000000a3a4)

https://clang.llvm.org/docs/ThreadSanitizer.html

Static analysis

Static analysis

Using a tool to analyze a program’s behavior without actually running it

Test whether a certain property holds or find places where it is violated

Static analysis can prove some properties about the program that fuzzing and
dynamic analysis can’t

E.g., can prove that a program is free of NULL pointer dereferences

Despite lots of work in this area, there are countless interesting topics and huge
scope for improvements!

Undecidability of static analysis

Goal: Determine whether a given program satisfies a given property

This is theoretically undecidable: it reduces to the halting problem!

def solve_halting_problem(P, a):
 def new_P():
 P(a)
 bug()
 return static_analyzer_for_bug(new_P)

Soundness and completeness

The best static analyzer can only satisfy one of the following:*

Soundness: Everything that the static analyzer finds is a bug

But some bugs may be missed!

Completeness: The static analyzer finds every bug

But there may be false positives!

Most static analyzers are neither sound nor complete

* We are assuming termination.

Soundness vs Completeness

sound (over-approximate) analysis

possible program behaviors

complete  
(under-approximate)  
analysis

Is this program safe?

Yes, it is safe.  
This program will not crash.

Try analyzing without approximating…

Non-termination!  
Therefore, need to approximate

Try analyzing without approximating…

Non-termination!  
Therefore, need to approximate

Abstraction
Concrete Domain of Integers Abstract Domain of Signs

x = 5

x = - 5

x = 0

⊕ Positive ints

⊖ Negative ints

⊕ Zero

Abstraction
Concrete Domain of Integers Abstract Domain of Signs

x = 5

x = - 5

x = 0

⊕ Positive ints

⊖ Negative ints

⊙ Zero

Abstraction
Concrete Domain of Integers Abstract Domain of Signs

x = 5

x = - 5

x = 0

⊕ Positive ints

⊖ Negative ints

⊙ Zero
x = b ? -1 : 1

Abstraction
Concrete Domain of Integers Abstract Domain of Signs

x = 5

x = - 5

x = 0

⊕ Positive ints

⊖ Negative ints

⊙ Zero

⊤ All integers
x = b ? -1 : 1

Abstraction
Concrete Domain of Integers Abstract Domain of Signs

x = 5

x = - 5

x = 0

⊕ Positive ints

⊖ Negative ints

⊙ Zero

⊤ All integers
x = b ? -1 : 1

x = y / 0

Abstraction
Concrete Domain of Integers Abstract Domain of Signs

x = 5

x = - 5

x = 0

⊕ Positive ints

⊖ Negative ints

⊙ Zero

⊤ All integers

⊥ No integers 
(undefined)

x = b ? -1 : 1

x = y / 0

Try analyzing with  
“signs” approximation…

Try analyzing with  
“signs” approximation…

Might Crash

Try analyzing with “path-sensitive
signs” approximation…

Tainting Checkers
Unchecked data accepted

from untrusted source
Unvetted data taints other

data transitively

User input, network packets, 
parsed files

Tainted data used  
as an operator

system() printf() malloc() strcpy() Sent to RDBMS HTML Rendered

Command 
 Injection

Format String  
Manipulation

Int/buffer  
overflow

Buffer  
overflow

SQL  
Injection

Cross Site 
Scripting Attacks

Checking for Unsanitized Integers

Example Untrusted Integer
Remote exploit, no length checks

/* 2.4.9/drivers/isdn/act2000/capi.c:actcapi_dispatch */

isdn_ctrl cmd;

...

while ((skb = skb_dequeue(&card->rcvq))) {

msg = skb->data;

...

memcpy(cmd.parm.setup.phone,

msg->msg.connect_ind.addr.num,

msg->msg.connect_ind.addr.len - 1);

Clang static analyzer

Check for common security issues
with a static analysis framework in
the compiler

Built in checkers:

Buffer overflows (with taint)
Refcount errors
malloc() integer overflows
Insecure API use
Uninitialized value use

https://clang-analyzer.llvm.org/images/analyzer_html.png

CodeQL (Semmle)

Query language for finding patterns
in large codebases

“SQL for searching code”

Works best when you have a
specific bad code pattern in mind

https://msrc-blog.microsoft.com/2018/08/16/vulnerability-hunting-with-semmle-ql-part-1/

Manual analysis

https://bugs.chromium.org/p/project-zero/issues/detail?id=2085

Reverse engineering

Looking at a compiled program in order to figure out what it does and how it works

Usually assisted by tools

Disassembler

Decompiler

Strings

Often aided by dynamic analysis

Tracing

IDA Pro

Disassembly

Decompilation

Binary analysis

Scripting

Ghidra

Similar to IDA

Open source

Written by the
NSA (no, really)

https://en.wikipedia.org/wiki/Ghidra#/media/File:Ghidra-disassembly,March_2019.png

Tips for writing (more) secure software

Software tests

One of the most effective ways to reduce bugs

Unit tests: Check that each piece of code behaves as expected in isolation

Goal: Unit tests should cover all code, including error handling

So many exploitable bugs would be eliminated with basic unit tests

Regression tests: Check that old bugs haven’t been reintroduced

If you don’t run regression tests, attackers will run them for you!

Integration tests: Check that modules work together as expected

General tips

Use a modern, memory safe language where possible: Go, Rust, etc.

Understand and document your threat model early in the design process

Treat all input from outside your process adversarially, even if you trust the sender

Use a clean, consistent style throughout the codebase

Thank you!

bazad@cs.stanford.edu

